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COMPLETENESS IN CERTAIN 
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SURJIT SINGH KHURANA* — SADOON IBRAHIM OTHMAN* 

(Communicated by Miloslav Duchon) 

ABSTRACT. Let X be a completely regular Hausdorff space, E a Banach space 
over K, the field of real or complex numbers, C(X,E) (C(X) if E = K) 
the space of all I2-valued continuous functions on X, and Cb(X,E) (Cb(X) if 
E = K) the space of all E-valued bounded continuous functions on X. Put Fz = 
(Cb(X,E),(3z) (f3z the so called strict topologies), and F = (C(X,E), P^c) • 
It is proved that (F ,̂ cr(Fz,Fz)) is sequentially complete for z = cr, oo,g; if, in 
addition, X is meta-compact and normal, then the result is also true for z = T. 
Also it is proved that (F', cr(F', F)) is sequentially complete. For the Mackey 
topology it is proved that (FZ,T(FZ,FZ)) is complete for z = cr,oo,g and for 
z = T(t) it is complete if and only if Mg(X) = MT(X) (Mt(X)). Further it is 
proved that (F ' , r(F ' ,F)) is complete. Some additional results are proved for 
sequential convergence. 

In this paper, X is a completely regular Hausdorff space, E a Banach space 
over K, the field of real or complex numbers, C(X,E) (C(X) if E = K) the 
space of all E-valued continuous functions on X , and Cb(X,E) (Cb(X) if E = 
K) the space of all E-valued bounded continuous functions on X. For locally 
convex spaces, the notations and results of [11] will be used. For topological 
measure theory, notations and results of [5], [7], [8] and [14] will be used. All 
locally convex spaces are assumed to be Hausdorff and over K. The topologies 
A), Pi, /3, Ax>, Pg a r e d e f i n e d o n Cb(X,E) in [5], [7], [8] (see also [1], [2], [3], 
[4], [12], [13]). We will also write (3a for f31, (3r for /3, and (3t for /30 . X (vX) 
will denote the Stone-Cech compactification (real-compactification) of X. For a 
function / G C*(X), / and / denote its unique continuous extensions to vX and 
X (extension to X may be infinite-valued), respectively. For an / in C(X,E), 
ll/H will denote an element of C ( X ) , J | / | | ( x ) = | |/(x)J|. For /I G Ma(X),we get 
£ G M(X), jl(g) = fi(g\x) ? 9 ^ C(X)\ for /} G M ( X ) , supp(/i) is the smallest 
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compact set C in X such that |£|(C) = \p.\(X). For p G (Cb(X, E), \\ | | ) ' , 

\fi\(g) = sup{>( /0 | : h G C 6 ( X , £ ) , ||A|| < f f } , j E C fe(X), <? > 0. ([5], [7], 

t8D; H £ (Cb(X), || | | ) ; (in [8], notation p, is used). N will denote the set of 

natural numbers. 
When E = K = R, it is well known that (M^, cr(M^(X), C 6 (X))) and 

(Moo, CT(M00(X), Cfc(-X'))) are sequentially complete [13]. In this paper, we con­
sider some extensions of this result to the vector case and also case when we 
take Mackey topology. 

LEMMA 1. Let \n: 2N —• K (2N being all subsets of N, the set of natural 
numbers) be a sequence of countably additive measures (this implies continuity 
in 2N, with product topology) such that Xn(M) exists for all M C N. Then the 
convergence is uniform on 2 . 

P r o o f . The result follows easily from classical Philips' lemma ([5]). • 

LEMMA 2. A net / a -+ 0 in (Cb(X,E),&) if and only if | | / a | | -» 0 

in (Cb(X), &), where & = (3Q, (3i, (3, (3^, or j3g; in the dual sense, A C 

(Cb(X, E), &) is &'-equicontinuous if and only if \A\ is equicontinuous. The 

result also holds in (C(X,E), P^c) • 

P r o o f . For 0g, it is proved in [8]; the proof for others is similar. The main 
result used is that these topologies are locally solid ([5]). • 

THEOREM 3. Let E be a Banach space and Fz = (Cb(X, E), (3Z) . Then 
(F'z, C(FZ, F Z ) ) is sequentially complete for z = a, oo, or g. If X is also meta-
compact and normal, then the result is also true for z — r. 

