Diego Averna
Regularization of closed-valued multifunctions in a non-metric setting

Persistent URL: http://dml.cz/dmlcz/136616

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project [DML-CZ: The Czech Digital Mathematics Library](http://project.dml.cz)
REGULARIZATION OF CLOSED-VALUED MULTIFUNCTIONS IN A NON-METRIC SETTING

DIEGO AVERNA

(Communicated by Ladislav Mišík)

ABSTRACT. In this paper, the existence of a regularization of multifunctions \(\Phi: T \rightarrow Z \) and \(F: T \times X \rightarrow Y \) is stated if \(T \) is a topological measurable space, and \(X, Y \) and \(Z \) are topological spaces with a countable base (Theorems 1 and 3). Utilizing Sainte-Beuve's selection theorem ([6]), uniqueness theorems (Theorems 2 and 4) are also derived. The obtained results generalize those of Rzeżuchowski in [5].

1. Introduction

Scorza-Dragoni type theorems for multifunctions \(F: T \times X \rightarrow Y \) of Carathéodory type are useful for the study of the set of solutions of Cauchy problems associated with the differential inclusion

\[
\dot{x} \in F(t,x).
\]

This occurs because the separated regularity of \(F \) with respect to \(t \) and \(x \) (i.e. the Carathéodory type property) implies (through the Scorza-Dragoni type theorem) an almost regularity with respect to \((t,x) \).

For example, if \(T = [0,1] \), \(X = Y = \mathbb{R} \), \(F: T \times X \rightarrow Y \) has closed values, \(F(\cdot,x) \) is weakly measurable, and \(F(t,\cdot) \) is continuous, then for each \(\varepsilon > 0 \) there exists a closed set \(C_\varepsilon \subset [0,1] \), whose Lebesgue measure is \(> 1 - \varepsilon \), such that \(F|_{C_\varepsilon} \) is lower semicontinuous and has closed graph.

A tool for the study of the set of solutions of (1) when \(F \) is not of Carathéodory type can be the “regularization” of \(F \).

Key words: Multifunctions, Regularization, Measurability, Semicontinuity.

1 This research was supported by 60% MURST.
Roughly speaking, a regularization of F is a multifunction $G : T \times X \to Y$ which has the following properties:

\begin{align*}
 &i_1) \quad G(t, x) \subset F(t, x), \\
 &i_2) \quad q(t) \in F(t, p(t)) \implies q(t) \in G(t, p(t)) \text{ whenever } p : T \to X \text{ and } q : T \to Y \text{ are measurable functions},
\end{align*}

plus some Scorza-Dragoni type property.

In virtue of the properties $i_1)$ and $i_2)$, the set of solutions of (1) is the same as that of

$$
\dot{x} \in G(t, x). \tag{2}
$$

Existence and uniqueness theorems for regularizations G of certain multifunctions F have been given in [1], [4], [5].

In particular, Rzeźuchowski proved in [5] an existence theorem for regularizations of a given closed-valued multifunction $F : T \times X \to Y$ such that $F(t, \cdot)$ has closed graph when T is a locally compact metric space endowed with a Borel, σ-finite, regular and complete measure μ, and X and Y are separable metric spaces ([5; Theorem 1]). A uniqueness theorem was also presented when X and Y are even complete ([5; Theorem 4]).

The aim of this paper is essentially to show that the Rzeźuchowski existence and uniqueness theorems above remain still valid without assuming that X and Y are metric and without strengthening of other hypotheses: that is, existence and uniqueness theorems for regularizations proved here extend in a more general framework the results of [5].

The main idea for doing this, in existence theorems, is to replace the point-set distance function in the range-space (which plays a key role in the Rzeźuchowski existence proof) by a function c, taking only two values, which flags when two suitable sets, one coming from a basis of the topology of the range-space, the other from the values of the multifunction, intersect.

This idea has been tested also in a previous paper [5], concerning Lusin and Scorza-Dragoni type theorems; some results of [3] are also useful here.

The extension in uniqueness theorems essentially carries out in virtue of Sainte-Beuve’s selection theorem.

Moreover, the results of this paper not only extend but also improve those of [5], establishing indeed further properties for the regularization G.
2. Preliminaries

Let S be a non-empty set and (Z, τ_Z) be a topological space. $\mathcal{P}(Z)$ (resp. $\text{Cl}(Z)$) denotes the family of all subsets (resp. closed subsets) of Z, while $\mathcal{B}(Z)$ denotes the Borel σ-algebra on Z. Let $\Phi: S \to \mathcal{P}(Z)$. If the values of Φ are closed subsets of Z, we write $\Phi: S \to \text{Cl}(Z)$. $\text{Gr}(\Phi)$ denotes the graph of Φ, i.e. the set $\{(s, z) \in S \times Z : z \in \Phi(s)\}$. If $E \subseteq S$, we call $\Phi|_E$ the restriction of Φ to E. If $W \subseteq Z$, we put $\Phi^-(W) = \{s \in S : \Phi(s) \cap W \neq \emptyset\}$ and $\Phi^+(W) = \{s \in S : \Phi(s) \subseteq W\}$. We have the fundamental relations $\Phi^-(W) = S - \Phi^+(Z - W) = \text{proj}_S(\text{Gr}(\Phi) \cap (S \times W))$, where proj_S denotes the projection map of $S \times Z$ onto S, and for each family $\{W_\alpha : \alpha \in A\} \subseteq \mathcal{P}(Z)$, $\Phi^{-}\left(\bigcup_{\alpha \in A} W_\alpha\right) = \bigcup_{\alpha \in A} \Phi^{-}(W_\alpha)$.

If $\Phi_1, \Phi_2: S \to Z$ are two multifunctions, we denote by $\Phi_1 \triangle \Phi_2$ the symmetric difference multifunction, that is the multifunction defined by $(\Phi_1 \triangle \Phi_2)(s) = \Phi_1(s) \Delta \Phi_2(s)$ for each $s \in S$.

