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ABSTRACT. Functions which are maxima and minima of simply continuous and
quasicontinuous functions are characterized.

In what follows, X denotes a topological space. For a subset A of a topologi-
cal space denote by Cl A and Int A the closure and the interior of A, respectively.
The letters N, Q and R stand for the set of natural, rational and real numbers,
respectively. For x € X denote by U/ the family of all neighbourhoods of z. A
regular (normal) space is not assumed to be T,.

A family F C RX of real functions is a lattice if and only if min(f, g) € F and
max(f,g) € F for f,g € F. The symbol L(F) stands for the lattice generated
by F, i.e., the smallest lattice of functions containing F.

We recall that a function f: X — R is quasicontinuous (cliquish) at a point
z € X if for each € > 0 and each neighbourhood U of z there is a nonempty
open set G C U such that |f(y) — f(z)| < e foreach y € G (|f(y) — f(2)| <e
for each y,z € G). A function f: X — R is said to be quasicontinuous (cliquish)
if it is quasicontinuous (cliquish) at each point z € X (see [6]).

A function f: X — R is simply continuous if f~1(V) is a simply open set
in X for each open set V in R. A set A is simply open if it is the union of an
open set and a nowhere dense set (see [1]).

Denote by Q, S and K the set of all functions (in R ) which are quasicon-
tinuous, simply continuous and cliquish, respectively. By C(f) and Q(f) we will
denote the set of all continuity points of a function f: X — R and the set of all
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quasicontinuity points of f, respectively. Furthermore, let A(f) = X \ Q(f). It
is easy to see that @ C S and Q C K. If X is a Baire space, then every simply
continuous function f: X — R is cliquish ([7]). Example 1 in [3] shows that the
assumption “X is a Baire space” cannot be omitted.

In [5], T. Natkaniec has characterized the maximum of real quasicon-
tinuous functions of one real variable. Properties of R (the ordering and the
completeness) in his proof play the key role. In this paper, we shall give a charac-
terization of the maximum of real quasicontinuous functions defined on a regular
second countable topological space.

It is well known that f + g, |f| and ¢f (¢ € R) are cliquish functions
for cliquish functions f,g: X — R for an arbitrary topological space X.
Hence max(f,g) and min(f,g) are cliquish functions for cliquish f and g
and L(K) =K.

By [2], the sum of a simply continuous function f: R — R and a continuous
function g: R — R need not be a simply continuous function. Nevertheless, we
have:

THEOREM 1. Assume that X is a topological space with the following property:

(x) if (X,), is a partition of X such that UM X,, is simply open for each
ne
M C N, and G is a nonempty open set in X, then GNInt X,, # 0 for

some n € N.
Then both min(f,g) and max(f,g) are simply continuous functions whenever
fyg: X = R are simply continuous, i.e., L(S) =S.

Proof. Suppose that A = max(f,g) is not simply continuous. Then
there is an open set V in R such that A™!}(V) is not simply open, i.e.,
R=Y(V) \ Int h=}(V) is not nowhere dense. Let A C X be an open set such
that A=1(V) \ Int h=1(V) is dense in A. This yields

(1) h=1(V) is dense in A,

(2) Inth X (V)N A=0.

Since f is simply continuous, there is an open nonempty set B C A such that
BN (f~%V)\Int f~1(V)) = 0. Further, there is an open nonempty set C C B
such that C'N (g7 (V) \ Int g=*(V)) = 0. We have four possibilities:

a) CNg X (V)=0=Cn f}V). Then g(z) ¢ V, f(z) ¢ V, and hence
h(z) ¢ V for each z € C, which is a contradiction with (1).

b) C C g7} (V) n f~Y(V). Then g(z), f(z) € V, and hence h(z) € V for
each z € C, which is a contradiction with (2).