P r o o f . 
The case z — <J . 

Let {/in} be a Cauchy sequence in (Fz, cr(Fz, F Z ) ) , and define ji: Cb(X, E) —> K, 
ji(g) = lim nn(g). By the principle of uniform boundedness, // G (Cb(X, E), || ||) , 
and so we have only to prove that |/x| G Ma(X) ([7]). Take a zero set Z C X\X 

and take an increasing sequence {Vn} of open subsets of X such that X \ Z = 

|J Vn. Using the fact that X \ Z is para-compact locally compact, we get 
71 = 1 

a partition of unity {hn} C Cb(X \ Z) such that £ ^n = 1 on X \ Z, and 
/ °° \ 

supp(hn) C Vn, Vn. Let hn = hn\x> We first prove that \fJ>k\[ £ ^ i ) ~* °> 
^ i=n ' 

as n —• oo, uniformly in k. Suppose this is not true. This means, taking 
a subsequence of {//n}, if necessary, 3rj > 0, a strictly increasing sequence 

e ( n + l ) - l 
g(n) C N, and a sequence {fn} C Cb(X,E) such that | | /n | | < £ ^i and 

z=o(n) 
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Vn(fn) > V, Vn . For a subset M C N, fM = ]C /* i s i n Cb(X,E), and 
iGM 

11/Ml I < 1. Define An: 2N —> if, Xn(M) = fin(fM)] the conditions of Lemma 1 
are satisfied, hence nn(fn) —-> 0, which is a contradiction. Fix an e > 0 and 

take p G N such that |/z„|( £ /i*) < e/2 , Vn. Let p ~ G C ( X ~ ) , 0 < <p~ < 1, 
^ i=p ' 

¥>~(Z) = 1, (/?~(Vp+i) = 0, and put <p = < ^ | x . Let g G C 6 ( X , £ ) , \\g\\ < <p, 
and | /x | (^)< | / i ( ( / ) |+e /2 . 

Now, for every n , 

|/1n|(̂ ) = \(ln\l J^^tJ = |/In|( J^ ^ ) - 1̂ 1 ( S hi) ~ 6/2 ' 
^ z = l ' ^ i=p+l ' ^ i=p+l ' 

hence |/in(flOI < z/2, Vn. Thus |/I(<1)| < e/2, and so |/1|(v?) < e. This gives 
|/z|~(Z) < e and, consequently, |/z|~(Z) = 0. This proves \fj,\ G Ma. 

Case of z = g. 
Using the result proved above for z = a, we get /in —* /i , pointwise on 
Cb(X,E), and |/z| G M^. By [8; Theorem 6.5. (v)], it is enough to prove 

O O -t 

that |/i| G M^. Suppose this is not true. Let A = |/I| + XI "orHMnl- Since 
n=l ^ 

(M^(X), r (M^(X ) ,C 0 ( X) ) ) ([13]) is complete, by Grothendieck's completeness 
theorem ([10; Theorem 6.2]), there exists an absolutely convex and pointwise 
compact H C Cb(X), H consisting of real-valued functions, such that |/i| is 
not continuous on (H, a(Cb(X),Mg(X))) at 0. We assume that | / in | ( l) < 1? 
Vn, and so |/I|(1) < 1. There exists an rj > 0 such that for any finite subset 
A C Mg(X) and e > 0, H(A,e) = { /G # : \{f, v)\ < e, Vi/ G A, and |/z|(/) 
> 77} 7̂  0 ([8]). As iF(yl,£) is convex and decreases as A increases and e 
decreases, P| H(A,e)^ 0, closure taken in Li(X,Ba,X) with weak topology 