If (S, τ_S) is a topological space, we say that Φ is lower (resp. upper) semicontinuous at $s_0 \in S$ if for each $W \in \tau_Z$ such that $s_0 \in \Phi^-(W)$ (resp. $I \subseteq \Phi^+(W)$) there exists an open neighbourhood I of s_0 such that $I \subseteq \Phi^-(W)$ (resp. $I \subseteq \Phi^+(W)$). We say that Φ is lower (resp. upper) semicontinuous if it is lower (resp. upper) semicontinuous at every $s \in S$, or equivalently, if for each $W \in \tau_Z$ the set $\Phi^-(W)$ (resp. $\Phi^+(W)$) is open in S. We say that Φ is continuous if it is simultaneously lower and upper semicontinuous.

If (S, Σ_S, μ) is a measure space, we denote by Σ_S^μ the completion of Σ_S with respect to μ and with μ^* the completion measure. (S, Σ_S^μ, μ^*) is a complete measure space. Recall that $E \in \Sigma_S^\mu$ if and only if there exist $E', E'' \in \Sigma_S$ such that $E' \subseteq E \subseteq E''$ and $\mu(E') = \mu^*(E) = \mu(E'')$.

If Σ is a σ-algebra of subsets of S, we say that Φ is Σ-weakly measurable (resp. Σ-measurable) if for each $W \in \tau_Z$ (resp. $W \in \text{Cl}(Z)$) $\Phi^-(W) \in \Sigma_S$. The definitions of lower and upper semicontinuity for real valued functions and those of measurability and continuity for functions with values in a topological space are the usual ones.

If (S, τ) is a topological space, (S, Σ) is a measurable space, and $E \subseteq S$, then $\tau_E = \tau|_E$ and $\Sigma_E = \Sigma|_E$ denote respectively the induced topology and the induced σ-algebra on E. If $E \subseteq S$, and E has the induced topology, then $\mathcal{B}(S)|_E = \mathcal{B}(E)$. If $E \subseteq \Sigma$, then $\Sigma|_E = \{A \in \Sigma : A \subseteq E\}$, so we speak of Σ-weak measurability (resp. Σ-measurability) of a multifunction (resp. function) instead of $\Sigma|_E$-weak measurability (resp. $\Sigma|_E$-measurability) whenever the multifunction (resp. function) is defined on E.

115
If \(S \) is a structured space, and we want a structure on \(E \subset S \) when it is not specified, we refer to the induced structure; i.e., if \(S \) is a topological (resp. measurable) space, then \(E \) is a topological (resp. measurable) space with the induced topology (resp. \(\sigma \)-algebra).

If \(S \) and \(S' \) are two sets and \(E \subset S \times S' \), then for \(s \in S \), \(E_s = \{ s' \in S' : (s, s') \in E \} \) denotes the \(s \)-section of \(E \), and for \(s' \in S' \), \(E_{s'} = \{ s \in S : (s, s') \in E \} \) denotes the \(s' \)-section of \(E \).

If \(S \) and \(S' \) are two structured spaces, and we want a structure on \(S \times S' \) when it is not specified, we refer to the product structure; i.e., if \(S \) and \(S' \) are topological (resp. measurable) spaces, then \(S \times S' \) is a topological (resp. measurable) space with the product topology (resp. \(\sigma \)-algebra). We notice that if \(S \) and \(S' \) are topological spaces, in general, \(B(S) \times B(S') \subset B(S \times S') \), and the inclusion can be proper; \(B(S) \times B(S') = B(S \times S') \) if, for example, \(S \) and \(S' \) are second-countable topological spaces or Suslin spaces.

Moreover, when in the sequel we deal with the product of three sets \(S \), \(S' \), and \(S'' \), we always identify \(S \times (S' \times S'') \) with \(S \times S' \times S'' \), even if the structure is essentially that of \(S \times (S' \times S'') \). So, for example, if \(\Sigma_S \) and \(\Sigma_{S' \times S''} \) are \(\sigma \)-algebras on \(S \) and \(S' \times S'' \) respectively, when we say that \(E \subset S \times S' \times S'' \) lies in \(\Sigma_S \times \Sigma_{S' \times S''} \), we mean that \(\{ (s, (s', s'')) : \in S \times (S' \times S'') \} \in \Sigma_S \times \Sigma_{S' \times S''} \).

As in [7], we say that a topological space is Polish if it is separable and metrizable by a complete metric, Suslin if it is Hausdorff and a continuous image of a Polish space.

3. Regularization of closed-valued multifunctions

We begin with the following proposition in measure theory.

Lemma 1. Let \((T, \Sigma_T)\) be a measurable space, and \(\mu\) be a \(\sigma\)-finite measure on \(\Sigma_T\).

For each subset \(E\) of \(T\) there exists \(M \in \Sigma_T\) such that:

\[\alpha_1\) \quad M \subset E;\]

\[\alpha_2\) \quad for each \(L \in \Sigma_T^*\) such that \(L - E \in \Sigma_T^*\) and \(\mu^*(L - E) = 0\), then \(\mu^*(L - M) = 0\).

Proof. We prove Lemma 1 for \(\mu(T) < +\infty\) because it is obvious how to extend it to the \(\sigma\)-finite case.

Let \(\alpha = \sup\{ \mu(A) : A \in \Sigma_T, \ A \subset E \} < +\infty\). Then there exists a sequence \((A_n)_n\) of sets in \(\Sigma_T\) such that, for each \(n \in \mathbb{N}\), \(A_n \subset E\) and \(\mu(A_n) > \alpha - 1/n\).

The set \(M = \bigcup_n A_n\) is the requested set.
In fact, obviously, $M \in \Sigma_T$ and satisfies α_1.

Moreover, let $L \in \Sigma_T^*$ be such that $L - E \in \Sigma_T^*$ and $\mu^*(L - E) = 0$; then

$$(L - M) \cap E = (L - M) - (L - E) \in \Sigma_T^*$$

and $\mu^*((L - M) \cap E) = \mu^*(L - M)$.