c) CNng (V) =0 and C C f~Y(V). Let (J,), be a sequence of all
components of V. By (x), there are an n € N and a nonempty open subset
W C C such that f(z) € J,, for each x € W. Since g(W)NnJ, =0, g(W) C
(—oo0,inf J,] U [sup J,,00). It is easy to observe that the sets g~*((—oo, inf J, )
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and g1 ([sup g, oo)) are simply open, so there is a nonempty openset U C W
such that either U C g~*((—o0,infJ,]) or U C g~ *([sup Jn,oo)). This yields
hly = flyy and U C h=1(V), which is a contradiction with (2), or h|U =9|ly
and U Nh~1(V) =0, which is a contradiction with (1).

d) CNf~Y(V)=0 and C C g~}(V). The proof is similar as in c). O

Recall that a collection P of nonempty open sets in X is a m-base for X if
every nonempty open subset of X contains at least one member of P. A w-base
P is said to be locally countable if each member of P contains only countably
many members of P (see [4]).

PROPOSITION 1. If X either is a Baire topological space, or has a locally
countable T-base, then it possesses the property (x).

Proof. If X is a Baire space, then this is a consequence of the Baire
Category Theorem. Assume that X has a locally countable w-base P. Suppose
that () fails. Then there are a nonempty set G and a partition of X of simply
open sets (X)), such that GNInt X, =0 for each n € N. Let P be a member
of P with P C G, and let (U,,), be a m-base for P. Since X, N P are nowhere
dense sets, we can choose by induction a one-to-one sequence of positive integers
(t,), such that

X, NU,#0#X nu, for each n € N.

t2n+1

Then the set Y = (JX,, is densein P, and PNIntY = 0. Thus Y is not

simply open, which is a contradiction. O

Remark 1. There are topological spaces which neither are Baire nor have lo-
cally countable m-base, but still possess the property (x). If fact, let X be
uncountable product of Q (Q with the Euclidean topology of R) with the Ty-
chonoff topology. Then it is easy to verify that X has the property (x), has no
locally countable m-base and it is not Baire.

Remark 2. There are topological spaces which do not satisfy the condition (x).
In fact, let X be a space from [3], i.e., X = N with the topology 7 = DU {0},
where D is an ultrafilter on X which contains no finite sets. (By [3; Example 1],
there is a real simply continuous function on X which is not cliquish. By a
slight modification of the proof of Theorem 1 in [3], we see that every real
simply continuous function on a space with the property (*) is cliquish; hence
the space X does not satisfy (x).)

PROBLEM 1. Is Theorem 1 true for an arbitrary topological space?
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LEMMA 1. Let f: X — R (X is an arbitrary topological space), and let the
set A(f) be nowhere dense. Then liminf f(u) £ f(z) £ limsup f(u) for each

u—z,u€Q(f) u—z,u€Q(f)
z€Q(f)-
Proof. Let 2 € Q(f), and suppose that limsup f(u) < ¢ < f(z) for
u—z, u€Q(f)

some ¢ € R. Then there is a neighbourhood U of z such that f(u) < ¢ for
each u € Q(f)NU, u # z. Since z € Q(f), there is an open nonempty set
G C U such that f(u) > ¢ for u € G. Since A(f) is nowhere dense, there is
te GNQ(f). Now, c < f(t) < c, which is a contradiction. O
Remark 3. If X is a Baire space, then limsup f(u) = limsup f(u). This is

u—z,u€Q(f) u—z,ueC(f)
not true for an arbitrary topological space.

LEMMA 2. Let X be a regular second countable topological space. Let f:
X — R be a function such that the set A(f) is nowhere dense and f(z)
limsup f(u) for each z € A(f). Then there is a sequence (K, , ), <,

u—z, u€Q(f) -
nonempty open sets in X such that
(i) C1K,,,NCLA(f) =0 for each n € N and m < n,
(ii) CIK ﬂ ClK, . =0 whenever (r,s) # (i,]),
(iii) for each x € Xi ClLA(f) there is a neighbourhood V of x such that the
set {(n,m): VNCLK, . #0} is finite,
(iv) for each z € ClLA(f), for each neighbourhood U of x, and for each
m € N there is n 2 m such that C1K, , C U and f(z) - % <

sup{f(u): ve K, .}
Proof. Let (B,), be a countable base of open sets in X, and let (G,,),

be a sequence of all sets in (B,), such that G, N ClA(f) # 0 for n € N. Let
(E,), be a sequence of open sets in X such that C1E, ;; C E, for each n € N

and () E, = CLA(S).
n=1

We put H,, = (G, N E))\ CLA(f) (# 0) and B;; = min{1, sup{f(t) :
te H1,1} — 1}. Let z, € Hl,l be such that f(z1,1) > 51,1, and let Kl,l be an
open set such that z, € Kl,l c Cl Kl,l - H1,1'

