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ABSTRACT REGULARITY OF ADDITIVE AND 

CT-ADDITIVE GROUP-VALUED SET FUNCTIONS 1 

T. V. PANCHAPAGESAN 

(Communicated by Miloslav Duchofi) 

ABSTRACT. Three types of regularity, namely, C-regularity ./-regularity and 
(£ , _/)-regularity, are in troduced for an abelian HausdorfF group G-valued additive 
or cr-additive set function defined on a ring of sets 1Z and some sufficient condi­
tions are given on C, _7 and 1Z to ensure the equivalence of all these three types 
of regulari ty Also [9; Theorem 52.F] of H a 1 m o s is generalized to G-valued 
o-additive set functions in this abs trac t se t-up. 

Fixing two classes of sets C and _7, we introduce the concepts of C-regularity, 
_7-regularity and (£, _7)-regularity for an abelian Hausdorff group G-Vctlued ad­
ditive or (j-additive set function defined on a ring of sets 1Z and study some 
sufficient conditions on £ , _7 and 1Z to ensure the equivalence of these three 
types of regularity. The main results are Theorems 4.3 and 4.6 and their corol­
laries on locally compact spaces and metric spaces. In the abstract set-up, these 
theorems give generalizations of [9; Theorem 52.F] of H a l m o s to G-valued 
measures. 

Similar studies in abstract set-up in the study of topological measures have 
been done by B a c h m a n and C o h e n in [ l ] , B a c h m a n and S u l t a n 
in [2], [3], and in the study of regularity property of vector lattice-valued mea­
sures b y H r a c h o v i n a in [10]. The advantage of this type of study is that 
it gives a unified approach to problems which are of topological nature. The 
strength of our study is brought out well by Corollaries 4.9 and 4.10 on locally 
compact spaces and Corollary 4.11 on metric spaces. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 28B10. 
K e y w o r d s : ^-regularity , ./-regularity, (£,_/)-regularity , group-valued set function. 
1 Supported by the C D . C H . T . project C-586-93 of the Universidad de los Andes, Merida, 

Venezuela. 
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T. V. PANCHAPAGESAN 

1. Preliminaries 

In this section, we introduce the notation and terminology and state some 
results from D r e w n o w s k i [7], [8]. 

G denotes an abelian Hausdorff topological group, whose binary operation is 
denoted by + . 0 is a non-void set, in general. Sometimes ft is considered as a 
topological space with special properties, n is a ring of subsets of _1, A: n —* G 
is additive, and /i: n —> G is rr-additive. 

We fix two classes of sets C and Q in 'P(fJ), with respect to which we 
introduce the concepts of regularity as in Definition 2.1. In general, C and Q 
are not assumed to be lattices of sets. However, different properties are assumed 
for C and Q explicitly whenever necessary. 

DEFINITION 1.1. Let Ci, C2 be classes of sets in O. Then: 

(i) C\ is said to be C2-complemented if C2\C\ E C2 for C\ E C\ and 
C2eC2. 

(ii) C\ is said to be C2-bounded if for each C\ E C\ there exists C2 E C2 

such that C\ C C2. 
(iii) C\ is said to be C\-boundedly C2-dominated if for each C\ E C\ there 

exists C2 E C2 and D\ E C\ such that Ci C C2 C .Di . 
(iv) C\ is said to be aC2-bounded if for each Ci E Ci there exists a sequence 

oo 

(C2.n)~=i C C 2 S U c h t h a t C l C U C2,n. 
n=l 

DEFINITION 1.2. Suppose C is closed under unions and Q under intersections. 
Let H) e CHQ. Let I(K,U) = {A C 11 : # C A C U} for if E C and 
U E £U{f t} . As {I(K,U) : K E £ , U E £U{ft}} is closed under intersections 
and 'P(fi) = J(0, -1), it follows that this collection is a basis for a unique topology 
T(C,Q) on P(Q). 

CONVENTION 1.3. Whenever the topology r ( £ , Q) is referred to, it is tacitly 
assumed that C is closed under unions, Q under intersections and 0 E £ n (?. 

PROPOSITION 1.4. ( D r e w n o w s k i [7; p. 271, 1.9]) Let X: U -> G be 
additive and let B be a local base of symmetric closed neighbourhoods of 0 in 
G. For each W E B, let 

Hw(*) = {Ectt: X(F) E W for each F C E, F E n) . 