Obviously, $((L - M) \cap E) \cup M \in \Sigma_T^*$; so let $L' \in \Sigma_T$ be such that $L' \subset ((L - M) \cap E) \cup M$ and $\mu(L') = \mu^*((((L - M) \cap E) \cup M)$. We have $L' \subset E$ and $\alpha \geq \mu(L') = \mu^*(L - M) + \mu(M) \geq \alpha$, from which $\mu^*(L - M) = 0$. Hence M verifies α_2.

We need, for the sequel, to reformulate Lemma 1 in terms of functions with only two values.

COROLLARY 1. Let (T, Σ_T) be a measurable space, μ be a σ-finite measure on Σ_T, and let $\{0,1\}$ be endowed with the discrete topology.

If $\varphi: T \to \{0,1\}$ is a function, then there exists a Σ_T-measurable function $\psi: T \to \{0,1\}$ such that:

- β_1) $\psi(t) \leq \varphi(t)$ for each $t \in T$;
- β_2) for each Σ_T-measurable function $\vartheta: T \to \{0,1\}$ such that $\vartheta(t) \leq \varphi(t)$ a.e. in T, there holds $\vartheta(t) \leq \psi(t)$ a.e. in T.

From now on, unless otherwise stated, (T, τ_T) is a topological space, Σ_T is a σ-algebra of subsets of T such that $\tau_T \subset \Sigma_T$ (equivalently $\mathcal{B}(T) \subset \Sigma_T$), μ is a σ-finite measure on Σ_T such that for every $A \in \Sigma_T$ and every $\epsilon > 0$ there exists a closed set $C_\epsilon \subset A$ with $\mu(A - C_\epsilon) < \epsilon$. Obviously, Σ_T^* and μ^* have also these properties.

LEMMA 2. Let Z be a topological space and $\mathcal{B}(T \times Z) = \mathcal{B}(T) \times \mathcal{B}(Z)$.

Let $\Psi: T \to Z$ be a multifunction such that for each $\epsilon > 0$ there exists a closed set $C_\epsilon \subset T$ with $\mu(T - C_\epsilon) < \epsilon$ such that $\text{Gr}(\Psi|_{C_\epsilon})$ is closed in a $\Sigma_T^* \times \mathcal{B}(Z)$-measurable set Ω which contains $\text{Gr}(\Psi)$.

Then there exists $T_0 \in \Sigma_T$ with $\mu(T_0) = 0$ such that $\text{Gr}(\Psi|_{T - T_0}) \in \Sigma_T^* \times \mathcal{B}(Z)$.

Proof. For each $k \in \mathbb{N}$ there exists a closed set $C_k \subset T$ with $\mu(T - C_k) < 1/k$ such that $\text{Gr}(\Psi|_{C_k}) = \text{Cl}(\text{Gr}(\Psi|_{C_k})) \cap \Omega$, where $\text{Cl}(\text{Gr}(\Psi|_{C_k}))$ denotes the closure of $\text{Gr}(\Psi|_{C_k})$ in $T \times Z$. But $\mathcal{B}(T \times Z) = \mathcal{B}(T) \times \mathcal{B}(Z)$, so $\text{Gr}(\Psi|_{C_k}) \in \Sigma_T^* \times \mathcal{B}(Z)$. Put $T_0 = \bigcap_{k} (T - C_k)$; then $\mu(T_0) = 0$ and $\text{Gr}(\Psi|_{T - T_0}) = \bigcup_{k} \text{Gr}(\Psi|_{C_k}) \in \Sigma_T^* \times \mathcal{B}(Z)$.

We need also the following proposition, whose proof we give for completeness.
Lemma 3. Let Z be a Suslin space. If $\Psi : T \to Z$ is a multifunction such that $\text{Gr}(\Psi) \in \Sigma_T \times \mathcal{B}(Z)$, then for every $\varepsilon > 0$ there exists a closed set $C_{\varepsilon} \subset T$ with $\mu(T - C_{\varepsilon}) < \varepsilon$ such that $\Psi|_{C_{\varepsilon}}$ is lower semicontinuous.

Proof. Let g be a continuous function from a Polish space Z' onto Z. Define the multifunction $\Psi' : T \to Z$ by putting $\Psi'(t) = g^{-1}(\Psi(t))$ for all $t \in T$.

We claim that $\text{Gr}(\Psi') \in \Sigma_T \times \mathcal{B}(Z')$. Indeed, it is easily seen that $(1_T, g) : T \times Z' \to T \times Z$, defined by $(1_T, g)(t, z') = (t, g(z'))$ for all $(t, z') \in T \times Z'$, is continuous, and $(1_T, g)^{-1}(\Omega) \in \Sigma_T \times \mathcal{B}(Z')$ for each $\Omega \in \Sigma_T \times \mathcal{B}(Z)$. Thus the claim follows from the fact that $\text{Gr}(\Psi') = (1_T, g)^{-1}(\text{Gr}(\Psi))$.

By Sainte-Beuve's projection theorem [6; Theorem 4], Ψ' is Σ_T^\ast-\mathcal{B}-measurable since $\Psi'^{-}(W') = \text{proj}_T(\text{Gr}(\Psi') \cap (T \times W'))$ for each $W' \subset Z'$. Hence, a fortiori, Ψ' is Σ_T^\ast-weakly measurable.

Now, by Theorem 1 of [3], for every $\varepsilon > 0$ there exists a closed set $C_{\varepsilon} \subset T$ with $\mu(T - C_{\varepsilon}) < \varepsilon$ such that $\Psi'|_{C_{\varepsilon}}$ is lower semicontinuous.

Since g is surjective, $\Psi(t) = g(\Psi'(t))$ for every $t \in T$, and so $\Psi^{-}(W) = \Psi'^{-}(g^{-1}(W))$ for each $W \subset Z'$; thus $\Psi|_{C_{\varepsilon}}$ is lower semicontinuous.

As in [3], if $B, B' \subset Z$, we define

$$\delta(B, B') = \begin{cases} 1 & \text{if } B \cap B' \neq \emptyset, \\ 0 & \text{if } B \cap B' = \emptyset. \end{cases}$$

The following theorem is the key result of this paper.