Suppose that we have constructed sets K,  forall 7 <n (n>1)and s <.

Put
H,,=(G,nE)\ (aagu ] ok, ).

r<n 55’"

Since C1K, ,NClLA(f) = 0 and E,N G, NCLA(f) # 0, theset H_ | is nonempty
open. Put

S IA

B = min{n, sup{f(t): t € H, }- ;1;} :
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Then there is 2, ; € H,, | such that f(zn ) > By, - Let K, , be an open set
suchthatzleK CCl ,CH,

Now suppose that we have constructed sets K, , forallp<m (1 <m < n).
Since Cl1K,, ,NCLA(f) =0 for p < m, the set

Hn,m = Hn,l \ U Cl Kn,p
p<m

is nonempty open. Put

Bom = min{n, sup{f(t): te€ Hn,m} ~ %} .
Let z,,, € H, ,, be such that f(z,.) > B,,,,and let K, = be an open set
such that z, E K,,.CClK, ,  C H

We shall verify that K, . satlsfy (x) (11), (iii), (iv). Conditions (i) and (ii)
are obvious.

(iii): Let € X \ ClA(f). Then there is a neighbourhood V of z and k' € N
such that V' N Ey = 0. Therefore, if VNCIK,, ,, # 0, then n < k and the set
{(n,m): VNCLK, . #0} is finite.

(iv): Let z € CLA(f). Let U be a neighbourhood of z and m € N. Let n € N
be such that n > max{m, f(z)} and 2 € G, CU. Then ClK,, ,,CH,, CU.
According to assumptions and Lemma 1, we - have f(z) £ lim sup f (u) "The set

u—z, u€Q(f)
Tom ((G NnE)\ U U CK, ) \ U CIK,_, is a neighbourhood of .
T n3<r p<m
Hence, there is y € J,, ,, N Q(f) such that f(z) — 1 < f(y). Since y € Q(f)
and the set A(f) is nowhere dense, there is z € J,, ,, NInt Q(f) = H,, ,, such

that f(z) > f(z) — 1. Now, if sup{f(t): t € Hn,m} —1 < n, then f(z) S
Bom+ = < f(Zam) + £ and f(2) ~ % < f(z) — 5 < f(2) = 55 < f(2) — 7 <
f(zm) S sup{f(t) : t € K, m} If sup{f(¢): t € Hn’m} — L > n, then
fx)— L <n< flzpm) S sup{f(t) te K, .} o

THEOREM 2. Let X be a regular second countable topological space. Let
f: X = R. Then f = max(fo,fl) for some gquasicontinuous functions f
and f, if and only if the set A(f) is nowhere dense and f(z) < limsup f(u)

u—z, uEQ(f)
for each = € A(f).

Proof. Let f = max(f,,f,), where f,f, € Q. Then A(f) is nowhere

dense by [5; Lemma 2] and f(z) £ limsup f(u) for each ¢ € A(f) by [5;
u—z,u€Q(f)

Lemma 3].
Now, let f: X — R be such that A(f) is nowhere dense and f(z) <

limsup f(u) for each z € A(f). Then, by Lemma 2, there is a sequence of
a—z, ueQ(f)
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open sets (K, ),.<, satisfying (i)—(iv). Let Q = {q,,45,-..} be a one-to-
one sequence of all rationals. For i € {0,1} we define functions f;: X — R as
follows:

min{f(z),q,,} if thereis m € N and n = 2m — i such that
z € ClK

n,2m-—1
fl@)e N CLA(UNK, 3)
UelUs,
f(z) otherwise.

