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ABSTRACT. A convergence theory is developed for sequences of observables.
A probability space is constructed related to the sequence.

0. Introduction

The theory of D-posets (introduced in [3] and studied in many papers, e.g.,
in [2]. [1]. [5]. [6], [7], [10], [11]) represents a very general structure containing
many important models appearing in the quantum theory. Besides of quantum
logics (= o~thomodular posets), some families of fuzzy subsets of a set with
the Lukasziewicz operations can be regarded as typical examples of D-posets.
The model was suggested by Pykacz ([8]), the notion of an observable in the
framework has been defined in [9].

Also the almost evervwhere convergence of observables (to the zero observ-
able) has been defined ([10]), and the strong law of large numbers has been
proved ([4]). The main tool is a translation formula between the Kolmogorov
theory and the D-poset theory. So the D-poset law of large numbers is an almost
immediate consequence of the classical law of large numbers.

Of course, in the law of large numbers, the limit function x is known a priori,
s0 we can say that the differences @, — x converge to 0. On the other hand,
there are important results where the limit function is constructed a posteriori,
so our translation formula can not be used.

Keyv words: D-poset, observable, almost everywhere convergence.
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BELOSLAV RIECAN

The aim of the paper is a modification of the almost everywhere convergence
by the help of limsup and liminf and the construction of translations formulas
for these limits. This modification gives a possibility to translate, e.g., the in-
dividual ergodic theorem. Of course, such a result will be presented in another
paper.

1. Preliminaries

A partially ordered set F with the greatest element 1 and the least element 0
is called to be a D-poset if a partial binary operation \ is defined assigning
to every a,b € F such that a < b an element b\ a satisfying the following
conditions:

(i) f a <b, then b\a<band b\ (b\a)=a.

(i) Ha<b<c,then c\b<c\aand (c\a)\(c\b)=0b\a.

A state is a mapping m: F — (0,1) such that

(i) m(1) =1.

(it) m(b\ a) = m(b) —m(a) whenever a <b.

(i) m(a) = lim m(a,) whenever a, / a.

An observable is a mapping z: B(R) — F (B(R) is the family of all Borel
subsets of R) such that

(i) z(R) =1.

(i) #(B\ A) =z(B)\ x(A) whenever A C B.

(iii) x(A,) / 2(A), whenever A~ A.
ExanmpLE. Let (€, 8) be a measurable space, @ € S, F be the set of all
S-measurable functions f: Q@ — (0,1). By a theorem of Butnarin and
Klement ([1]), every state m: F — (0,1) can be represented by a proba-
bility measure pu: S — (0,1) as an integral

w(f) = [ Fdu.
/

We shall call the family F described above a generated tribe.

THEOREM 1. Let F be a gererated tribe. Then cvery sequence (w), of ob-
servables is compatible in the jollowing sense: To cvery finite, non-cmpty sct
J C N there is a mapping h ;- B(RW) — F satisfying the following conditions:
(i) h, (RMT) =1.
(ii) h,(B\A)="h,(B)\h,(A) whenever A C 3.
(i) h, (A;) 7 h,(A) whencver A, /" A.
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LIMITS OF SEQUENCES OF OBSERVABLES IN D-POSETS OF FUZ7Y SETS

(iv) If J, CJ, and 7y, ; 1s the projection, then
m (h(,l(A)) = m(hJ2 (WJ"ZI’Jl(A))) for every A € B(thl) _

(v) m(h{l,z,...,n}(Al X Ay x - x A)) =m(x,(A4)) x,(Ay) ... z,(A,))
for every A, A,, ..., A, € B(R).