Theorem 1. Let Z be a second-countable topological space and $\Phi : T \to \text{Cl}(Z)$ a multifunction.

Then there exists a multifunction $\Psi : T \to \text{Cl}(Z)$ such that:

1. $\Psi(t) \subset \Phi(t)$ for each $t \in T$;
2. for each $\Delta \in \Sigma_T^\ast$ and for each Σ_T^\ast-weakly measurable multifunction $\Theta : \Delta \to Z$ such that $\Theta(t) \subset \Phi(t)$ a.e. in Δ, there holds $\Theta(t) \subset \Psi(t)$ a.e. in Δ;
3. for each $\varepsilon > 0$ there exists a closed set $C_{\varepsilon} \subset T$ with $\mu(T - C_{\varepsilon}) < \varepsilon$ such that $\text{Gr}(\Psi|_{C_{\varepsilon}})$ is closed in $T \times Z$;
4. $\text{Gr}(\Psi) \in \Sigma_T \times \mathcal{B}(Z)$.

If, moreover, we assume that Z is also a Suslin space, then:

1. for each $\varepsilon > 0$ there exists a closed set $C_{\varepsilon} \subset T$ with $\mu(T - C_{\varepsilon}) < \varepsilon$ such that $\Psi|_{C_{\varepsilon}}$ is lower semicontinuous.
\[\gamma_6 \) for each \(\Delta \in \Sigma_T^* \) and for each multifunction \(\Theta: \Delta \to Z \) with \(\text{Gr}(\Theta) \in \Sigma_T^* \times \mathcal{B}(Z) \) such that \(\Theta(t) \subset \Phi(t) \) a.e. in \(\Delta \), we have \(\Theta(t) \subset \Psi(t) \) a.e. in \(\Delta \).

Proof. Let \(\mathfrak{B} = \{B_n : n \in \mathbb{N}\} \) be a countable basis for \(\tau_Z \). For each \(n \in \mathbb{N} \) define \(\varphi_n : T \to \{0,1\} \) by putting, for each \(t \in T \), \(\varphi_n(t) = \delta(B_n, \Phi(t)) \).

By Corollary 1, there exists a \(\Sigma_T \)-measurable function \(\psi_n : T \to \{0,1\} \) such that:

1) \(\psi_n(t) \leq \varphi_n(t) \) for each \(t \in T \);
2) for each \(\Sigma_T^* \)-measurable function \(\vartheta : T \to \{0,1\} \) such that \(\vartheta(t) \leq \varphi_n(t) \) a.e. in \(T \), we have \(\vartheta(t) \leq \psi_n(t) \) a.e. in \(T \).

Let us define \(\Psi : T \to \text{Cl}(Z) \) by putting, for each \(t \in T \),

\[\Psi(t) = \bigcap \{Z - B_n : \psi_n(t) = 0\}. \]

\(\Psi \) verifies \(\gamma_1 \). In fact, for each \(z \in \Psi(t) \) and each \(n \in \mathbb{N} \) such that \(\varphi_n(t) = 0 \), it follows that \(z \in Z - B_n \) in virtue of 1). Thus we obtain \(z \in \Phi(t) \), taking into account that, \(\Phi(t) \) being closed, \(\Phi(t) = \bigcap \{Z - B_n : \varphi_n(t) = 0\} \).

\(\Psi \) verifies \(\gamma_2 \). Let \(\Delta \in \Sigma_T^* \) and \(\Theta: \Delta \to Z \) be a \(\Sigma_T^* \)-weakly measurable multifunction such that \(\Theta(t) \subset \Phi(t) \) a.e. in \(\Delta \). For each \(n \in \mathbb{N} \) define \(\vartheta_n : T \to \{0,1\} \) by putting:

\[\vartheta_n(t) = \begin{cases} \delta(B_n, \Theta(t)) & \text{if } t \in \Delta, \\ 0 & \text{if } t \notin \Delta. \end{cases} \]

Then, by using [3; Lemma 2.3] (\(\Rightarrow \)), it follows that \(\vartheta_n \) is \(\Sigma_T^* \)-measurable; moreover, since \(\Theta(t) \subset \Phi(t) \) a.e. in \(\Delta \), \(\vartheta_n(t) \leq \varphi_n(t) \) a.e. in \(T \). Hence, by 2), \(\vartheta_n(t) \leq \psi_n(t) \) a.e. in \(T \), and thus \(\Theta(t) \subset \Psi(t) \) a.e. in \(\Delta \).

\(\Psi \) verifies \(\gamma_3 \). Fix \(\varepsilon > 0 \). By Lusin’s theorem (see also [3; Lemma 1]) and by a standard argument which takes into account the countability of the family \(\{\psi_n : n \in \mathbb{N}\} \), we can find a closed set \(C_\varepsilon \subset T \) with \(\mu(T - C_\varepsilon) < \varepsilon \) such that \(\psi_n |_{C_\varepsilon} \) is continuous for each \(n \in \mathbb{N} \). We claim that \(\text{Gr}(\Psi |_{C_\varepsilon}) \) is closed in \(T \times Z \). Indeed, if \(z_0 \notin \Psi(t_0) \), \(t_0 \in C_\varepsilon \), then there is \(\bar{n} \in \mathbb{N} \) such that \(\psi_{\bar{n}}(t_0) = 0 \) and \(z_0 \in B_{\bar{n}} \). By the upper semicontinuity of \(\psi_n |_{C_\varepsilon} \) at \(t_0 \), there exists an open neighbourhood \(I \) of \(t_0 \) such that \(\psi_{\bar{n}}(t) = 0 \) for each \(t \in I \cap C_\varepsilon \). Thus

\[(I \cap C_\varepsilon) \times B_{\bar{n}}) \cap \text{Gr}(\Psi |_{C_\varepsilon}) = \emptyset. \]

\(\Psi \) verifies \(\gamma_4 \). In fact, \((T \times Z) - \text{Gr}(\Psi) = \bigcup_n (\psi_n^{-1}(\{0\}) \times B_n) \).

