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ABSTRACT. In this paper we introcluce the class of countably S-closed spaces
which lies between the familiar classes of S-closed spaces and feebly compact
spaces. We characterize countably S-closed spaces and study their basic prop-
erties. In addition, we investigate the relationship between countably S-closed
spaces and feebly compact spaces. Several examples illustrate our results.

1. Introduction and preliminaries

In 1976, Thompson [8] introduced the class of S-closed spaces. A space
X s called S-closed il every semi-open cover has a finite subfamily the closures
ol whose members cover X, or equivalently, if every regular closed cover of
X has a finite subcover. Herrmann [3] proved that a Hausdorfl space is
S-closed if and only if it is quasi-H-c.osed and extremally disconnected. Recall
that a space X is said to be quasi-H-closed if every open cover of X has a
finite subfamily the closures of whose members cover X . If we replace in the
definition of quasi-H-closedness “every open cover” by “every countable open
cover” we obtain the important class of feebly compact spaces (also known as
lightly compact spaces).

In this paper, we introduce and study a new class of spaces, namely countably
S-closed spaces, i.e. spaces in which every countable regular closed cover has a
finite subcover. In Section 2, we provide several characterizations of countably
S-closed spaces and investigate their basic properties. It is pointed out that this
class of spaces lies strictly between the class of S-closed spaces and the class of
feebly compact spaces. In Section 3, we further explore the relationship between
countably S-closed spaces and feebly compact spaces. In particular, the concept
of km-perfect spaces is introduced. Finally, in Section 4, we present several
examples to illustrate the results obtained in Section 2 and Section 3.

AMS Subject Classification (1991): Primary 54D20, 54D30, 54G05.
Key words: Countably S-closed, S-closed, Feebly compact, Extremally disconnected,
km-perfect.
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For a subset A of a topological space (X, 7) we denote the closure of A and
the interior of A by cl A and int A, respectively. The subspace topology on A
is denoted by 7'|A. A subset G of (X, 7) is called regular open if G = int(clG).
F C X is said to be regular closed if X — F' is regular open, or equivalently, if
F = cl(int F'). The families of regular open subsets and regular closed subsets
of (X,7) are denoted by RO(X,7) and RC(X,7), respectively. RO(X,7) is
a base for a coarser topology 7, on X, called the semi-regularization topology
on X. (X,7) is said to be extremally disconnected, abbreviated e.d., if every
regular open set is closed, or equivalently, if RO(X,7) = RC(X, 7). It is known
that every dense subspace of an e.d. space is e.d. In order to facilitate the reading
of this paper, we now summarize some well known results.

LEMMA 1.1. Let (X,7) be a space. Then
i) RC(X,7)=RC(X,7s);
i) (X,7) is e.d. if and only if (X,7s) is e.d.;
i) if AC X is locally dense, i.e. if A Cint(cl A), then

RC(A,7|4)={FNA: Fe RC(X,7)}.

A subset S of (X, 7) is called semi-open [5] (regular semi-open [1], respec-
tively) if there is an open set U (a regular open set U, respectively) such that
U C S CclU. A space (X, 7) is called quasi- H-closed (feebly compact, S-closed
8], respectively) if every open cover (every countable open cover, every semi-
open cover, respectively) of (X, 7) has a finite subfamily the closures of whose
members cover X . Following Hod el [4], a cellular family in a space (X, 7) is
a collection of nonempty, pairwise disjoint open sets. We will denote the set of
natural numbers by w, and fw is the Stone-Cech compactification of w. Finally,
a sequence {A, : n € w} of subsets of a set X is called decreasing (increasing,
respectively) if Ap41 C A, (A, C Apt1, respectively) for each n € w. Strictly
decreasing sequences and strictly increasing sequences of subsets are defined in
the obvious ways.

No separation axioms are assumed unless explicitly stated.

2. Characterizations and basic properties
We begin by defining the class of spaces we will study in this paper.

DEFINITION. A topological space (X, 7) is countably S-closed if every count-
able cover of regular closed sets has a finite subcover.

The following fundamental observation is easily verified.
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PROPOSITION 2.1. Every S-closed space is countably S-closed, and every
countably S-closed space is feebly compact.