Then n n TlwW = {E en: X(F) E W for each F c E , F E n} is a local 
base at 0 in n for the FN-topology T(X) determined by X on n. 

PROPOSITION 1.5. ( D r e w n o w s k i [8; p. 440, 8.4]) / / /i: n -> G is 
a-additive and En [ 0 in n, then En —> 0 in T^)-topology. 
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ABSTRACT REGULARITY . . . 

NOTATION 1.6. If q is a quasi-norm on G and e > 0, then -B9(0, e) = {x G G : 
q(x) < e} . Given W £ B, there exists a finite family of continuous quasi-norms 

k 
(q{)^ on G such that We = f| 5^(0,6:) C TV. Then We/2n denotes the set 

i=l 
k 

f) Bqi(0,e/2n). For n G N, nW denotes TV + • • • + W (n times). 
i=i 

For a class of sets C, 22(C) (resp. R(C), 5(C)) denotes the <5-ring (resp. ring, 
cr-ring) generated by C. 

2. (£, ( / )-regulari ty of G-valued add i t ive set funct ions 

In this section, we introduce the notions of ^-regularity, (/-regularity and 
(C, (z)-regularity for a G-valued additive set function A on K and give some 
sufficient conditions to ensure that A is (C, (z)-regular whenever A is £-regular 
or (/-regular. As a concrete application, we give Theorem 2.6 which general­
izes the results in [4; §15] of D i n c u l e a n u to G-valued set functions on 
locally compact spaces. Moreover, the results of this section are needed in the 
subsequent sections. 

DEFINITION 2 .1 . Let A: 1Z -> G be additive. For A G 11, X is said to be 
C-regular (resp. G-regular) in A, if for a given W G B there exists K G C 
(resp. U G G) such that K C A and A \ K G 1ZW(X) (resp. A C U and 
U \ A £ 1Z\y(X)). If A is £-regular (resp. (/-regular) in each A G C C 1Z, then 
A is said to be C-regular (resp. G-regular) in C. Moreover, A is said to be 
(C, G)-regular in A G 1Z (resp. in 1Z) if A is both ^-regular and (/-regular in A 
(resp. in 1Z). 

The following proposition is evident from the above definition and the addi-
tivity of A. 

PROPOSITION 2.2. A G-valued additive set function X on TZ is (C,G)-regular 
in 1Z if and only if, for each E G 1Z and W G B, there exists U G G and K G C 
such that K C E C U and U\K G 1ZW(X). 

THEOREM 2.3 . Let A: 1Z —> G be additive, G be C-complemented and C 
be IZ-bounded. If E G 1Z is C-bounded and X is G-regular in 1Z, then X is 
(C,G)-regular in E. Consequently, if TZ is C-bounded, then X is (C,G)-regular 
in 1Z if and only if X is G-regular in 1Z. 

P r o o f . Suppose A is (/-regular in TZ. By the hypothesis on E and C, there 
exist K G C and F G 1Z such that E C K C F. As F\E elZ, given W eB, 
there exists U G G such that F \ E C U and U \ (F \ E) G 1ZW{X). Since G 
is £-complemented, G = K\U G C and C C K H (F H E')' = E. Moreover, 
E \ C = E n U = U \ (U \ E) C U \ (F \ E), and hence E\C G 1ZW(X). Thus 
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A is (£, £)-regular in E. If 1Z is £-bounded, then, from the first part, it follows 
that A is (£, £?)-regular in 1Z. The converse is obvious. D 

THEOREM 2.4. Let A: 1Z —> G be additive and let C be Q-complemented. If 
E elZ is such that there exists U G Q and F E.1Z such that E CU C F, and 
if X is C-regular in 1Z, then X is (C,Q)-regular in E. Consequently, if 1Z is 
Q-bounded and Q is IZ-bounded, then X is (C,Q)-regular in 1Z if and only if X 
is C-regular in 1Z. 

P r o o f . The proof is similar to that of Theorem 2.3. D 

COROLLARY 2.5. Suppose C is Q-complemented, IZ-bounded and C-boundedly 
Q-dominated. If E G 1Z is C-bounded, then X is (C,Q)-regular in E whenever 
X is C-regular in 1Z. Consequently, if 1Z is C-bounded, then X is (C,Q)-regular 
in 1Z if and only if X is C-regular in 1Z. 