Finally, under the additional hypothesis on \(Z \), \(\gamma_5 \) is a direct consequence of \(\gamma_1 \), by Lemma 3, while \(\gamma_6 \) is a consequence of \(\gamma_2 \) because, using the equality...
DIERG NOVERN

\(\Theta^-(W) = \text{proj}_T(\text{Gr}(\Theta) \cap (\Delta \times W)) \) for \(W \in \tau_Z \), it follows that \(\Theta \) is \(\Sigma_T^\ast \)-weakly measurable by Sainte-Beuve’s projection theorem.

Remark 1. Obviously \(\gamma_1 \) and \(\gamma_2 \) of Theorem 1 imply respectively the following:

- \(\gamma_1' \) \; \(\Psi(t) \subseteq \Phi(t) \) a.e. in \(T \);
- \(\gamma_2' \) \; for each \(\Delta \in \Sigma_T^\ast \) and for each \(\Sigma_T^\ast \)-measurable function \(\theta: \Delta \to Z \) such that \(\theta(t) \in \Phi(t) \) a.e. in \(\Delta \), there holds \(\theta(t) \in \Psi(t) \) a.e. in \(\Delta \).

Hence Theorem 1 extends and improves [5; Theorem 2], in which \(\gamma_1' \), \(\gamma_2' \) and \(\gamma_3 \) are proved when \(T \) is a locally compact metric space, \(\mu \) is a Borel, \(\sigma \)-finite, regular and complete measure on \(T \), and \(Z \) is a separable metric space.

Moreover, if \(\Omega \) is a \(\Sigma_T^\ast \times \mathcal{B}(Z) \)-measurable set, with \(\text{Gr}(\Psi) \subseteq \Omega \), then \(\gamma_3 \) of Theorem 1 implies the following:

- \(\gamma_3' \) \; for each \(\varepsilon > 0 \) there exists a closed set \(C_\varepsilon \subseteq T \) with \(\mu(T - C_\varepsilon) < \varepsilon \) such that \(\text{Gr}(\Psi|_{C_\varepsilon}) \) is closed in \(\Omega \).

Now we prove the following uniqueness result, whose part 1) extends [5; Theorem 5].

Theorem 2. Let \(Z \) be a Suslin space and \(\Phi, \Psi_1, \Psi_2: T \to Z \) be three multifunctions.

Let us consider the following properties for \(i = 1, 2 \):

- \(\gamma_1' \) \; \(\Psi_1(t) \subseteq \Phi(t) \) a.e. in \(T \);
- \(\gamma_2' \) \; for each \(\Delta \in \Sigma_T^\ast \) and for each \(\Sigma_T^\ast \)-measurable function \(\theta: \Delta \to Z \) such that \(\theta(t) \in \Phi(t) \) a.e. in \(\Delta \), we have \(\theta(t) \in \Psi_i(t) \) a.e. in \(\Delta \);
- \(\gamma_3' \) \; for some \(\Omega \in \Sigma_T^\ast \times \mathcal{B}(Z) \) with \(\text{Gr}(\Phi) \subseteq \Omega \), and for each \(\varepsilon > 0 \), there exists a closed set \(C_\varepsilon \subseteq T \) with \(\mu(T - C_\varepsilon) < \varepsilon \) such that \(\text{Gr}(\Psi_i|_{C_\varepsilon}) \) is closed in \(\Omega \);
- \(\gamma_4' \) \; there is \(T_0 \in \Sigma_T \) with \(\mu(T_0) = 0 \) such that \(\text{Gr}(\Psi_i|_{T - T_0}) \in \Sigma_T^\ast \times \mathcal{B}(Z) \);
- \(\gamma_5' \) \; for each \(\varepsilon > 0 \) there exists a closed set \(C_\varepsilon \subseteq T \) with \(\mu(T - C_\varepsilon) < \varepsilon \) such that \(\Psi_i|_{C_\varepsilon} \) is lower semicontinuous.

Then:

1) \(\gamma_1' \), \(\gamma_2' \) and \(\gamma_4' \) imply that \(\Psi_1(t) = \Psi_2(t) \) a.e. in \(T \).
2) If \(\mathcal{B}(T \times Z) = \mathcal{B}(T) \times \mathcal{B}(Z) \), then \(\gamma_1' \), \(\gamma_2' \), and \(\gamma_3' \) imply that \(\Psi_1(t) = \Psi_2(t) \) a.e. in \(T \).
3) If \(Z \) is also a second-countable topological space and \(\Psi_1 \) and \(\Psi_2 \) are closed-valued, then \(\gamma_1' \), \(\gamma_2' \) and \(\gamma_5' \) imply that \(\Psi_1(t) = \Psi_2(t) \) a.e. in \(T \).
REGULARIZATION OF CLOSED-VALUED MULTIFUNCTIONS . . .

Proof.

1) Gr\((\Psi_1 \Delta \Psi_2) | T - T_0) = Gr(\Psi_1 | T - T_0) \cup Gr(\Psi_2 | T - T_0) \subseteq \Sigma_T \times B(Z).$

Put $\Delta = \text{proj}_T(Gr((\Psi_1 \Delta \Psi_2) | T - T_0));$ thus $\Delta \subseteq \Sigma_T$ by Sainte-Beuve's projection theorem, and $\Delta \subseteq T - T_0.$

Define $\Gamma: T \to Z$ by putting

$$\Gamma(t) = \begin{cases}
(\Psi_1 \Delta \Psi_2)(t) & \text{if } t \in \Delta, \\
Z & \text{if } t \not\in \Delta.
\end{cases}$$

Gr\((\Gamma) = Gr((\Psi_1 \Delta \Psi_2) | T - T_0) \cup ((T - \Delta) \times Z) \subseteq \Sigma_T \times B(Z);$ thus, by Sainte-Beuve's selection theorem [6; Theorem 3], there exists a Σ_T^*-measurable selection θ of $\Gamma.$ By $\gamma'(\cdot),$ $\theta(t) \in \Phi(t)$ a.e. in $\Delta,$ thus by $\gamma'(\cdot),$ $\theta(t) \in \Psi_1(t) \cap \Psi_2(t)$ a.e. in $\Delta.$ It follows that $\mu^*(\Delta) = 0.$

2) By Lemma 2, γ'_1 implies $\gamma'_d.$ So the conclusion follows by 1).