Note that the converses of these implications are false, however. Example 4.1.
provides a space which is countably S-closed but not S-closed, and in Ex-
ample 4.3, we present several feebly compact spaces which are not countably

S-closed.

In our next result we present a huge variety of characterizations of countably

S-closed spaces.

THEOREM 2.2. For a space (X, 7) the following are equivalent:

1)

(X, 7) 1is countably S-closed.

2) Every countable cover by semi-open sets has a finite subfamily the clo-
sures of whose members cover X .
3) Ewvery countable cover by reqular semi-open sets has a finite subfamily
the closures of whose members cover X .
4) There is no strictly increasing sequence of regular closed sets whose
union is X .
5) If {F, : n € w} is a decreasing sequence of nonempty regular closed
sets, then
ﬂ{intFn cnewl#0.
6) If {G, : n € w} is a decreasing sequence of nonempty regular open
sets, then
ﬂ{Gn: new}l#0.
7) If {G,: n € w} is a sequence of reqular open sets satisfying the finite
intersection property, then
ﬂ{Gn: new}#0.
8) If {Gn: n € w} is a filter basis consisting of regular open sets, then
m{Gn:new};ﬁ(Z).
Proof.

1) <= 2) <= 3): This is obvious since the closure of every semi-open set
is regular closed. Furthermore, every regular closed set is regular semi-open and

thus semi-open.
1) = 4): This is trivial.
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4) ==> 1): Suppose that (X,7) is not countably S-closed. Then there
exists a countable regular closed cover {F,, : n ¢ w} of X «uch that for al
kew, H{F, : 1 <n <k} # X. By induction we can coustruct a faniii
{A,, © n e w} asfollows: for n =1 set A} = Fy. For n > 2 there must be a
least m € w such that A, _; is strictly contained in F, U -t F, ¢ X . Define
A, by A, = FiU---UF,,. Since {A, : n € w} is astrictly increasing sequence
of regular closed sets whose union is X, we have a contradiction to 4).

1) == 5): Let {F,: n € w} be a decreasing sequence of nonemptv regular
closed sets. Suppose that (Wint F, : n € w} = 0. Then {cl(X ~ F,): ne o}
is a regular closed cover of X . By assumption, there exists 1 € & such thin
X = U{CI(X - Fy o i=1,. ..,m} = cl(X = F,,). Heoce ut F,, = 0, which
gives a contradiction.

5) == 6): Set F,, =clG, forall n € w and apply 5).

6) = 7): Let {G,,: n € w} be asequence of regular open sets satisfyving
the finite intersection property. Set U, = G| N--- NG, for all n € . Then
{Un : n € w} is a decreasing sequence of nonempty regular open sets and
(MG, : new}={U,: new}#0.

7) = 8): This is trivial since every filter base satisfies the linite intersection
property.

8) = 1): Suppose that (X,7) is not countably S-closed. Theu there is a
countable regular closed cover {F,, : n € w} of X without a finite subcover
For n € w define G,, by G,, = X — (F;U---UF,). Then (,, is nonempry auni!
regular open for all n € w. Furthermore, it is easily proved that {(, : rn = o]

J
is a filter base with empty intersection, a contradiction to 8). |

As an immediate consequence of Lemma 1.1 we note the following result.

LEMMA 2.3. Let (X,7) be a space and suppose that X = Ay U---UA, UE .
where each A; is a locally dense, countably S-closed subspace and E C XN i«
finite. Then (X, 1) is countably S-closed.

LEMMA 2.4. Let (X,7) be a space. Suppose there exists xy, € X having an
open neighbourhood base {U, : n € w} with the following properties:
i) each clUpyy is strictly contained in U, ,
i) U =X,
i) {zo}=(HUn: new}={cU,: n€w}.
Then (X, T) is not countably S-closed.

Proof. Let {wy: k € w} be a partition of w, where each w; is infinite.
For every k € w let Gy = |J{U, — clUp41 : n € wi}. Then {Gy @ k € &}
is a cellular family. One checks easily that zo € c1Gy and (J{cIU, —cllU, ., :
n € wr} C clGy for each k € w. We now show that {clGy : k € «} covers
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N . If x # x¢, then there exists m € w such that = € clU,, — clU,,+;. There
is some k € w such that m € wy, and so x € clGy. Since {Gy : k € w} isa
cellular family, {clGy : k € w} is a countable regular closed cover of X without
a finite subcover. Thus (X, 7) is not countably S-closed. O

COROLLARY 2.5.

