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ON APPROXIMATE SOLUTIONS OF DEGENERATE
INTEGRODIFFERENTIAL PARABOLIC PROBLEMS

LADISLAV MATEJICKA
(Commaunicated by Jozef Kadir)

ABSTRACT. A solution of a nonlinear diffusion problem with Volterra operators
by Rothe’s method is obtained. The convergence of Rothe’s functions to the
solution, constructed by means of weak approximate solutions of approximation
elliptic equations, is proved.

1. Introduction

In this paper, we shall deal with the following diffusion problem:

dru(t) — AB(u(t)) = ( /K(t s)B(u(s)) s) for (t,z) € (0,T) x Q,
B(u(0,z)) = (uo(z)) on 0, (1)
0,B(u(t)) = g(t,/M(t,s),B(u(s)) ds) on (0,T)xT,

where © C RY is a bounded domain with Lipschitz continuous boundary T,
0<T < .

The solution of this problem will be obtained via solutions of linear appro-
ximation schemes. This way of solving nonlinear evolution equations has been
introduced by Berger, Brezis, Rogers in [2]. They have dealt with
the convergence of linear approximation schemes constructed for the problem
(2"):

Oru(t) — Af(u(t)) =0. (2"

Their results have been developed by W. Jager and J. Kacar ([6], [7],

[10]). They have presented new approximation schemes for (2) and proved the
convergence of these schemes:
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du(t) — AB(u(t)) = F(t,B(u(t))) in (t,z) € (0,T)xQ,
ﬂ(u(O,x)) = ﬂ(uo(x)) on , (2)
d,8(u(t)) = g(t,B(u(?))) on (0,7)xT,

where #: R — R is a nondecreasing Lipschitz continuous function.

The aim of this paper is to prove the convergence of the approximation
schemes (introduced by W. Jager and J. Kaétir) for (1). Problem (1)
differs from (2) in the right-hand side. The equation and the boundary condition
in (1) depend on Volterra operators. In this paper, we use the technique and
methods which have been presented by W. Jager and J. Kacuar ([6], [7],
[10]). For a more complete survey of solutions of nonlinear degenerate parabolic
problems, we refer the reader for example to [1], [5], [8], [13], [14], [17].

We also use the technique of memory terms for evolution integrodifferential
equations, which has been presented by J. Ka ¢ dr in [9]. For another approach
to the analysis of evolution integrodifferential equations, we refer the reader for
example to [4], [12], [15], [16], [18].

Problem (1) shall be solved in the following way. We will divide the interval

I =(0,T) into n subintervals (¢;_1,t;), ¢ =1,...,n, where t; = z(%—) Then

we shall find weak approximate solutions of the elliptic problem (3) on each
subinterval (t;_1,t;) via weak solutions of the elliptic problem (4). From these
solutions of (3) we shall construct Rothe’s function wu,(t,z). Finally, we shall
prove that the weak limit u of u,, in the functional space Lo(I x ), is a weak
solution of (1).

2. Notation and assumptions

We denote
(f,9) = / fo= [ 1@)-g@) dz, ()= / fg= / f(@) - g(x) de,
Q Q r T

((f,9)) = (Vf,Vg), H = W}(Q) (Sobolev space),

CO’Q(Q), C(Q), LQ(I X Q) = LQ(I,LQ(Q)) = LQ(I, Lg), Lg(ﬂ), LQ(F) and

Lo(I,H) are the standard functional spaces. (f,g) is the duality between

feV*and ge V. |-|, | |r and |- |y are the norms in the functional spaces

Ly(2), Lo(T), H respectively. By C;, we denote a generic positive constant.
We shall assume:

(P1) Q c RV is a bounded domain with Lipschitz continuous boundary T,

0<T <oo.
(P2) 8: R — R is a nondecreasing Lipschitz continuous function with
|B(s)] > Cy|s| — C2 for all s € R, 8(0) = 0.
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(P3) g¢: I xT xR — R is Lipschitz continuous in z and
l9(t, ,8) — g(t1,z,51)| < C(It = ta] + [t = ta| (Is| + [s1]) + |5 — 1))
forall t,ty €I, z €T, 5,51 €R.