Proof. By [6; Theorem 1], to every n there exists a mapping h,:

B(R") — F satisfying (i), (ii), (iii) and
h(AXx Ay - xA)=x(A]) 2,(4;)-... -z, (A))

for every A, Ay, ... A, € BR). If J={t,,...,t.},put h; = htk o7r1"'.1,, where
I={1,2,...,t,}. O

Recall that to the notion of an observable x in the quantum theory, there
corresponds the notion of a random variable £, where z(F) = Xe-1(p) - Similarly,
the mapping h; corresponds to the notion of a random vector, e.g., h{l 2) (A) =
\poiga) waere T = (§;,§,): @ — R?.

If g: R? — R is a Borel measurable function, and T = (£,,&,): 2 — R? is a
random vector, then n = goT = g(¢,,&,) is a random variable. For its pre-image

we obtain

NN (A) = (goT) (A) =T (g7'(4)).
This relation leads to the following definition of the observable g(«,,z,):
g(xy, x,)(A) = hi1,2y (971(4)).

A generalization for the n-dimensional case is evident.

2. Upper and lower limits of sequences of observables

Since we want to define limsupx, as an observable, we shall be inspired by
n—oo
the upper limit of a sequence (§,,), of random variables. It is easy to see that

o0 o0 oo
limsup§, (w) <t < we€ U U ﬂ {;1((—00, t_,_l)>) :
ne=ae p=1k=1n=k

DEFINITION 1. We shall say that a sequence (x,,), of observables has a limes
supcrior if there exists an observable 7 such that

ki
m (7 (( ffx\’f))) = lim lim lim m( /\ :1'"((/—00, [—I')>)>

P ks i X
n=»k
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BELOSLAV RIECAN

for cvery t € R. If limsup exists, we shall denote
n—0C

T =limsupur, .

n Y
If limsup x,, exists, then
="
X X x
111(11111:»‘11[).1'”((7»—%.I))) = m( \/ \/ /\ a, (=t I'\))
n-—>x
p=lhk=1n=k

for every t € R. We shall give a sufficient condition for the existence of

limsup ., .
==

We shall say that a sequence (), of observables is bounded if there are
observables y, z such that

y((—oct) <, ((—00,1)) < 2((—2¢.1))
for every ¢ € R and every n € N.

PROPOSITION 1. If a sequence ()

crists limsupx,, .
[ de @)

. of observables is bounded. then the
Proof. For a fixed w € 2 and arbitrary ¢t € R put

F,(t) = supsup inf x, ((—oc, I—%>)(~u)4
p>l k>1n>k

Evidently, F  is a non-decreasing function, F_: R — (0.1;. Since I (1) <
z((=00,1))(w), we obtain

0< lim F_ (1)< lim z((—o0,t))(w)=0.

t——nc t—s—00
hence
lim F (1) =0. (2.1)
t—»—00
Further,
it (o0 1= 1) (@) 2 y((e, - 1) @)
hence

F (t) = supsup inf ."17,"((—00-, —l>)(w)
p>1 k>1n>k

> sup (=00, 1= 1)) (w) = y( U(—~. /—;-,>>)m

pzl
= y((—o00,1))(w).
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LIMITS OF SEQUENCES OF OBSERVABLES IN D-POSETS OF FUZZY SETS
Therefore
L= lim F(t) > lim y((—o0,1))(w) =1,
hence
Ih_{& F,(t)=1. (2.2)
IMinally, we shall prove that F is left continuous in every ¢ € R. Let t, /L.

Then there are j,q € N such that (—oo, t—%> C (—oo,tj—5>, hence

71112]{,; Z, ((‘OO’ {_El;>)(w) S ,lll'zlf,; ;E”((—OO, tJ_’—ll>)<w)

< F(t;) < lim F ().
J—0o0
Therefore

F,(t) < lim F(t)).