P r o o f . Suppose E G 1Z is £-bounded. Then there exists K G £ such that 
E C K. Now, by the hypothesis on £ there exist U G Q, C G £ and F G 1Z 
such that K c U c C c F s o that E C U C F. Thus the hypothesis of 
Theorem 2.4 is satisfied by E, and the corollary is proved. D 

As an application of the above results we give the following theorem on locally 
compact spaces. 

THEOREM 2.6. Let Q be a locally compact Hausdorff space. Suppose /C (resp. 
/Co) is the family of all compact (resp. compact G&) subsets of Q and Ua (resp. 
UQ) is that of all open sets in V(K) (resp. in V(K,Q)). Let the ordered pair (C,Q) 
be either (/C,£//<-•) or (KQMO) • Let 1Z be a ring of relatively compact subsets of 
Q and let A: 1Z —> G be additive. Then: 

(i) 1Z is C-bounded. 
(ii) Q is C-complemented and C is Q-complemented. 

(iii) £ is C-boundedly Q-dominated. 
(iv) £ and Q are lattices of sets. 
(v) Suppose one of the following conditions is satisfied: 

(a) /Co is IZ-bounded. 
(/3) Q C1Z. 

Then C is IZ-bounded. 
(vi) If anyone of conditions (a) or (/3) of (v) holds, then the following are 

equivalent: 
(a) A is (C,Q)-regular in 1Z. 
(b) A is Q-regular in 1Z. 
(c) A is C-regular in 1Z. 

(vii) If 1Z is r(C,Q)-dense in V(Q), then /Co is IZ-bounded (and hence (vi) 
holds). 
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ABSTRACT REGULARITY . . . 

P r o o f . 

(i): By [4; §14, Proposition 11], 1Z is /Co-bounded, and hence 1Z is £-bounded. 

(ii): Obviously, Ua is /C-complemented. For U G U0 and K G Ko> K\U 
is compact and K \ U G X>(/Co)- Consequently, by [4; §14, Proposition 13], 
K \ U G Ko j and hence Wo is Ko-complemented. Thus [5 is /^-complemented. 
Trivially, C is ^-complemented. 

(hi): Given K G £ , by [4; §14, Proposition 11], there exist U E Q and C G £ 
such that if C U C C C Q, and hence (iii) holds. 

(iv): Obvious. 
(v): If (a) holds, then, by [4; §14, Proposition 11], C is clearly 7£-bounded. 

Suppose (/3) holds. Let K G C. Then, again by the same proposition of [4], 
there exists U G Q C TZ such that K C U. Hence C is 7^-bounded. 

(vi): Suppose anyone of (a) or (/?) holds. Then, by (v), C is '/^-bounded. 
Therefore, by (i) and (ii) and Theorem 2.3, conditions (a) and (b) are equivalent, 
while, by ( i ) - (v) and Corollary 2.5, conditions (a) and (c) are equivalent. 

(vii): Suppose 1Z is r (£ ,£)-dense in V(£l). Then, given K0 G Ko? there 
exists F G 1Z with K0 C F C fi, since I(Ko,£l) is r ( £ , £/)-open by definition 
and /Co C C. Thus K0 is /^-bounded. • 

R e m a r k 2.7, If G is a normed space, then Theorem 2.6 clearly subsumes 
[4; §15, Proposition 6] as a very particular case. 

3. (£, C/)-regularity of G-valued cr-additive set funct ions 

When \x\ TZ —» G is a-additive, we give a set of sufficient conditions to 
extend Theorem 2.3 and Corollary 2.5 to cr£-bounded sets in 1Z. As a concrete 
application of these, we obtain a theorem on locally compact spaces. The results 
of this section will be used in the next section. 

In the sequel, we shall assume £ to be closed under unions. 

THEOREM 3 .1 . Let /x: 1Z —> G be o-additive. Suppose C is C-boundedly 
IZ-dominated and C-boundedly Q-dominated. Let Q be C-complemented. Then: 

(i) If E G 1Z is o~C-bounded, then \i is (C,Q)-regular in E whenever fi 
is Q-regular in TZ. 

(ii) If TZ is aC-bounded, then /i is (C,Q)-regular in TZ if and only if /i is 
Q-regular in TZ. 