3) Ψ_1 and Ψ_2 are Σ_T^*-weakly measurable. In fact, for $i = 1, 2$ and for each $k \in \mathbb{N}$ there exists a closed set $C_k \subseteq T$ with $\mu(T - C_k) < 1/k$ such that $\Psi_i|_{C_k}$ is lower semicontinuous, thus Σ_{C_k}-weakly measurable (see $\Sigma_{C_k} = \{A \in \Sigma_T : A \subseteq C_k\}).$ Hence, for $W \subseteq \tau_Z,$ we have $\Psi_i^-(W) = \bigcup_k (\Psi_i|_{C_k}^{-}(W)) \cap N,$ where $\mu^*(N) = 0,$ so $\Psi_i^-(W) \subseteq \Sigma_T^*.$

Then, thanks to [2; Theorem 2.4] (see also [2; Remarks 2.1 and 2.4]), we have that $Gr(\Psi_1), Gr(\Psi_2) \subseteq \Sigma_T^* \times B(Z);$ thus the conclusion follows again by 1). \square

The following Theorem 3 is the two-variables version of Theorem 1.

Theorem 3. Let X and Y be two second-countable topological spaces and $D \subseteq T \times X.$

If $F: D \to \text{Cl}(Y)$ is a multifunction such that there is a $T_0 \in \Sigma_T$ with $\mu(T_0) = 0$ such that $\text{Gr}(F(t, \cdot))$ is closed in $D_t \times Y$ for each $t \in \text{proj}_T(D) - T_0,$ then there exists a multifunction $G: D \to \text{Cl}(Y)$ such that:

- $\text{i}_0)$ $\text{Gr}(G(t, \cdot))$ is closed in $D_t \times Y$ for each $t \in \text{proj}_T(D);$
- $\text{i}_1)$ $G(t, x) \subseteq F(t, x)$ for each $(t, x) \in D;$
- $\text{i}_2)$ for each $\Delta \subseteq \Sigma_T^*,$ for each Σ_T^*-weakly measurable multifunction $Q: \Delta \to Y,$ and for each Σ_T^*-measurable function $p: \Delta \to X$ such that $(t, p(t)) \in D$ and $Q(t) \subseteq F(t, p(t))$ a.e. in $\Delta,$ there holds $Q(t) \subseteq G(t, p(t))$ a.e. in $\Delta;$
- $\text{i}_3)$ for each $\varepsilon > 0$ there exists a closed set $C_\varepsilon \subseteq T$ with $\mu(T - C_\varepsilon) < \varepsilon$ such that $\text{Gr}(G|_{D \cap (C_\varepsilon \times X)})$ is closed in $D \times Y;$
- $\text{i}_4)$ $\text{Gr}(G) \in (\Sigma_T \times B(X \times Y))|_{D \times Y}.$
Moreover, if we assume that Y is also a Suslin space and that $\mathcal{B}(T \times Y) = \mathcal{B}(T) \times \mathcal{B}(Y)$, then

i) for each $\Delta \in \Sigma_T^*$, for each Σ_T^*-measurable function $p: \Delta \to X$ with $(t, p(t)) \in D$ a.e. in Δ, and for each $\varepsilon > 0$ there exists a closed set $C_\varepsilon \subset T$ with $\mu(T - C_\varepsilon) < \varepsilon$ such that $G(\cdot, p(\cdot))|_{\Delta \cap C_\varepsilon}$ is lower semicontinuous.

Finally, if X and Y are also two Suslin spaces and $D \in \Sigma_T^* \times \mathcal{B}(X)$, then

ii) for each $\Delta \in \Sigma_T^*$ and for each multifunction $H: D \cap (\Delta \times X) \to Y$ with $\text{Gr}(H) \in \Sigma_T^* \times \mathcal{B}(X \times Y)$ such that $H(t, x) \subset F(t, x)$ for almost all $t \in \text{proj}_T(D) \cap \Delta$ and for each $x \in D_1$, there holds $H(t, x) \subset G(t, x)$ for almost all $t \in \text{proj}_T(D) \cap \Delta$ and for each $x \in D_1$.

Proof. First suppose $D = T \times X$. Consider the multifunction $\Phi: T \to \text{Cl}(X \times Y)$ defined by

$$\Phi(t) = \begin{cases} \text{Gr}(F(t, \cdot)) & \text{if } t \in T - T_0, \\ \emptyset & \text{if } t \in T_0. \end{cases}$$

By Theorem 1, there exists a multifunction $\Psi: T \to \text{Cl}(X \times Y)$ satisfying $\gamma_1), \gamma_2), \gamma_3), \gamma_4)$ and $\gamma_6).$ We claim that the multifunction $G: T \times X \to \text{Cl}(Y)$ defined by $G(t, x) = (\Psi(t))_x$ is the required multifunction.

In fact, it is easily seen that G verifies $i_0), i_1), i_2)$ and $i_4)$.

G verifies $i_2)$. Let $\Delta \in \Sigma_T^*$, $Q: \Delta \to Y$ be a Σ_T^*-weakly measurable multifunction and $p: \Delta \to X$ be a Σ_T^*-measurable function such that $Q(t) \subset F(t, p(t))$ a.e. in Δ. The multifunction $\Theta: \Delta \times X \to Y$ defined by $\Theta(t) = \{(p(t), y) : y \in Q(t)\}$ is Σ_T^*-weakly measurable because for $U \in \tau_X$ and $V \in \tau_Y$, $\Theta^{-1}(U \times V) = p^{-1}(U) \cap Q^{-1}(V) \in \Sigma_T^*.$ Moreover, $\Theta(t) \subset \Phi(t)$ a.e. in Δ, thus by $\gamma_2),$ $\Theta(t) \subset \Psi(t)$ a.e. in $\Delta,$ from which it follows that $Q(t) \subset G(t, p(t))$ a.e. in Δ.