and

fi(z) =

Then evidently f = max(f,, f;). We shall verify that f; are quasicontinuous.
Let i € {0,1}. Let z € X, let U be a neighbourhood of z, and let € > 0. We
have four possibilities.

a) Suppose that z € X \ (ClA(f) uly U ClKn’2m_i). Then, with

meENn22m—i
respect to (iii), there is a neighbourhood V' C U of z such that f;(t) = f(t) for
each t € V, and the quasicontinuity of f at z yields = € Q(f;)-

b) Suppose that z € Cl1K,, 5, ; for some m € N and n 2 2m — 1 and

flz) ¢ (N Clf(UNK,,,;) Then there are 0 < § < ¢ and W C U,

- UelU,

W € U, such that (f(x)—5, f@)+8) NCLF(W N K, 5, _;) = 0. Then, with
respect to (iii), there is a neighbourhood V C W of & such that VNCIK, , = 0
for (r,s) # (n,2m — ). Since = € Q(f), there is an open nonempty set G C V
such that |f(t) — f(z)| < & for each t € G. This implies G N K, 5, _; = 0 (so
GNCIK, ,,_; =), and hence |f;(t) — fi(z)| = |(t) - f(z)] < 6 < € for each
teG,ie, z€Q(f,).

¢) Suppose that z € ClK,,,,,_; for some m € N and n 2 2m — 1, and

fz) € (| Clf(UNK,, _,)- Then there is y € U N K, ,,_; such that
UeU, ’ ' ’

|f(z)— f(y)| < £. Since y € Q(f), there is an open nonempty GCUNK, 3m—i
such that |f(t) — f(y)| < § for each t € G. Then clearly |min(f(t),qm) -
min(f(z),4,0)| < [F(t) — /(&)| < £, 50 1) — f,(@)] < e for cach ¢ € G, and
thus z € Q(f;).

d) Suppose that z € CIA(f). Let m € N be such that L < ¢ and
|f(z) —g,,| < e. With respect to (iv), there is n 2 2m — i such that Cl K, 2m—;
C U and f(z) — 52— < sup{f(u) : u € Kn,2m—i}' Choose y € K, am—;

with f(z) — 52— < f(y). Since y € Q(f), there is an open nonempty

2m—1i
G C K, ,,_; such that f(¢) > f(z) — 5z for each t € G. Thus, for
t € G we have f(z) —¢ < f(z) — 5= < f(t), f(z) —€ < g,,, and hence

f(z) — e < min{f(t),q,,} = f;(t). Further, we have g,, < f(z)+ ¢, and hence
f;(@t) < f(z) + €. Therefore, we obtain |f;(t) — f,(z)| < e and z € Q(f;)- O
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Remark 4. The assumption “X is regular second countable” cannot be re-
placed with “X is normal second countable”. If X = R with the topology 7,
where A € T if and only if A =0 or A = (a,00) (a € R), then every qua-
sicontinuous function on X is constant, but there are nonconstant functions
satisfying assumptions of Theorem 2 (e.g., f(z) =0 for £ £ 0 and f(z) =1 for
z>0).

PROBLEM 2. Is Theorem 2 true for an arbitrary metric space X ?

THEOREM 2°’. Let X be a regular second countable topological space, and let
f: X — R. Then f = min(f,, f;) for some f,, f; € Q if and only if the set
A(f) 1is nowhere dense and f(z) 2 liminf f(u) for each x € A(f).

u—z,u€Q(f)

T. Natkaniec has shown in [5] that if X’ = X \ X is a regular second
countable space without isolated points (where X, is the set of all isolated points
of X), then L(Q) = Q*, where Q* is the family of all functions for which the
set A(f) is nowhere dense.

One can see (similarly as in the proof of our Lemma 2) that his Lemma 2 is
true for an arbitrary regular second countable space. Hence, from his proof, we
see that L(Q) = Q*, if X’ is a regular second countable space; especially, if X
is a regular second countable topological space.
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