w -_—
J—00

Since evidently F(t;) < F_(t), we obtain F_(t) = lim F,(t;), hence

J—0o0

lim F (s) = F_(t). (2.3)

s—rt— e
The relations (2.1) - (2.3) imply that the mapping F_ : R — (0,1) is a distri-

bution function. Denote by p  the corresponding Stieltjes probability measure
Apt B(R) — (0,1) determined by the equality

p,((a,b)) = F(b) — F(a).
Finally, define T: B(R) — F by the equality
T(A)w) = 1, (A).
Now T(R)(w) = p (R) =1 for every w € §, hence
7(R) = 1.
If A,BeB(R), ANB =0, then
#(AUB)(w) = (AU B) = u_(A) + g, (B) = T(A) () + 7( B)(w)
for every w € 2, hence
Z(AUB)=7Z(A)+Z(B).
Similarly, it can be proved the implication
A, /A= T(A,) "T(A).
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Hence, we have constructed an observable . Moreover

#((~00,1))(w) = 1, ((—00,)) = F, (1)

o (=)

hence

iz (o)) =V VA o3
= lim lim lim m( /+\l z, ((—oo, t-—%))).

—00 k— 1— 00
P o n=k
O

DEFINITION 2. We shall say that a sequence (z,,),, of observables has a limes
inferior if there exists an observable z such that

m(z ((—oo,t))) = lim khm lim m( \7 z, ((—oo, —%)))

P—00 k—00 1—00

n=k
for every t € R. If liminf exists, we shall denote
n—oo
= liminfz,,
n—0o0

PROPOSITION 2. If (z,), is bounded, then there exists liminf z, . Moreover,

n n—oo
m(lim inf z,, ((—oo, t))) > m(lim supz,, ((—oo, t)))
for every t € R.

Proof. The first assertion can be proved similarly as Proposition 1. Fix
now t € R and w € 2. Evidently,

= inf 2, ((~o0, t—7))(w) <supa: ((=o0, t=2))(w) = b, .

a
kp ™ 23k p p

For fixed p we have

Ay <Ay, < ka’p < bk’p for every k.
Therefore,
supa,,, <infb, for every p,
k k
hence

limsup z,, ((790, f))(w) = sup su}p ay, < stll)p il}li' by,

n— 20 P

= lllnlllfl ((foo. t))(w) .

n-—
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LIMITS OF SEQUENCES OF OBSERVABLES IN D-POSETS OF FUZZY SETS

DEFINITION 3. We shall say that a sequence (z,,), of observables converges
m-almost everywhere to an observable z if

k+i
T J:’&Aﬁ;m< A% t*%>>>

n=k

— lim lim lim m<k\7xn((—oo, t—%))) = m(z((—o0,1)))

p—00 k—00 1—00
n=k

for every t € R.

Recall tnat in [10], the almost everywhere convergence has been defined by
another form, of course, only in the case that the sequence (z,), converges to

the zero observable O . Here
0, ift<0
Op(—o00,t) = @ -
r ) { 1, if t>0.

In [10], the almost everywhere convergence of a sequence (z to the zero

observable is defined by the formula

k+i
lim lim lim m( /\ xn((—%» %))) =4,

pP—00 k—00 1—00
n==k

n)n

or equivalently, by the formula

k+i
lim lim lim m( V z, (R\ (—%, %))) =0.

p—00 k—oc i—00 k
n==~k

This definition has been inspired by the following characterization of almost

everywhere convergence of a sequence (&), of random variables to the zero

(ﬂU Ne(e >>):1.

p=1n=1n==k

variable:

We shall show now that the convergence determined by Definition 3 is equivalent
(in the case x = O,,) to the convergence determined in [10].

PROPOSITION 3. A sequence (x,), of observables converges m-almost every-
where to O af and only of

ki
l}l_i_zx:( k]im lim m( \/ (R\ (A; ;) > —0.