G verifies $i_5)$. Let $\Delta \in \Sigma_T^*$ and $p: \Delta \to X$ be a Σ_T^*-measurable function. Extend p to the Σ_T^*-measurable function $\hat{p}: T \to X$ defined by putting

$$\hat{p}(t) = \begin{cases} p(t) & \text{if } t \in \Delta, \\ \text{constant} & \text{if } t \notin \Delta. \end{cases}$$

If we show that $G(\cdot, \hat{p}(\cdot))$ is Σ_T^*-weakly measurable, then by [3; Theorem 1], it follows that for each $\varepsilon > 0$ there exists a closed set $C_\varepsilon \subset T$ with $\mu(T - C_\varepsilon) < \varepsilon$ such that $G(\cdot, \hat{p}(\cdot))|_{C_\varepsilon}$, and thus also $G(\cdot, p(\cdot))|_{\Delta \cap C_\varepsilon}$, is lower semicontinuous.
To prove this, it suffices to show that for each \(\varepsilon > 0 \) there exists a closed set \(C_\varepsilon \subset T \) with \(\mu(T - C_\varepsilon) < \varepsilon \) such that \(\text{Gr}(G(\cdot, \hat{p}(\cdot))|_{C_\varepsilon}) \) is closed in \(T \times Y \). In fact, this last condition being verified, by Lemma 2 there exists \(T_0 \in \Sigma_T \) with \(\mu(T_0) = 0 \) such that \(\text{Gr}(G(\cdot, \hat{p}(\cdot))|_{T - T_0}) \in \Sigma_T^* \times B(Y) \); so, from the equality

\[
G(\cdot, \hat{p}(\cdot))^{-1}(V) = \text{proj}_T \left(\text{Gr}(G(\cdot, \hat{p}(\cdot))|_{T - T_0}) \cap ((T - T_0) \times V) \right) \cup N,
\]

where \(N \subset T_0 \), and by Sainte-Beuve’s projection theorem, it follows that \(G(\cdot, \hat{p}(\cdot)) \) is \(\Sigma_T^* \)-weakly measurable.

So fix \(\varepsilon > 0 \). By (i3) and using [3; Theorem 1], there exists a closed set \(C_\varepsilon \subset T \) with \(\mu(T - C_\varepsilon) < \varepsilon \) such that \(\text{Gr}(G|_{C_\varepsilon \times X}) \) is closed in \(T \times X \times Y \), and \(\hat{p}|_{C_\varepsilon} \) is continuous. \(\text{Gr}(G(\cdot, \hat{p}(\cdot))|_{C_\varepsilon}) \) is closed in \(T \times Y \). Indeed, if we take \((t_0, y_0) \notin \text{Gr}(G(\cdot, \hat{p}(\cdot))|_{C_\varepsilon}) \), then \((t_0, \hat{p}(t_0), y_0) \notin \text{Gr}(G(\cdot, \hat{p}(\cdot))|_{C_\varepsilon \times X}) \); hence, by this and by the continuity of \(\hat{p}|_{C_\varepsilon} \), there are two open neighbourhoods \(I \) and \(V \) of \(t_0 \) and \(y_0 \) respectively such that, for \(t \in I \cap C_\varepsilon \) and \(y \in V \), \((t, y) \notin \text{Gr}(G(\cdot, \hat{p}(\cdot))|_{C_\varepsilon}) \).

Finally, we prove (i6). Define \(\Theta: \Delta \to X \times Y \) by putting, for each \(t \in \Delta \),

\[
\Theta(t) = \text{Gr}(H(t, \cdot)), \quad \text{Gr}(\Theta) = \text{Gr}(H) \in \Sigma_T \times B(X \times Y).
\]

Moreover, \(\Theta(t) \subset \Phi(t) \) a.e. in \(\Delta \); then, by \(\gamma_6 \) \((X \times Y \) is Suslin), \(\Theta(t) \subset \Psi(t) \) a.e. in \(\Delta \), hence \(H(t, x) \subset G(t, x) \) for almost all \(t \in \Delta \) and for each \(x \in X \).

Now we sketch the proof when \(D \subset T \times X \).

Define \(\hat{F}: T \times X \to \text{Cl}(Y) \) by putting

\[
\hat{F}(t, x) = \begin{cases}
(\text{Gr}(F(t, \cdot)))_x & \text{if } t \in T - T_0, \\
\emptyset & \text{if } t \in T_0,
\end{cases}
\]

where the closure is taken in \(X \times Y \).

\[
\text{Gr}(F(t, \cdot)) = \overline{\text{Gr}(F(t, \cdot))} \quad \text{for each } t \in T - T_0, \text{ and taking into account that}
\]

\[
\text{Gr}(F(t, \cdot)) = \overline{\text{Gr}(F(t, \cdot)) \cap (D \times Y)} \quad \text{for each } t \in \text{proj}_T(D) - T_0, \text{ then we obtain}
\]

\[
F(t, x) = F(t, x) \quad \text{for all } (t, x) \in D - (T_0 \times X).
\]

Let \(G: T \times X \to Y \) be as in the first part of the proof with respect to \(\hat{F} \); it is not difficult to verify that \(G = G|_D \) is the required multifunction. \(\square \)

Remark 2. Obviously (i1) and (i2) of Theorem 3 imply respectively the following

(1) \(G(t, x) \subset F(t, x) \) for almost every \(t \in \text{proj}_T(D) \) and for each \(x \in D_t ; \)

(2) for each \(\Delta \in \Sigma^*_T \) and for all \(\Sigma^*_T \)-measurable functions \(q: \Delta \to Y \) and \(p: \Delta \to X \) such that \((t, p(t)) \in D \) and \(q(t) \in F(t, p(t)) \) a.e. in \(\Delta \), we have \(q(t) \in G(t, p(t)) \) a.e. in \(\Delta \).
Hence Theorem 3 extends and improves [5; Theorem 1], in which i^1), i^2) and i^3) are proved when T is a locally compact metric space, \(\mu \) is a Borel, \(\sigma \)-finite, regular and complete measure on T, X and Y are two separable metric spaces.