A,E 

(Ba denotes all Baire subsets of X). Take an / G f] H(A,e). Fix A and 
A,e 

e, and take a sequence {fn} C H(A,e) such that fn —> f a.e. [A]. Since H 
is compact, 3/n G Pf such that f = fQ a.e. [A]. Hence we may assume that 
f eH. Let rTi = { x G r : / ~ ( x ) < 0} and K = {x e X~ : f~(x) > rj/3}, 
then Knsupp(^) / 0. Define 5 ~ G C ( X ~ ) , 0 < #~ < 1, g~(K) = 1, 
g~(K{) = 0. This means \fi\~(f~g~) > 0. Put 5 = g~\x and take, for every 

n , A n = {flf|/ii| : 1 < i < n} C M^(X), and e = —. Then \/J,i\(gf) < 1/n, 

1 < i < n, Vn, and so \Hi\(gf) = 0, Vn. Take an /i G Cb(X,E), \\h\\ < fg, and 
|/x(/i)| > 0. Now ^(h) = 0 , Vi, implies that 11(h) = 0, which is a contradiction. 

Case of z — 00. 
The proof is very similar to that of the case of /3g. We only have to note that 
(MOQ(X), H°°) is complete, where H°° is the topology of uniform convergence 
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on all subsets of Cb(X) which are uniformly bounded and equicontinuous ([5]), 
from which it easily follows that (M00(X), T(MOQ(X), Cb(X))) is complete, and 
then take H to be uniformly bounded, equicontinuous, and pointwise compact 
of real-valued functions in Cb(X). 

Case of z = T. 
From the case z = cr, we get |//| G Ma(X). Let C = supp(A), where A = 

oo -. 
zC orT.^nl- Since A G MT(X) and X is meta-compact, C is Lindelof ([10]). 

n = l ^ 

Fix e > 0, take a zero-set Z C X \ C; using the normality of X, get an 
/ G C6(X) such that , 0 < / < 1, / ( C ) = 0 and / ( Z ) = 1. Let g G Ch(X,E) 
with | | 5 | | < / and |E/(5)| + e > | M | ( / ) . 

Now |/x(<j)| = l im|/ /n(#) | < limsup/||flf|| d|/xn |. Thus | / i | ( /) < e, and so 
c 

|/i|(Z) = 0. Let {t7a : a G 7} be a covering of X by cozero sets ([10]). Since 
C is Lindelof, there exists a countable subcovering {Ua(n) : n G N} of C . 

Since the zero-set X \ ( (J c7a(n) J has |//|-measure 0, it follows from [14; Part 1, 

Theorem 25, Corollary 4] that |/x| G M T ( X ) . • 

THEOREM 4. Let E be a Banach space, Fz = (C0(X, E), (3Z) , and {jik} be a 

sequence in Ff
z such that jik —> H in (Ff

z, a(F^Fz)) . Then 

(i) for z = a, if {fn} is a sequence in C\,(X), 0 < fn < 1, / n | 0, then 
.MfcK/n) —• 0, uniformly in k; 

(ii) for z = oo. if {fa} is a net of uniformly bounded and equicontinu­
ous functions in C0(X) and fa —• 0. pointwise, then \^k\(fa) -^ 0, 
uniformly in k; 

(hi) i^/ien X is meta-compact and normal and z = r . z/ {/a} is a net in 
Cb(X), fa I 0, t/ien |/Ifc|(/a) —* 0, uniformly in k. 

P r o o f . 

(i) Since (Cb(X, E), (3a) is strongly Mackey ([7; Corollary 6]), {/in} is 
equicontinuous. By Lemma 2, {|/In|} is ^-equicontinuous. Also fn [ 0 im­
plies / n —> 0 in (C0(X), /3o-) ([13]). From this the result follows. 