(P4) f(t,=,s) is Lipschitz continuos in z and
|f(t1, @, 81) = f(t2, T, 52)| < C(|ts —to] +[t1 —t2| (|s1] +[s2]) +[s1— 52])
for all ty,to €I, z €, 51,52 € R.

(P5) K(t,z,s),Ki(t,z,s) € Loo(I x 2 x I).

(P6) M(t,z,s), M(t,z,s) € Loo(I x ' x I).

(P7) uo(z) € Loo(R2) and B(uo(z)) € W3(Q).

3. Solution of the problem (1)

DEFINITION 1. The function u € La(I, Ly) with dyu € La(I, H*) is called a
weak solution of (1) if and only if

oo, 001+ [(5u(0)),0) / ( ( / M(t,s)- B(u(s) s>,w<t>>r
/ ( ( / K(t,s) - B(u(s) ds>,so<t))

for all p(t) € La(I, H), B(u(t)) — B(uo) in H* for t — 0, and B(u) € Ly(I, H).
Let n be a positive integer, 7 = %, ti=71-1,for i =1,...,n. The linear

approximation scheme corresponding to (1) can be written in the following way:

wi(z)- (Oi(x) —ﬂ(ui_l(a:))) —7Ab;(z) =7f (ti, z, TZ Kij(x)ﬁj(a:)>, x €N,
I=0 (3)

i-1
80,0;(z) = g(ti,x,rz JWij(x)Oj(x)> , zel,

with the condition
|ﬂ(ui—1 + i (0 — B(ui-1))) — ﬂ(ui—1)| < alf; — B(ui-1)| + 0(%) , o (3.1)

tit+1

where w; = w1 + pi(0; — Blui- 1)), Kij(z) = % | K(ti,z,s) ds,
t
1 ti+1
Jl;f”(a:)z? J M(ti,z,s) ds, pi(z) € Loo(R), 6o = B(ug), lim n o( )—0
t]
i=1,...,n,3=0,...,:—1
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There are many ways how to solve (3) with the condition (3.1). For example,

wecan put u;(z) =C,0<C < Li and solve (3) by a numerical method. How-
B
ever, from the numerical point of view, these solutions are not satisfactory [11].

We shall show a way for finding better solutions. We use the idea of W. Jager
and J. Kacur.

DEFINITION 2. We say that yu;, 0; are weak approzimate solutions of (3) on
(ti—1,t;) if there exist ¢; € H* and positive constants §, K such that

(i) 6 < pi(z) < K for ae. z€Q, 0;,(z) € H, |qi(z)|u- < o(#) :

(ii) S{Mi(f) - (0i(x) = Blui—1(z)))e(z) + Tgwh(x)V@(x) — (qi(z), p(2))
_ T[[g(ti’x,Tjg(l) Afij(x)ﬁj(z))go(:v)

=1 [ f(tarr T K@) )p(@) for all p(a) € H.
Q

j=0

The weak approximate solutions of (3) for given n will be obtained via

solutions of (4). Similarly to M. Slodié¢ka [17], we shall consider the function
Be(s) instead of B(s).

The scheme (4) reads as follows:

i—1

B! (,Ba(ui—l) + %(ei - 5(%‘—1))) —uji—1 —TAY; =1f <ti, TZ Kijgj) )
zeQ, = (4)
1—1
0,0; = g(ti, TZMijej) y S F,
7=0

where (:(s) = 8(s) +€-s, and ¢ is a suitable constant.
Define T.: H — H*,

(TE(0)>90> = (ﬂe_l (ﬂa(ui—l) + %(9 — ,B(Ui_l))) — Uj—1, (p) + T(vg, VQP) .
Then
T (z) — Te(y) g+ < Ci(e)|lz — ylu and
(T.(z) — T.(y), z — y) > Cae)|z — yl3, Ca(e) >0, forall z,ye H.