Moreover, if \(\Omega \) is a \(\Sigma^*_T \times \mathcal{B}(X \times Y) \)-measurable set with \(\text{Gr}(G) \subseteq \Omega \), then i^3) in Theorem 3 implies the following:

i^3) for each \(\varepsilon > 0 \) there exists a closed set \(C_\varepsilon \subseteq T \) with \(\mu(T - C_\varepsilon) < \varepsilon \) such that \(\text{Gr}(G \big| D \cap (C_\varepsilon \times X)) \) is closed in \((D \times Y) \cap \Omega \).

The following is a uniqueness theorem for the two-variables case; its part 2) extends [5; Theorem 4].

THEOREM 4. Let \(X \) be a topological space, \(Y \) be a Suslin space. \(D \in \Sigma^*_T \times \mathcal{B}(X \times Y) \), and \(F, G_1, G_2 : D \rightarrow Y \) be three multifunctions.

Let us consider the following properties for \(i = 1, 2 \):

1. G^i_t(t, x) \subseteq F(t, x) for almost every \(t \in \text{proj}_T(D) \) and for each \(x \in D_t \);
2. for each \(\Delta \in \Sigma^*_T \), for all \(\Sigma^*_T \)-measurable functions \(q: \Delta \rightarrow Y \) and \(p: \Delta \rightarrow X \) such that \((t, p(t)) \in D \) and \(q(t) \in F(t, p(t)) \) a.e. in \(\Delta \), we have \(q(t) \in G^i_t(t, p(t)) \) a.e. in \(\Delta \);
3. for some \(\Sigma^*_T \times \mathcal{B}(X \times Y) \)-measurable set \(\Omega \) with \(\text{Gr}(F) \subseteq \Omega \), and for each \(\varepsilon > 0 \) there exists a closed set \(C_\varepsilon \subseteq T \) with \(\mu(T - C_\varepsilon) < \varepsilon \) such that \(\text{Gr}(G^i \big| D \cap (C_\varepsilon \times X)) \) is closed in \((D \times Y) \cap \Omega \);
4. there is \(T_0 \in \Sigma_T \) with \(\mu(T_0) = 0 \) such that \(\text{Gr}(G^i \big| D \cap ((T - T_0) \times X)) \in \Sigma^*_T \times \mathcal{B}(X \times Y) \);
5. for each \(\Delta \in \Sigma^*_T \), for each \(\Sigma^*_T \)-measurable function \(p: \Delta \rightarrow X \) with \((t, p(t)) \in D \) a.e. in \(\Delta \), and for each \(\varepsilon > 0 \), there exists a closed set \(C_\varepsilon \subseteq T \) with \(\mu(T - C_\varepsilon) < \varepsilon \) such that \(G^i(\cdot, p(\cdot)) \big| \Delta \cap C_\varepsilon \) is lower semicontinuous.

Then:

1. If \(X \) is a Suslin space, then i^1), i^2) and i^4) imply that \(G_1(t, x) = G_2(t, x) \) for almost every \(t \in \text{proj}_T(D) \) and for each \(x \in D_t \).
2. If \(X \) is a Suslin space and \(\mathcal{B}(T \times X \times Y) = \mathcal{B}(T) \times \mathcal{B}(X \times Y) \), then i^1), i^2) and i^3) imply that \(G_1(t, x) = G_2(t, x) \) for almost every \(t \in \text{proj}_T(D) \) and for each \(x \in D_t \).
3. If \(Y \) is also a second-countable topological space, and \(G_1 \) and \(G_2 \) are closed-valued, then i^1), i^2) and i^5) imply that for each \(\Delta \in \Sigma^*_T \) and for each \(\Sigma^*_T \)-measurable function \(p: \Delta \rightarrow X \) with \((t, p(t)) \in D \) a.e. in \(\Delta \), it is \(G_1(t, p(t)) = G_2(t, p(t)) \) a.e. in \(\Delta \).
Sketch of the proof. First we prove the assertion 1) for $D = T \times X$. The multifunctions $\Phi, \Psi_1, \Psi_2 : T \to X \times Y$ defined respectively by $\Phi(t) = \text{Gr}(F(t, \cdot))$, $\Psi_1(t) = \text{Gr}(G_1(t, \cdot))$, and $\Psi_2(t) = \text{Gr}(G_2(t, \cdot))$ satisfy 1) of Theorem 2; then $\Psi_1(t) = \Psi_2(t)$ a.e. in T, from which $G_1(t, x) = G_2(t, x)$ for almost every $t \in T$ and for each $x \in X$.

The assertion 2) can be proved as above, taking into account 2) of Theorem 2.

To prove 3) when $D = T \times X$, extend p to all of T by putting $p(t) = \text{constant outside of } \Delta$. Then apply 3) of Theorem 2 to $\Phi(\cdot) = F(\cdot, p(\cdot))$, $\Psi_1(\cdot) = G_1(\cdot, p(\cdot))$, and $\Psi_2(\cdot) = G_2(\cdot, p(\cdot))$; so we obtain $\Psi_1(t) = \Psi_2(t)$ a.e. in T. Now return to the original p defined in Δ, so we obtain $G_1(t, p(t)) = G_2(t, p(t))$ a.e. in Δ.

For the general case $D \subset T \times X$, extend F, G_1 and G_2 to all of $T \times X$ by putting their values empty outside of D; then apply the already proved uniqueness theorem for the case $D = T \times X$ and finally return to D. \hfill \Box

REFERENCES

Received February 3, 1993

Dipartimento di Matematica ed Applicazioni
Facoltà di Ingegneria
Viale delle Scienze
I-90128 Palermo
Italy
E-mail: AVERNA@IPAMAT.CRES.IT