(ii) Exactly same argument applies in the case of (3a. 
(iii) As in Theorem 3, there exists a closed Lindelof subset C C X, such that 

supp(|/In |) C C , Vn. We claim that {|/In|} is relatively compact in (MT(X), 
a(MT(X),Cb(X))). By (i), this is relatively compact in (Ma(X),a(Ma(X), 
Cb(X))). Let v G Ma(X) be a cluster point of { | / /n |} . To prove that v G 
MT(X), by using the techniques of Theorem 3 (case of z = r ) , we need only 
to prove that for any zero-set Z C X \ C , v(Z) = 0. Using the normality of 
X , get an / G Cb(X) such that , 0 < / < 1, / ( C ) = 0, and f(Z) = 1. Since 
| / i n | ( / ) = 0, Vn, we get v(f) = 0, thus i'(Z) = 0. Hence {|/In|} is relatively 
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compact. Since {|/1n|} C M + , it is /3r-equicontinuous ([13]). Now fa 1 0 implies 
fa —» 0 in /3r , and so the result follows. • 

THEOREM 5. Let E be a Banach space, and Fz = (Ch(X, E), /3Z). Then 
(F'z, T(FZ,FZ)) is complete for z = a,oo, or g. For z = r or t, this space is 
complete if and only if MZ(X) = Mg(X). 

P r o o f . We will use Grothendieck's completeness theorem. Let \i: 
Ch(X, F)-^Kbea linear mapping such that JJL is continuous on every absolutely 
convex, cr(Fz, i^)-compact subset H of C0(X, E), with a(Fz,F'z) topology. 

Case of z = a: 
Here fi is continuous on every absolutely convex, a(Fa, F£)-compact subset H 
of C0(X, E). From this, it easily follows fi e (C0(X, E), || ||) . So it is enough to 
prove that |//| is in Ma(X) ([7]). Suppose there exists a sequence {fn} C C 0 (X) , 
fn i 0, but | / i | ( /n) > 77, Vrc, for some 77 > 0. Thus, there is a sequence 
{9n} C Cb(X,E), \\gn\\ < fn, and \fi(gn)\ > V, v™- T h i s implies that {gn} 
is equicontinuous, uniformly bounded and pointwise compact, and LI, the ab­
solutely convex, pointwise closed hull of {gn}, 1s pointwise compact, uniformly 
bounded and equicontinuous. We claim LI is a c^LV, Ff

a)-compact subset LI of 
Cb(X,E). Take A E F'a, fix e > 0, and select a Baire set C C X such that 
|A|(X \ C) < e and / n j 0, uniformly on C (Egoroff's theorem). This makes 
LIl^r a compact subset of (C0(C, L?), || | | ) . If, in LI, ha —> /i, pointwise on X , 
then, using 

\X(ha - h)\ < \\\(\\ha - h\\) = f(\\ha - h\\) d|A| + f (\\ha - h\\) d|A|, 
c x\c 

we get X(ha) —> X(h), and so the claim is proved. Thus gn —> 0 in (LI, cr(F'cr, F^)) . 
Since /x is continuous on LI, fi(gn) —> 0, which is a contradiction. This proves 
| / i |GAL a (X) . 

Case of z -= 00: 
Here // is continuous on every absolutely convex, a(F00.) F^J-compact subset LI 
of Cb(X,E). From this it easily follows [i e (C0(X, L7), || ||) . So it is enough 
to prove that |//| e MQO. Take P to be an absolutely convex, pointwise com­
pact, equicontinuous, and uniformly bounded (by 1, in absolute values), subset 
of real-valued functions in Cb(X). Fix h e Cb(X,E). The mapping g 1—> gh 
((Cb(X), /3oo) —> (C0(X, E), /?oo)) is continuous. Suppose fa —> / , pointwise on 
P . We get 2 + / a -> 2 + / in (3P, a(Foo, F^)). Fix e > 0 and take p e Cb(X, E) 
such that \\g\\ < 2 + / and |/I(g)| > |/x|(/ + 2) - e / 2 . Since the mapping g \-> gh 
((Cb(X), (3oo) —> (Cb(^, -S), /3oo)) is continuous, (2 + P) f ^ is weakly com-
pact convex in (C6(X,L;), 0 ^ ) , and so its closed absolutely convex hull, LI, is 
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also weakly compact. Since (2 + fa) /- • o ~~* 9 m \%H, ^(FOQ, F^)) , 

Hg)\<\fi[(2 + fa)j^)\+e/2, Va > some a0 . 