Now we make use of [3; p. 104, Theorem 3.4]. There exists {vk}re1 Such that
vy, € H and vy — 6; in H (0; is a weak solution of (4)).
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Choose vy so that |vg — 60;|g < siz and define
n

P (B (wim1(@)) + 5 (va(2) = Blui-1(2)))) — ui-1(2)
pil®) = 'Uk(.’L‘) - ﬂ(ui_l(ac)) )

Then p;, v satisfy
(i (v = B(ui-1)), ¥) + 7(Vor, Vo)

i1 i-1 5
= T(g(ti, TZMiﬂj), <P) +T(f (ti> TZKij9j>, go) + (2, ¢), )
j=0 r j=0

where

(gi, 0) = (pi(ve — B(uiz1)), @) + 7(V(ve — 65), Vo)
— (B (Be (wi1) + %(91 — B(ui—1))) — ui-1, @) .

Since |gi|g+ < o(%) , we have that vy, p; are weak approximate solutions of

(3). In addition, vy, p; satisfy (3.1) and there exist §(¢), K(e) such that
0<6(e) < pi < K(e) for a.e.  and for all <.

So we can formulate the following theorem.

THEOREM 1. Let (P1)-(P7) be satisfied. Let n € N. Then there exist
{pi}y, {0:}7, such that 0;(z) € W3(Q), pi(z) € Loo(2), and the functions
0;, p; are weak approzimate solutions of (3) and satisfy (3.1).

Now we prove the following lemma.

LEMMA 1. There exists ng € N such that

n n
max |B(ui-1)lz, + D [0l + D ui —uial, <C

1<i<n

for all n > ng, where u;, 0; are weak approzimate solutions of (3) in (t;—1,t;).

Proof. To prove this assertion, we put ¢ = 76; in the equation (5).

i—1

(27 0) + o~ (ot r S Mty ), o),
- (s(x Z::Ko) ¢) + R, @)
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which holds for all ¢p € H, t =1,...,n. Sum up them for ¢ =1,...,]. We will
estimate only the terms

i-1 i1
(g(ti, TZMi,j9j>, <.0> ; (g, 9)(771), (f <ti7 TZK1,191)7 80> :
=0 r 7=0

The others can be estimated in the same way as in [6], [7].
!

1—1 l I -1
Z(g (t,., TZMijaj), Tei) <or SR+t YY [ 10,1+ 16:] + C.
3=0 r i=1 r

i=1 i=1 j=0

because |g(t, s)| < C1 + Ca(|t| + |t| - |s| + |s]) . Now the estimate

1
el < C1 (el Vel, + Ll (1.1)

can be used, and we conclude
l

i—1
Z(g (ti, TZ Mijej), 7'0,>
j=0 r

=1

l l l
<Cy+Coe Y VO[T, 7+ Ca(e)T D IBui)l3, +7Ca(e) D Jui — uimal3, .
i=1 i=1 i=1
The second term will be estimated as follows:
(gi, )| < CreT|0i[3; + Ca(e)T.

The last term will be estimated similarly:

! i-1 1 oi-1
Z(f (ti, TZK,-]-ej), Tei) <) 0N (05,6))
i=1 j=0 i=1 =0
because |Kij|L o qxay < C-
Hence, we obtain
l i—1 1 !
Z(f (ti, TZKijgj), 79i> <Oy lui—uiali, + Cor Y 1B(ui1)li, -
i=1 §=0 i=1 i=1
From Gronwall’s Lemma we obtain the assertion of Lemma, 1. O

Now we construct Rothe’s functions (™ () :

0; —0;_1
T

0(")(t)=6i_1+(t—ti_1)( ) for t€ (ti_y,t;),

0 (t) = 0; for te (ti—1,ti), 1=1,...,n
and similarly, we define u(® @™, = p0),
The following lemma guarantees the compactness of {9(") }:OZI in La(Ix).
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LEMMA 2. Suppose that 0™ are the functions constructed above. Then we
have the estimate

T—=z
/ 0™t + 2) — BD @), dt < Oz +n})
0

forn>ng and 0 < 2 < zg.

Proof. Since W} (2) — L3(Q) (continuous imbedding) and W3 (2) —
Ly(2) is dense, then L3 — H is dense (H is reflexive). So we can identify

Va € Ly with f, € H* for which (o, )1, = (fa,¢) for all ¢ € H. Hence, we
obtain the estimate:

10, |5 = sup (ww)
lela<1 T

i1
< sup {/g<ti, TZMiﬂj)SO—/VeiVSO
lelar<1 T j=0 Q
i1 .
+ /f(ti, TZKij9j><P+ (Qi,w);}

Q j=0
< C1+ Co|bi|u
for all n > ng and for all ¢t € (¢;_1,t;).