1) An infinite regular space which is first countable at some non-isolated point
is not countably S-closed.

2) Suppose that (X, 7) is an infinite, reqular feebly compact space and there
erists xo € X such that {zo} is a Gs-set but not open. Then (X,T) is not
countably S-closed.

Proof. 1) is an immediate consequence of Lemma 2.4. To prove 2) observe
that by [6; Proposition 2.2], (X, 7) is first countable at zo. Now apply 1). O

We now focus on the fundamental properties of countably S-closed spaces.
To begin with, recall that a topological property R is said to be semi-regular
provided that a space (X, 7) has property R if and only if (X, 7,) has property
IR. The property R is called contagious if a space (X, 7) has property R when-
ever a dense subspace of (X, 7) has property R. Our first result is an immediate
consequence of Lemma 1.1.

PROPOSITION 2.6. Let R be the property “countably S-closed”. Then R is
both semi-regular and contagious.

Recall that a function f: (X,7) — (Y,0) is called irresolute if f~!(S) is
semi-open in (X,7) whenever S is semi-open in (Y,o). It is known that a
function which is continuous, open and onto, is irresolute. Thompson [9]
has shown that if (X,7) is S-closed and f: (X,7) — (Y,0) is irresolute and
onto, then (Y,0) is S-closed. The same idea works to prove our next result.

PROPOSITION 2.7.

i) Let (X,7) be countably S-closed and let f: (X,7) — (Y,0) be irresolute
and onto. Then (Y,0) is countably S-closed.

i)y Let (X, 1) be countably S-closed and let f: (X, 7) — (Y, o) be continuous,
open and onto. Then (Y, 0) is countably S-closed.

i) If a product of topological spaces is countably S-closed, then each factor
space s countably S-closed.

Remark 2.8. The converse of Proposition 2.7.1ii) is false. Sw is S-closed
hence countably S-closed, but Sw x Bw is not countably S-closed as shown in
I2vomple .
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PROPOSITION 2.9. Let (X, 7) be countably S-closed.
i) If G € RO(X,T), then (G,T|G) is countably S-closed.
ii) If F € RC(X,), then (F,’T|F) is countably S-closed.
ii) If (A,T|A) is a countably S-closed subspace of (X,7) (here (X,T)
need not be countably S-closed), and if AC T C clA, then (T.T\T)
is countably S-closed.

iv) Let (X,7) be regular. If p € X is a non-isolated point, then X — {p}
s a countably S-closed subspace.

Proof.

i) Let {A,: n € w} C RC(G,7|) bea cover of G. By Lemma 1.1, for each
n€w A, =GNF, forsome F, € RC(X, 7). Since {F,: n € w}U{X -G} is
a regular closed cover of (X, 7), there exists m € w such that X = (X - G)U
FiU---UF,,. Consequently, G = A;U---UA,, and thus (G, Tlcv) is countably
S-closed.

ii) Let FF € RC(X,7). Then int F € RO(X,7) and int F is dense in
(F, T'F) . By i) and Proposition 2.6, (F, TIF) is countably S-closed.

iii) Since A is dense in (T,T|T), by Proposition 2.6, (T, TIT) is countably
S-closed.

iv) Let D = X — {p}. If D is finite, clearly (D,7|p) is countably S-closed.
Suppose that D is infinite. Let {4, : n € w} C RC(D,7|p) be a cover of D.
By Lemma 1.1, for each n € w A, = DN F,, for some F, € RC(X,7). If X #
U{Fn : n € w}, then {p} isa Gs-set in (X, 7) and by Corollary 2.5, (X, 7) and
(D, 7|p) are finite spaces, which is a contradiction. Thus X = (J{F, : n € w}.
and there exists m € w such that X = F{U---UF,, and D=A; U ---UA,,.
ie. (D,T|D) is countably S-closed. O

Remark 2.10. The property “countably S-closed” is in general not hered-
itary with respect to open, dense or closed subspaces. fw is S-closed hence
countably S-closed. w C [Bw is open and dense in Sw but clearly not countably
S-closed. Moreover, we show in Example 4.5, that Sw — w fails to be countably
S-closed.