P r o o f . 
(i): Given W G B, choose W0 G B such that 2W0 C W. As E is a£-bounded, 

oo 

there exists a sequence (i\~n)J° C £ such that Ec[jKn . Since C is £-boundedly 
l 

^-dominated, for each n there exist Un G Q and Cn G £ such that Kn C Un 
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C Cn. As C is £-boundedly 7^-dominated, for each Cn there exist Fn G 1Z and 
n 

Dn G C such that Cn C Fn C Dn. Let En = | J Fk. Then En G 1Z, En is 
k=i 

oo 

£-bounded for each n, En ] and F1 C |J En. Taking Bn = E C\ En, it follows 
1 

that Bn G 1Z, Bn j E, and each Bn is £-bounded. As E \ Bn [ 0 and /i is 
cr-additive, by Proposition 1.5, there exists n 0 such that E \ Bno G ^ ^ ( M ) -

Since Li is (/-regular and Bno is £-bounded, by Theorem 2.3, Li is (£, 5)-regular 
in Bno . Thus there exists K G £ such that K C £ n o and L?no \K C 1ZWo (Li). 
Consequently, K C E and E\K G 7£vV(kO since Li is additive and 2Wo C W . 
Thus Li is (£, £)-regular in E. 

(ii): This follows from (i). • 
COROLLARY 3.2. Let //: 1Z —> G be a-additive and let Q be C-complemented. 
Suppose C is C-boundedly Q-dominated. If Q C 1Z, or if 1Z is r(C,Q)-dense in 
V(£l), then C is C-boundedly IZ-dominated. Consequently, if E is aC-bounded 
(resp. 1Z is aC-bounded), then \i is (C^Q)-regular in E (resp.in 1Z) if (resp. if 
and only if) Li is Q-regular in 1Z. 

P r o o f . Given K G £ , by the hypothesis on £ , there exist U G Q and 
C G £ such that K CU CC .VLQ ClZ, take F = U G 1Z. If 1Z is r ( £ , £)-dense, 
then there exists F G 1Z such that K C F C U. In both cases, it follows that £ 
is £-boundedly 7£-dominated. The rest is immediate from Theorem 3 .1 . • 

THEOREM 3.3. Let fi\ 1Z —> G be a-additive. Suppose Q is closed under 
countable unions and C is Q-complemented. Let C be C-boundedly Q-dominated 
and Q ClZ. Then: 

(i) If E C 1Z is aC-bounded, then n is (C,Q)-regular in E whenever /i 
is C-regular in 1Z. 

(ii) If 1Z is aC-bounded, then /i is (C,Q)-regular in 1Z if and only if ji is 
C-regular in 1Z. 

P r o o f . 
(i): Given W G B, there exists a finite family of continuous quasi-norms 

k 
(qi)\ on G and O 0 such that W£ = f| Bq.(0,e) C W. By Corollary 3.2, £ is 

£-boundedly 7^-dominated. Thus, as in the proof of Theorem 3.1, there exists 
(jBn)J° C 1Z such that Bn f E and each Bn is £-bounded. For each C G £ , by 
hypothesis, there exists U G Q ClZ such that C C U so that £ is 7^-bounded. 
Consequently, by Corollary 2.5, \i is (£, £)-regular in each Bn. Thus, for each 
n there exists Un G Q such that Bn C Un and Un \ Bn G IZw n+1 (kO • Since 

oo oo 

Q is closed under countable unions, U = | J Un G Q. Moreover, E = [j Bn C 
l l 
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oo 

[jUn = U e n. Let A e U with A C U \ E. If Hn = Un \ Bn, then A C 
1 

U(U„ \Bn)= U (Hn \ ( U Hi)) , and hence 
1 n=lV Ki<n JJ 

»(A) = jr\»(Ar]Hn)-JAnHnnl \jHi))\eW 
n=l ^ \ \ i<n / / ) 

since q{ o /i(>l n Hn) < s / 2 n + 1 and q{ o / i(A n Hn PI ( IJ # / ) ) < e / 2 n + 1 for 
^ M<n ' ' 

i = 1, 2 , . . . , k. Thus ji is (£, £/)-regular in E. 
(ii): This follows from (i). D 

As a consequence of the above results, we can give the following theorem for 
G-valued cr-additive set functions on locally compact spaces. 