Due to Lemma 1, we have |8tu(")|L2(I,H.) <C.
We estimate

T—» T—z

_ ] c 5 3 ()2
/ 0™ (¢ +2) = 0™ (D[, dt < — + / 0 (8 +2) =6 (D),
0 T

Furthermore, using 0" (¢t +7) = B(a™(t)) + S — (@™ (t+7)—aM(t),

B (t +7)
we obtain
T—=z
/ 00 (t + 2) — 0™ (1)[2, dt
0
T—z—1 t+z

G

<C / (|§(n)(t+7'+z)|H+|§(")(t+7)|y)/|8tu(")(s)|H. dsdt+%
0 t
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The estimates (2.1) and [§(™|L, s,y < C imply the compactness of {0—(")}:0:1
in LQ(I X Q)

Next, subsequences of {n} will be denoted again by {n}.
LEMMA 3. There exists u € Lo(I,L3) with B(u) € Ly(I,H) and subse-
quences {u(")}:;l , {9(")};.;1 such that w™ — u in Ly(I, L), 8,u™ — du
in Lo(I,H*), 6™ — 0 in Lyo(I, H), Ba™) — B(u), and 6 — B(u) in
Ly(I,Ls).

Proof. There exists a function b € Ly(I x ) such that 6(%) — b. Since

|0_('n,) - B(H)ng(I,Lg) < %, we obtain é(n) — b in Lg(I,Lz), and Ié(n) -
n
BE™)| 1 0m < % implies B(a(™) — b in Ly(I x Q).
Since |ﬁ(")|%2(I’L2) < C, we have @™ — wu in Ly(I,L,), and since
|6tu(")|L2(I,H.) < C, we deduce d;ul™ — d,u.
The monotonicity of 8 implies

/(ﬂ(ﬁ(")) — B(p), u™ — <p) dt>0 for all ¢ € Ly(I,Ls).
I

Now we use the Minty-Browder trick. If we put ¢ =uxer and € - 0, n — oo,
then

/(b —B(u), ) >0 forall r € Ly(I,Ls).
T

Hence, b = B(u) and (™ — B(u) in Ly(I,Ls). Since Ié(”)ﬁz(I’H) < C, we

have (™) — @ in Ly(I, H) and, from Ly(I, Ly) O Lo(I, H), we obtain 8 = B(u)
and fB(u) € Lo(I,H). O

LEMMA 4. Let u be the same as in Lemma 3. Then there exists a subsequence
{ne}2, of {n}S2, such that

t

Hm [ (Bu(™), ) > / Bg(u(t)) dz — / ®s(ug) dz, (14)

Nk —00

0 Q Q

/t (Ovu, Blu)) = / 5 (u(t)) de — f Bo(ug) dey  (24)

Q Q
where ®5(z) = [ B(s) ds.
0
The proof is similar as in (6], [7].
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LEMMA 5. Let u be as in Lemma 3; then there exists a subsequence of
{é(")}:ozl such that 0 — B(u) in Lo(I,H).

Proof. We use the equation
i—1
U; — Uj—
(Tl, w) + ((6:,9)) — (g (ti, TZMU@:), w)F
j=0
i—1
= (f(ti, TZKWOJ)’ ’(ﬁ) + (‘h,"/’)% for all ¢ (S H, 1= 1,...,77,,
§=0

and we obtain

Joa v+ [0, ) - / (0:(6.08), ),

I I I
1
T =1 tio1

where
fn ( 0(") (tu TZKUO (a:)) 9n (t e(n) (t“ TZAI’JG )

for t € (ti—l,ti>, 1=1,...n
If we put ¢ = 0™ — B(u) and consider a suitable subsequence of {n}%,,
we obtain

lim /<8tu("), g™ — B(u)) > 0.

n—00

We estimate the term

A= [ (onlt, 8), (0 - p(u(9))) a;

I

then
AS’A—/
T

]

(g(t, j M(t,5)B(u(s)) ds), (0") - B(u1)))) dt)'

ac

m—

M(t, )8 (u(s)) ds), (6 - ﬂ(u(t)))) at ]