This means \fi(g)\ < \/i\(2 + fa) + e/2, Va > a0 (note j ^ < 1). So 

l/IK2 + / ) < H ( 2 + fa) + e, Va > a0. Thus |/x|(/) < l im | / I | ( / a ) . Similarly, 
starting with 2 - fa -+ 2 - f, we will get | / I | ( - / ) < lim | / i | ( - / a ) . This proves 
that |Li |(/a) -> | / i | ( / ) , and so |/x| G M ^ p C ) . 

Case of z — g: 
This case is identical with z = oo. 

Case of z = r : 
Suppose M P (X) = MT(X). This means Lx G i ^ implies |//| G Mg(X) = MT(X), 
and so the result follows. Conversely, suppose (FT,T(FT,FT)) is complete. This 
easily implies that (MT(X), T(MT(X),Cb(X))) is complete. Take [J, € Mg and 
LI an absolutely convex compact subset of (Cb(X), a(Cb(X), MT(X))). This 
means the pointwise topology and cr(C0(X), MT(X))-topology coincide on LI, 
and so ji is continuous on LI, By Grothendieck's completeness theorem, [i G 
MT(X). 

Case of z — t: 
This case is identical with z — t. • 

Now we consider the measure space M(X)c(X). This is studied in [1], [5], and 
[9] (in [9], it is denoted by M(X)). 

THEOREM 6. Let E be a Banach space and F = (C(X, E), /?ocC) . Then 
(Ff,(j(Ff,F)) is sequentially complete and (Ff,T(F*,F)) is complete. If {fik} 
is a sequence in Ff such that fik —» /I in (Ff, a(Ff,F)), and if {/a} is a 
net of pointwise bounded and equicontinuous functions in Cb(X) and fa —• 0. 
pointwise, then \fik\(fa) —* 0. uniformly in k. 

P r o o f . Take a sequence {/In} C Ff such that limiin(g) = n(g) exists for 
every g G C(X,E). This means that /i G (Cb(X,E), || | | ) ' . Suppose 3 / > 0 
in C(X) such that |/1|(/) = oo. We get a sequence {gn} C C(X,E), \\gn\\ 
< f and |/I(#n)| > 4 n , Vn. Put / in = l/2ngn. Then {/in} is equicontinuous, 
pointwise bounded and hn —> 0, pointwise. Define An: 2N —> If, An(M) = 

Mn( E l / 2 ^ i ) ( n o t e E V 2 * ^ ^ C(X,E)). The conditions of Lemma 1 are 
^ieM ' i£M 

satisfied, and so fin(l/2
nhn) —> 0, which is a contradiction. Also proceeding as 

in Theorem 2, |/x| G Moo(X). This proves fi e Ff. 
Now we consider the completeness of (I7', r (F 7 , I71)) . By Grothendieck's com­

pleteness theorem, we only need to prove that any linear / i : C(X,E) —> If 
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such that for every absolutely convex, cr(F, F^-compact subset H C C(X,E), 
ji\fl is continuous for cr(F, F")-topology, is in F'. As in Theorem 5, /i G 
(Cb(X,E), || ||) , Suppose there exists / > 0 in C(X) such that \^\(f) = oo. 
We get a sequence {gn} C C(X,E), \\gn\\ < / and |/i(gn)| > 2n> Vn. Put hn = 
l/2ngn. Then {hn} is equicontinuous, pointwise bounded, and hn —> 0, point-
wise. Let LI be the pointwise closed, absolutely convex hull of {hn} in C(X, E); 
it is equicontinuous and pointwise compact, and so it is a(F, F^-compact. By 
the continuity of /i on LI, fi(hn) —> 0, which is a contradiction. Also proceeding 
as in Theorem 3, \fi\ G MOQ(X). This proves completeness. 

The proof of uniform convergence of {/a} is identical to the case z = oo in 
Theorem 4. • 
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