THEOREM 3.4. Let Q, be a locally compact Hausdorff space and let KQ and K 
be as in Theorem 2.6. Suppose S is a a-ring such that S(KQ) C S C S(K). Let 
fi: S —> G be a-additive. Let G be the family of all open sets in <S(/Cn) ^nd let 
C = KQ . Then the following are equivalent: 

(i) /i is (C,G) -regular in S . 
(ii) fi is G-regular in S . 

(iii) /i is C-regular in S . 

P r o o f . Clearly, £ is ^-complemented. By [4; §14, Proposition 13], G is 
£-complemented. By [4; §14, Proposition 11], £ is £-boundedly (/-dominated. 
Clearly, G C S and G is closed under countable unions. Since S is O-£-bounded 
by [4; §14, Proposition 11], the result is now immediate from Corollary 3.2 and 
Theorem 3.3. D 

R e m a r k 3.5. When n coincides with anyone of V(C), <S(£), V(G) or 
S(G), under suitable conditions we can strengthen all the theorems in Sections 2 
and 3 substantially. (See Theorems 4.3 and 4.6 and their corollaries.) 

4. Generalizations of Theorem 52.F of Halmos ([9]) 

Let £ be closed under unions, G under intersections and 0 £ £ n G > Let 
nW = V(C) and n^ = S(C). Under additional hypothesis on £ , n^ 
and n ^ , we shall prove Theorems 4.3 and 4.6, which state that a G-valued 
cr-additive set function ^ on n^ is (£, C/)-regular in T^M if and only if [ii is 
(/-regular on £ (resp. if and only if L^ is £-regular on £-bounded sets in G). 
Then, in the abstract set-up, the said theorems generalize [9; Theorem 52.F] of 
H a l m o s to G-valued cr-additive set functions. As a consequence, the classi­
cal results of D i n c u l e a n u and K l u v a n e k [5], D i n c u l e a n u and 
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L e w i s [6] and of K h u r a n a [11] on the regularity of vector- or group-valued 
Baire measures on locally compact Hausdorff spaces are obtained as corollaries. 
Moreover, the classical closed-open regularity of finite positive measures on the 
Borel sets of a metric space also gets extended naturally to G-valued a-additive 
set functions and this generalization is given in Corollary 4.11. 

Hereafter we shall assume that C is closed under unions, Q is closed under 
intersections and 0 G C D Q. We shall also assume that C is (/-bounded and 
(/-complemented and that Q is /^-complemented. We state the following two 
conditions (*) and (**). 

oo oo 

(*) Q C V(C) and [J Un G Q whenever (Un) J° C Q and (J Un G V(C). 
l l 

(**) Q C S(C) and Q is closed under countable unions. 

L E M M A 4.1. 

(a) Suppose condition (*) holds for V(C). Then: 
(i) Q is a lattice of sets. 

(ii) C is closed under countable intersections and, in particular, C 
is a lattice of sets. 

(hi) V(C) = {E G S(C) : E is C-bounded} . 
(b) If condition (**) holds for S(C), then S(C) is Q-bounded. Moreover, 

(i) and (ii) of (a) are also true. 

P r o o f . 
(a): (i): Obvious. 

oo 

(ii): Let (Cn)£° C C and let C = f]Cn. By the hypothesis on C and 
l 

Q, there exists U G Q such that Cx C U so that Cx C)C2 = C1\(U \C2) G C. 
oo 

Moreover, U \ C n G Q for all n , and hence, by condition (*), [j(U \ Cn) G Q. 
l 

Then 

C = Ci\(Ci\C) = Ci\(U\C) = Ci\((J(U \C n)J G£. 

(hi): Let ft = { £ G S(C) : E is Abounded} . Clearly, ft is a <5-ring 
and ft D £>(£). On the other hand, if £ G ft, then there exist (En)^° C X>(£) 

oo 
and K G £ such that E = \J En C K. Then £ = l j (£n n K) £ V(C). 

l l 
oo 

(b): If B G 5 ( £ ) , then £ = l j £ n , # n T, #n 6 £>(£) for all n , and for 
l 

each n there exist Kn G £ and Un E Q such that F?n C JTn C Un. Then 
oo 

B C IJ Un G Q by condition (**). The last part is evident from the proof of (a). 
l 

• 
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LEMMA 4.2. Let n^ = V(C) and 7^2) = S(C). Suppose condition (*) holds 
for n^ and (**) for 1lW. Let w : K& -> G be a-additive and let Mi = 
{E e n^ : m is Q-regular in E) for i = 1,2. Then: 

(i) If CcMi, then R(C) C Mi for i = 1,2. 
(ii) M\ is a monotone class with respect to 72A1), and M2 is a monotone 

class. 