N\
o\“
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Hence
A<y //Zlo||<e—ﬂ(u)>|+o(>
= lt . T J= 0

because 6(n)(t) _ B(u(t)) in Ly(I,Ly(T)), where

'A~ / P/ (g(t, / M(t,5)8(u(s)) ds), (9"(t)—ﬁ(u(t)))) ' (1),

Hence

— a(n 2
A < Clla(n) - ﬂ(u)@z(lylﬂz) + EC2|V(0( ) — ’B(u))le(I,Lz) + 0(1)
(we used (1.1)).
~ 2
Thus we conclude A < e[V(8™ — B(w))|;, ;) +o(1).
Finally, we estimate the term B of the equation (4).

B / (4 (6,0~ 7)), 09() - B(utt)))

1

<Tclz /Z/wna — B(u)| + C2,

11t,1-709

B < o(1) + Ca|0™ — B(w)|1,(1,1,) = 0(1).

The other terms can be estimated similarly as in [6], [7]. Summarizing the esti-

mates we deduce the required assertion.

THEOREM 2. Suppose P1-P7. Then there exist a weak solution u of (1) and
subsequences {0(")} {u(")} of weak approzimate solutions of (3) such
that ") — B(u), u(") — u in Lz(I x ), and ") — B(u) in L2(I H) If

the weak solution u of (1) is unique, then the original sequences {9 " }
{u(")}n:1 are convergent.

Proof. If we take a suitable subsequence of {n}2 ,, we obtain:

/<3tu(") Y) — /(8tu ) because d,u(™® — §,u in L2(I,H*),

/( 9(") )) — /((,B(u) ¥))  because (™)  g(u) in L2(I, H),

I

where ¢ € H, n — oo.
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Now we show that

//gn(t,é(”)(t——'r))z/)(t) ﬁ//g(t,/tM(t,s)ﬁ(u(s)) ds)z[)(t)

for all 4(t) € H if n — oo. We have

// gn(t,§£")) —g(t,/tM(t,s)ﬂ(u(s)) ds>
1T 0

2

< }:: 7 / |T§Mij0j —/tM(t,s)ﬁ(u(s)) ds‘2 +o(1)

ti-1 T

<clgm - BW)L, 1,y +0(1) -
Since

/]

from the definition of Bochner’s integral by step functions, we obtain that u
fulfils (1) for all ©(t) € La(I, H). From u(™(t) — wu(t) in C(I, H*), we conclude
that 8(u(™) — B(uo) in H*.

Remark. The results can be extended to the nonlinear degenerate equa-
tion (5) if we assume (P1), (P2), (P3), (P4), (P7). We have

dyu(t) — V(k(t, z, B(u(t))) - Vﬁ(u(t)))

t
fn (t,H—,(.")) - /K(t,s)ﬁ(u(s)) ds |2 dzdt — 0 for n— o0,
0

=f(t,w,ﬁ(u(t)),/K(t,s)ﬂ(U(S)) ds,/N(t, s) - VB (u(s)) ds>,
B(u(0,2)) = B(uo(2)), (5)

BB (u(t)) = g(t,:c,/M(t, )8 (u(s)) ds) ,

where the matrix k is supposed to satisfy |k| < C; and Cs|9|? < (k(t, =, 0)¥, ¥)
< Cs|¢)? for all t,z € 0, T)xQ, ¢ e RN, v e R, and where

K, K € Loo (T x I, ®(La(I X Q), Ly(I x 2)),
N,N. e LY (1 x I, ®(La(I x Q), Ly(I x Q))) ,
M, M, € Lo, (I x I, ®(La(I x T, Ly(I x r))) :
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®(X,Y) is a space of linear continuos mappings from X to Y.