3. Countably S-closed spaces versus feebly compact spaces

In this section, we focus on the relationship between countably S-closed
spaces and feebly compact spaces. We already pointed out in Proposition 2.1
that every countably S-closed space is feebly compact whereas the converse does
not hold in general (see Example 4.3). Therefore it is quite natural to search for
a condition (P) such that a space is countably S-closed if and only if it is fee-
bly compact and satisfies (P). For the class of S-closed spaces there exists the
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following interesting result [3]: A Hausdorff space is S-closed if and only if it is
quasi- H-closed and e.d. Unfortunately, there is no analogous result for the class
of countably S-closed spaces. It is obvious that every feebly compact e.d. space
is countably S-closed but in Example 4.2, we show that there exist countably
S-closed, compact Hausdorff spaces which are not e.d. However, we are able to
characterize the class of spaces which are countably S-closed and e.d.

DEFINITION. A space (X, 7) is called km-perfect if for each U € RO(X, )

and each = ¢ U there is a sequence {G, : n € w} of open sets such that
UH{G,: new} CUC Y{clGp: new} and = ¢ J{clG, : n€w}.

Our next result shows that there is a variety of spaces which are km-perfect.
Recall that a space (X, 7) is said to be perfect ( RC-perfect [6], respectively) if
every open set is a countable union of closed sets (regular closed sets, respec-
tively).

THEOREM 3.1. If a space (X,T) is either

i) e.d., or
hereditarily Lindeldf and Hausdorff, or
second countable and Hausdorff, or
RC -perfect, or
reqular and perfect,

i
111

1

v
v
then it is km-perfect.

Proof. Let U € RO(X,7) and = ¢ U.

i) Suppose that (X, 7) is e.d. Then U is closed and we are done by setting
G/, =U for each n € w.

i) If (X, 7) is hereditarily Lindelof and Hausdorff, for each y € U there is
an open set V, such that y € V,, CU and = ¢ clV,. Then {V, : y e U} is
an open cover of U which possesses a countable subcover {V,, : n € w}. Then
U=WUN{Vyn: n€ew}land z ¢ clV,, for each n € w, proving that (X,7) is
km-perfect.

ii1) This follows from ii) since every second countable space is hereditarily
Lindelof.

iv) If (X,7) is RC-perfect, then U = |J{F,, € RC(X,7): n € w}. Thus
U{intF,: new}CU = H{F,: n€w} and = ¢ F, foreach n cw.

v) Suppose that (X, 7) is regular and perfect. Then U = |J{A, : n € w},
where each A, is closed. For each n € w, z ¢ A, and by regularity there

exists an open set G, with A, € G,, CU and z ¢ clG,,. Hence (X,7) is
km-perfect. O

The importance of the class of km-perfect spaces is illustrated by
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THEOREM 3.2. Let (X, 7) be countably S-closed and km-perfect. Then (X.1)
s e.d.

Proof. Let U € RO(X,7) and = ¢ U. Let {G, : n € w} be a sequence
of open sets with | J{G,,: n€w} CU CJ{clG,,: n€w} and » ¢ J{cIG, :
n € w}. By Lemma 1.1, {UNclG, : new} C RC(U, 7
Proposition 2.9, (U, T|U) is countably S-closed so there exists m € w such that
UCcGiuU---UclGy,. Since z € X — (clGLU---UclG,,), we have & ¢ cll.
Thus U is closed, i.e. (X,7) is e.d.

{7) is a cover of U". By

COROLLARY 3.3.

1) A km-perfect space is countably S-closed if and only if it is feebly compact
and e.d.

ii) A countably S-closed space is e.d. if and only if it is km-perfect.

In order to characterize countably S-closed spaces in terms of feeblv compact
spaces satisfying an additional condition, we need
LEMMA 3.4. For a space (X, 1) the following are equivalent:

1) (X,7) is feebly compact.