P r o o f . 

(i): Let C i , C 2 G C and let W G B. As C C Mu there exists U G Q such 
that Ci C U and U \ Ci G ft$0xi). Then F = U \ C2 G Q, C\ \ C2 C V 

and V \ (d \ C2) C U \ d . Thus d \ C2 G M . Let £7 G n(C). Then £ 

is of the form E = [J Ej, £7, n .Ey - 0 for j ^ f, and F7j = C5 \ Dj with 

Cj,Dj e C for j = l , 2 , . . . , n . Choose W0 G B such that 2raW0 C W. Since 

each Ej e Mi, there exists Uj G £ such that Ej C Uj and Uj \ Ej G 7£$ (//*). 

Put U = (J Uj. Then, by condition (*) (resp. by (**)), U eQ and Q C n^ 
i = i 

(resp. £ C ft(2)) so that EcU eQ C ftW. For A G ftw with A C U \ E, let 
#,. = A n ( [ / i \ . B i ) . Then 

/x^A) = fa ((jHj) = ] T j fa(Hj) - JHj H f \jHi\ j 1 G 2nWb C W 

for z = 1,2. Hence (i) holds. 
(ii): Let W G B. Choose continuous quasi-norms (qj)\ on G and £ > 0 

k 
such that W£ = f] Bqj(0,e) C W. Let W0 e B such that 2W0 C W. Clearly, 

0) e Mi. Let F7P t -57, with (Ep)f> C Mt. For i = 1, let F7 G 7 ^ . Then for 

each F7P there exists Up e Q such that F7p C Up and Up\Ep G 7£$ (L^). 

For z = 1, by Lemma 4.1 (a) (iii), there exists K e C such that E C K. Since 
£ is ^-bounded, there exists V eQ such that K C V. Let Vp = V D Up. Then 

oo 

by Lemma 4.1 (a) (i), Vp G Q, so that, by condition (*), V0 = (J Vp G £ and 
l 

£ C V0. For i = 2, take Vp = Up for p G N. Thus £ c Vb G 5 C ftW for 

i = 1,2. For A G ftW with A C V 0 \ - 5 , w e have A = An (Jj(Vp \ .E7P)) . Let 

Hp = An(Vp\ Ep). Then fn(A) = g { ^ ( # P ) ~ ^ (#p n ( IJ Hj))}. Thus 
P=I *• v j<p '' > 

q} ofii(A) < e for j - 1,2,..., k. Therefore, m(A) € W, and hence E G Mi for 
t = 1,2. Let £ p | E, Ep G ftW for p G N. Then £Jp \ E [ 0 in ftW , and hence, 
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by Proposition 1.5, there exists po such that EPo \E E TZy^0(l^i)- As EPo E Mi, 

there exists U E Q such that EPo C U and U \ EPo E TZ^0(^i) • Consequently, 

E C U E Q and U \ E E K$ ( A O . Thus E E Mi for i = 1, 2. Hence (ii) holds. 

• 
THEOREM 4.3. Let ft(1) = £>(£) and ft(2) = <S(£). Suppose LL>: 7i -> G 
is a-additive for i = 1,2. Let /^(1) satisfy condition (*), ana7 /^(2) condition 
(**). In £/ie case O/ /^ ( 2 ) , suppose C is C-boundedly Q-dominated. Then \ii is 
(£, Q)-regular in /^(z) if and only if fii is Q-regular in C for i = 1,2. 

P r o o f . Clearly, the condition is necessary. Conversely, let Hi be (/-regular 
in £ . By Lemma 4.2, R(C) C Mi, Mi is a monotone class with respect to 
7^ (1), and M2 is a monotone class. Thus by [4; §1, Proposition 1], Mi = /^ ( 1 ) , 
and by [9; Theorem 6.B], M2 = ft(2) . Thus //< is ^-regular in 11^ for z = 1,2. 