If we consider the following degenerate parabolic system (6), we can obtain
the same results providing again the same assumptions. One has

dyui(t) — V (Di (t, z, b(u(t))) Vb; (Ui(t)))

t

=fi<t,x,b(u(t)),/ A(t,5)b(u(s)) d /N (t,5)Vb(u(s)) d ) in IxQ.
0

B; (u,(:c,O)) =0 (uio(a:)) on 0, (6)
Di(t,x,b(u(t))) '8Vb,-(ui(t)) =g; t,w,/mi(t,s) - b(u(s)) ds on IxT

for i = 1,...,m, where u = (u1,...,um), b(u) = (bi(u1),...,bm(um)),

n
g=10(91,---,9m), X-y =Y ;y;, and the matrices D; satisfy |D;(¢,z,s)| < C
Jj=1

(|| is the norm of D; in R™),
Cilv]? < (Di(t, z,s)v,v) < Co|v|? Vi=1,...,m,

uniformly for (t,z) € I x 2, s € R™, v € R*. The members for the vectors
ki(t,s), m;(t,s) € Loo(2).

REFERENCES

[1] AMIEZ, G—GREMAUD, P. A.: On a numerical approach to Stefan-like problems, Nu-
mer. Math. 59 (1991), 71-89.

[2] BERGER, A. E—BREZIS, H—ROGERS, J. C. W.: A numerical method for solving the
problem dsu(t) — Af(u(t)) = 0, RAIRO Modél. Math. Anal. Numér. 13 (1979), 297 312.

[3] GAJEWSKI, H—GROGER, K.—ZACHARIAS, K.: Nichtlineare Operatorgleichungen
und Operatordifferentialgleichungen, Akademia-Verlag. Berlin, 1974.

[4] CHEN, C.—THOMEE, V.—WAHLBIN, L. B.: Finite element approzimation of a para-
bolic integrodifferential equation with a weakly singular kernel, Math. Comp. 58 (1992),
587-602.

[5] JEROME, J. W.—ROSE, M. E.: Error estimates for the multidimensional two-phase
Stefan Problem, Math. Comp. 39 (1982), 377-414.

(6] JAGER, W.—KACUR, J.: Approzimation of porous medium type systems by non degen-
erate elliptic systems. Preprint, Universitat Heilderberg, SFB 123 (1990).

[7) JAGER, W.—KACUR, J.: Solution of porous medium type systems by hinear approzima-
tion schemes, Numer. Math. 60 (1991), 407-427.

[8] KACUR, J.: Method of Rothe in Evolution Equations, BSB Teubner Verlag, Leipzig, 1985.

[9] KAC['JR, J.: Application of Rothe’s method to evolution integrodifferential equations,
J. Reine Angew. Math. 388 (1988), 73 105.

L02



(10]

ON APPROXIMATE SOLUTIONS OF ... PARABOLIC PROBLEMS

KACUR, J—HANDLOVICOVA, A—KACUROVA, M.: Solution of nonlinear diffu-
sion problems by linear approzimation schemes. Preprint, Comenius University, Bratislava
(Accepted to SIAM J. Numer. Anal.).

(11] KACI:TROVA, M.: Solution of porous medium type problems with nonlinear boundary
conditions by linear approzimation schemes. (To appear).

[12] MacCAMY, R. C.—WONG, J. S. W.: Stability theorems for some functional equations,
Trans. Amer. Math. Soc. 164 (1972), 1-37.

(13] MAGENES, E.—NOCHETTO, R. H—VERDI, C.: Energy error estimates for a linear
scheme to approzimate nonlinear parabolic equations, RAIRO Modél. Math. Anal. Numér.
21 (1987), 655—678.

[14] MAGENES, E.—VERDI, C.—VISINTIN, A.: Theoretical and numerical results on the
two-phase Stefan problem, SIAM J. Numer. Anal. 26 (1989), 1425-1438.

[15] McLEAN, W.—THOMEE, V.: Numerical solution of an evolution equation with a positive
type memory term, J. Austral. Math. Soc. Ser. B (Submitted).

(16] SLODICKA, M.: Application of Rothe’s method to evolution integrodifferential systems,
Comment. Math. Univ. Carolin. 30 (1989), 57-70.

[17] SLODICKA, M.: On a numerical approach to nonlinear degenerate parabolic problems.
Preprint, Comenius University, M6 (1992).

(18] SLODICKA, M.: Numerical solution of a parabolic equation with a weakly singular posi-
tive-type memory term. Preprint, Comenius University, M7 (1992).

Received July 3, 1992 Ndlepkova 248

Revised September 9, 1993 SK-019 01 Ilava

Slovakia

103



		webmaster@dml.cz
	2012-08-01T09:57:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