2) FEvery locally finite cellular family is finite.

3) If {U, : n € w} is a decreasing sequence of nonempty open seis
(regular open sets, respectively), then ({clU, : n € w} # 0.

4) If {F, : n € w} is a decreasing sequence of noncmpty regular closcd

sets, then (\{F, : new} #0.

Proof.
1) <= 2) <= 3) can be found in [7; p. 50], and 3) <= 1) is obvious.

Using Theorem 2.2 and Lemma 3.4, the next result is immediate.

THEOREM 3.5. A space (X, 7) is countably S-closed if and only if it is fechly
compact, and whenever {F, : n € w} is a decreasing sequence of nonemply
regular closed sets with nonempty intersection, then (\{int £, : n e o} £0.
THEOREM 3.6. For a space (X, 7) the following are equivalent:
1) (X,7) is countably S-closed.
2) Every cellular family {Uy : X € A} satisfying (‘I(U{('/\ D ANE \})
U{clUx : X € A} is finite.
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Proof.
1) == 2): Let {G) : X € A} be a cellular family with (fl(U{(;A

A€ A}) = J{cIGx : X € A}. Suppose that A is infinite. Pick a countably
infinite subset Ay C A and let Ao = A — Ay. Set Uy = G, for each A € A.
U = UY{Gr : XA € Az} and V = int(cl(U{G,\ PN A})) Because of

cl(U{(:,\ DN e A}) = U{clGy 1 A€ A} wehave V C J{clUy : A€ Ay}
U cell7™ . Since Vo is a regular open subset, it follows from Proposition 2.9.
that (V.7]y) is countably S-closed. By Lemma 1.1, {clUx NV : XA e A} U
{clt* vV} C I?C(V, Th) hence there is a finite subset {A;,... A\, } € A,
such that V. C clUyy U - UclUy, UelU*. If X € Ay — {\,..., A}, then
Gy CVoand GaN(Uy U---1u Uy, UU*) is empty, thus G is empty, which is
a contradiction. Hence A has to be finite.

2) == 1): If (X.7) is not countably S-closed, then by 4), there is a
strictly increasing sequence {F, : n € w} of regular closed sets whose union
is X. Define Uy =it Fy and U,, = int F,, — F,,_; for each n > 2. It is easily

checked that {U,, : n € w} is an infinite cellular family satisfying CI(U{U,, :

noe x}) = UfclU, : n € w}, which gives a contradiction. Hence (X, 7) is

countably S-closed. O

Note that condition 2) of the above theorem is a generalization of the con-
dition 2V of Lemma 3.4 because every locally finite fainily is closure-preserving.
Thus it might be interesting to know whether the condition “Every closure-
preserving cellular family is finite” defines a new class of spaces between the
conntably S-closed spaces and the feebly compact spaces.

Recall that a space (X, 7) is called a P-space if every Gy-set is open. Note
that if X is an uncountable set endowed with the co-countable topology 7. then
(:\.7) is a countably S-closed P-space. There is an interesting characterization
ol conmtably S-closed PP-spaces which seems to be worth mentioning.

PROPOSITION 3.7. A P-spacc (X.7) is countably S-closed if and only if
coeery dense subspace is feebly compact.

Proof. Let ((X.7} be countably S-closed and let D € X be dense. If
{0, 0 ne wy €7 s acover of D then (J{cllU, : n & w} is closed and
this equal to X Hence there exists m € w such that X =clUyU.---ucll’,.
Consceguently, (II)‘T!D) is feebly compact. To prove the converse. let {F),
e Wt obe a regudar closed cover of (X.7). Then (J{int F, : n e o} is dense
and. by assumption, feebly compact. This clearly implies that (X, 7} is covered
by finitely many F,,.e. (XL 7) is countably S-closed. -

RE



KARIN DLASKA — NURETTIN ERGUN — MAXIMILIAN GANSTER

Remark 3.8. Closing this section, we briefly discuss countably S-closed
spaces in relationship to first countability and second countability. It is well-
known that every first countable, e.d. Hausdorfl space is discrete (see [11:
p. 301]), and thus every first countable, e.d., countably S-closed Hausdorft
space has to be finite. Moreover, since every second countable Hausdorft space is
km-perfect, it follows by Theorem 3.2 and the preceding observation that every
second countable, countably S-closed Hausdorff space is finite. This result is
false, however, in the absence of Hausdorffness since the space obtained by tak-
ing the cofinite topology on a countably infinite set is obviously non-Hausdortt.
second countable and countably S-closed.