For i = 1, ft(1) = £>(£) D £ so that £ is ft(1)-bounded and /^(1) is 
£-bounded. By hypothesis, Q is £-complemented. Therefore, by Theorem 2.3, 
111 is (£, (7)-regular in /?. (1). 

For i = 2, /^(2) = <S(£) D £ so that £ is £-boundedly /^ (2)-dominated. 
Moreover, by the additional hypothesis on £ , £ is £-boundedly (/-dominated. 
As Q is £-complemented and /^(2) is <r£-bounded, by Theorem 3.1, we conclude 
that fi2 is (£, £)-regular in ft(2). D 

LEMMA 4.4. Let ft(1) = V(C) and ft(2) = S(C). Suppose ft(1) and 7^(2) 

satisfy conditions (*) and (**), respectively. Then C C R(Q), /^(1) = £>((/) 
ana7 ft(2) = 5 ( 0 ) . 

P r o o f . Let If E £ . As, by hypothesis, £ is (/-bounded, there exists U £ Q 
such that K C U. Since £ is (/-complemented and IT = U \ (U \ K), it 
follows that If E #(</) so that £ C #(</). Consequently, ft(1) C 2>(<7) and 
/^(2) C <S((/). On the other hand, by condition (*),( / C V(C), and by condition 
(**), Q C 5 ( £ ) , whence £>(£) = ft(1) and S(Q) = ft(2). D 

LEMMA 4.5. Let //: <S(£) —> G be a-additive and let condition (**) hold 
for S(C). Suppose moreover that C is C-boundedly Q-dominated. Then [i is 
Q-regular in C if and only if \i is C-regular in every C-bounded set U E Q. 

P r o o f . By Theorem 4.3, the condition is necessary. Conversely, let Li be 
£-regular in every £-bounded set in Q. Let K E C. Since £ is £-boundedly 
(/-dominated, there exists U E Q and Ki E £ such that K C U C Ki. As £ 
is (/-complemented, V = U \ K E Q and V is £-bounded. Consequently, given 
W E /5, by hypothesis, there exists (7 E £ such that (7 C F and V \C E 
S ( £ V ( , u ) . Then If C (U \C ) E 0 and (U\C)\K = V\C E S(C)w(fi). Hence 
/x is (/-regular in £ . • 
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THEOREM 4.6. Let ftW = V(C) and 7l ( 2 ) = S(C). Suppose ft(i) and TZ& 
satisfy conditions (*) and (**), respectively. In the case of TZ^2\ let C be 
C-boundedly Q-dominated. Let fa: 7?W —• G be a-additive. Then: 

(i) IZW = V(Q) and ft(2> = S(Q). 
(ii) /i^ is (C,Q)-regular in 7?W ^ and only if fa is C-regular in Q for 

2 = 1,2. 
(hi) fa is (C,Q)-regular in 1Z^ if and only if fa is C-regular in every 

C-bounded set in Q. 

P r o o f . In the light of Lemmas 4.4 and 4.5, it suffices to prove that 
/^-regularity of fa in Q implies (£, ^-regulari ty of fa in 72.M. Let Mi = 
{E G TZ^ : fii is C-regular in E} and let fa be ^-regular in Q. Then Q C A/i, 
so that, by Lemma 4.4 and by an argument similar to that in the proof of 
Lemma 4.2 (i), R(Q) CJVf. 

Given W G B, choose continuous quasi-norms (gj)j=i on G, e > O and 
k 

W0 G B such that W£ = f| -Sgi(0,e) C W and 2W0 C TV. Let En ] E 
i = i 

and Fn [ F with i ? n , Fn in Mi for all n . For i = 1, let us assume that 
E G T^1). Then E \ En j 0, and hence, by Proposition 1.5, there exists no 

such that E \ Eno G IZyy (fii). As Eno G A/i, there exists C G C such that 

C C £ n o and £ n o \ C G / ^ ( / ^ . C o n s e q u e n t l y , C C £ and ( £ \ C ) G ft$0xi). 
Therefore, E £ Mi for i = 1, 2. As Fn G A/i, there exists Cn £ C such that 

C n C F n and Fn\Cn € ft$ „.,(/-.) for n € N. If C = f j C j , then, by 

OO 

Lemma 4.1, C G £ and C C F . Since F \ C C (JC^n \ C n ) , for A G ftW with 
l 

oo 

.4 C F \ C we have A = \J(APi(Fn\ Cn)) . Then it follows that q5 o ^ ( A ) < 
l 

oo . . . 