4. Examples

Example 4.1. Let X = 3w — {p}. where p € 3w — w. It is well known
(see e.g. [11; p. 301]) that X is countably compact, and hence feebly compact.
but not compact. Since X is e.d., X is countably S-closed. However. \' fails
to be S-closed since a regular S-closed space is compact.

Example 4.2. Let (Y,0) be a space such that Y — {p} is a countablv
S-closed subspace for some non-isolated point p € Y. Let Y| and Y. denote
two disjoint copies of Y — {p}. For any subset A C Y we will denote the
corresponding subsets of Y| and Y5 by A4 and As, respectively. Now let X =
Y1 U Yy U {p}. We define a topology 7 on X in the following way. For any
re X, it v ey, (r €Y, respectively), then the basic open neighbourhoods of
r in (X, 7) are of the form Vi (Va, respectively). where V7 is an open subser
of Y — {p}. For every open neighbourhood W of p in (Y.o). a basic open
neighbourhood of p in (X.7) is {p}uU (W —{p}) Y (W —{p}), Ttis casy to see
that both Y, and Y5 are regular open subsets of (X, 7) and homeomorphic to
Y —{p}. By Lemma 2.3, (X, 7) is countably S-closed but not e.d. since neither
Y1 nor Y, are closed in (X, 7).

In particular, if (Y, o) is w, then the resulting space is a compact. countably
S-closed Hausdorft space which is not S-closed since it fails to be e.d.

Example 4.3. Here we present some familiar spaces whichi arce icebly
compact but not countably S-closed.

1) Isbell’s space ¥ ([2; p. 79]) is a locally compact. feebly compact. perfec
Hausdorff space hence also completely regular. It is also first conntable and thus
cannot be countably S-closed by Corollary 2.5.

i1) wy, the space of all countable ordinals with the order topology is regular.
first countable and countably compact, thus feebly compact. By Corollary 2.5,
w; is not countably S-closed.
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iii) Let D be an infinite set with the discrete topology. Let (X, 7) denote
the one-point-compactification of D, where X = DU {a} and a ¢ D is the
only non-isolated point of (X,7). Then (X,7) is a compact Hausdorff space.
hence feebly compact. Let {D,, : n € w} be a partition of D, where each D,,
is infinite. For each n € w, if F, = D, U {a}, then F, € RC(X, 7). Clearly.
{F,: n€w} isaregular closed cover of (X, 7) without a finite subcover. Thus
(X, 7) is not countably S-closed.

IExample 44. Sw X fBw is not countably S-closed. Consider W =
{(n. n)y: n € w} C pw X pw. It is known that W is a regular open subset
of Jw x Jw. By Proposition 2.9.1), Sw x fw cannot be countably S-closed since
117 is also an infinite discrete subspace of fw X Jw.

Example 4.5. w* = Sw — w is not countably S-closed.

Let f:w — [0,1] be a function which maps w onto the rationals of the
unit interval [0,1]. If Bf: fw — [0,1] denotes the Stone-extension of f, then
Jf is continuous and onto. Let g: w* — [0,1] denote the restriction of 3f to

+

wtole g = ﬁf|w*. Note that for each irrational number ¢ € [0,1] we have

g "({t}) # 0. By Corollary 2.5, [0,1] is not countably S-closed so there exists
a regular closed cover {4, : n € w} of [0,1] without a finite subcover. Clearly,
cach A, is a zero-set in [0, 1], and so each g~'(4,,) is a nonempty zero-set in
<. By [10; p. 78], {g7'(A4,) : n € w} is a countable regular closed cover of
«w*. Let m € w. Then there is an irrational number t € [0,1] — (A, U---UA,,).
Since g1 ({t}) # 0, we have w* # g~ '(A;)U---Ug *(A;,). This proves that
«* is not countably S-closed.
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