X) 2£/2n+1 = e for j = l , 2 , . . . , f c . Thus A G 1Z)£(fa), and hence F e Mi. 
n=l 

Then, as in the proof of Theorem 4.3, it follows that Mi = 1Z^ for i = 1,2. 
Finally, by Theorem 2.4 (resp. by Theorem 3.3 (ii)), fa is (£, C/)-regular on TZ^ 
(resp. ji2 is (£, C/)-regular on 7?/2)). D 

DEFINITION 4.7. The lattice of sets C is said to satisfy the G$-property rela-
oo 

tive to Q if every C G £ is of the form C = f]Un with (Un)i° C £ . Similarly, 
l 

Q is said to satisfy the Fa-property relative to C if every £-bounded member of 
Q is a countable union of members of C. 
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COROLLARY 4.8 . Suppose fi{: 1Z^ —> G is a-additive for i = 1,2. where 
TZ^ = V(£) and TZ^ = S(£). Let ft(1) satisfy condition (*). and /^(2) con­
dition (**). In the case of VS2^, let £ be £-boundedly Q-dominated. If £ has 
the Gs-property relative to Q (resp. Q has the Fa-property relative to £), then 
fj,i is (£,Q)-regular in 1Z^ for i = 1,2. 

P r o o f . By Proposition 1.5, \ii is (/-regular in £ (resp. £-regular in every 
^-bounded set in Q). Consequently, the result is immediate from Theorem 4.6. 

D 

COROLLARY 4.9. Let ft be a locally compact Hausdorff space. Let /C, /Co be 
as in Theorem 2.6. Suppose £ is a lattice of sets such that /C0 C £ C /C and such 
that £ is precisely the collection of all compact sets in V(£). Let Q\ and Q2 be 
the families of all open sets in V(£) and S(£), respectively. Let VS1^ = V(£) 
and IZ^ = S(£) and let &: 1Z^ -> G be a-additive for i = 1,2. Then the 
following are equivalent: 

(i) Hi is (£,Qi)-regular in 1Z^ . 
(ii) \±i is Qi-regular in £. 

(iii) fii is £-regular in each £-bounded set of Qi. 

P r o o f . By hypothesis, Qi is £-complemented and, clearly, £ is ^-com­
plemented. By [4; §14, Proposition 11], £ is £-boundedly ^-dominated. Now 
the corollary is immediate from Theorems 4.3 and 4.6. D 

COROLLARY 4.10. Let Q, and /C0 be as in Corollary 4.9. Let QY = [U G 
V(K0) \ U open} and Q2 = {U £ <S(/C0)

 : U open}. Then every G-valued 
a-additive set function on V(KQ) (resp. on 5(/C0)) is (/C0,<7i)-regular (resp. 
(£o,(?2) -regular). 

P r o o f . Use Corollary 4.8 and [4; §14, Proposition 11]. D 

COROLLARY 4 .11 . Let ft be a metric space with £ the family of all closed sub­
sets and Q the family of all open subsets of Q. Then every G-valued a-additive 
set function [i on S(£) (= B(Q)) is (£,Q)-regular. 

R e m a r k 4.12. Corollary 4.9 extends [9; Theorem 52.F] of H a 1 m o s to 
G-valued a-additive set functions when £ = /C0 or /C. 

R e m a r k 4.13. Theorem 4 of D i n c u l e a n u and K 1 u v a n e k [5] is 
a particular case of Corollary 4.10. D i n c u l e a n u and L e w i s [6] give a 
direct proof of [5; Theorem 4]. Corollary 4.10 is the same as the first part of [11; 
Theorem 1 and Corollary 4] of K h u r a n a . The method used here is quite 
general, elegant and powerful. 

392 



ABSTRACT REGULARITY . . . 

R e m a r k 4.14. Corollary 4.11 generalizes the classical result known for fi­
nite positive measures on the Borel sets of a metric space. (See [9; Exercise 43.3].) 

In the light of Corollaries 4.9, 4.10 and 4.11, our abstract approach has the 
advantage of unifying results on locally compact spaces and metric spaces. 
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