— 00 T 00
'[I,—A
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Proof.
=
Evidently,
r, (R\ (=1, 1)) =, ((—00, —1)) + 1, ((L.20)).
Therefore
k+i ki ki
V ora @\ (520)) < Voo (oo =20+ V o, ().
n=*k n==~k n==~k
But

k—+i
lim lim | EEANT (1' infr (— \.o)
I;EI:CI\LIT;7EL]CWL< \/ (( O, >> m 1111 111 1”\ xC )

ek n-—>
=m(0p((—=.0))) =0.

and

o

kti '
. . . / l . o - . . . . . 1
,,l-ljl»lg Llll:l; ,,»lin; m( \/ J?n(<,)‘, oc))) =1-lim lim lim m( (.

pP—C h—ne i
n=k

=1-m (lim supr, ((—oc. ())))

n-—0oC

=1-m(0p((-2,0))) =1 —1=0.

<—:
Since

k- ket
m(V%ﬂ%ﬁhﬁ0§m<V%®»F;ﬂ0

for t <0, we obtain

k+1
o _ _1
0 < lim lim lim m ,1”(( o0, [’>)
pP—C k—nC 1=
n=~k
hk+1
< lim hm lim m x ((—oo,—1
P“X e 5 O . Vl(( p>)
n=~n

k41
= plglalg A-]EI; Il}j!’l( ( ,”\!A ru(BA 2 F))>

=0=m ((Jl"((foo,t))) .
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On the other hand, if t > 0, then there is p such that (—;, %) C (~co, t—ﬁ>.
Therefore

k+1 \
711(()1,((700,1‘,))) =1= lim lim lim m( /\ ;n"(<_%7 %>) ’

p—00 k— 00 1— 00
n=~k /

ki
lim lim lim m( /\ z, ((—oo0, t[l>)>

p—00 k—00 1—00
n==k

IN

IN

k+i
lim lim lim m( /\ z"((—oo, t—;;))) .

p—0o0 k—o00 1—00
n==k

3. The Kolmogorov model

Now we shall construct a probability space related to a sequence (z,)), of
observables. As a support the set RY = {(uz)zl, u, € R} will be taken. If
J C N is a non-empty finite set, then =« : RN — RVl is the projection, i.c.,

WJ((uj);’il) = (uh,...,uik),

where J = {i},...,i }. By €, (n € N), we denote the coordinate function
&, R™ — R defined by
é.11,((7'1’17);’):)7l) = Uy, -
THEOREM 2. There is a o-algebra 3 of subsets of RN and a probability mea-
sure P23 = (0, 1) satisfying the following conditions:
(i) 7, (A) € ¥ for every finite J C N and every A € B(R“”) .

(i) P(r;'(A) = m(h;(A)) for every J CN and A € B(R"”).
(i) If poo ¥ {0, 1) is a probability measurce satisfying (ii), thea p= .

Proof. For finite J C N put P, = moh,: BR') — (0,1) (sce Theo-
rem 1) 1f ., C J,, then

P./2 ("'r.lz,J1 (A)) = PJI(A)

by Theorem 1 (iv), hence the Kolmogorov consistency theorem is satisfied. There-
fore the Kolmogorov extension theorem can be used. O
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PROPOSITION 4. Let g, : R" — R be a Borel measurable function (n =
1,2,...), h, :h{l‘z...n}' Then

)

P({u e RY; limsupgn(fl(u)7 e ,{n(n)) < t})

n—00

pP—00 k—00 i—00
n=~k

k+1
< lim lim lim m( /\ gn(:cl,...,zn)((~00, t—%))) ,

P({u eRN; l%{{lﬂioréfgn(él(u), € () < t})

k+1
> lim lim lim m( \/ gn(:rl,...,a:n)((—oo, t~;}>)> .
n=k

T p— o0 k—00 i—00

Proof. We have

P—00 k—00 1—0C

k41
= lim lim lim P f’] {u e RN, gn(ul,...,u”) <t - %})

P00 k—0C 1—0C

= lim Llim lim I’(ﬂjl < ﬁ 9, ((—oc, f‘%>) )

P k=00 1—X

k-+1
= lim klim lim P fw 7T_71(!1,71((_°°- _,“l)>))>

= lim lim lim m
P—00 h—0C 100

A

lim lim lim e
P k= i

P R X

b \
N ; : . . 1
— 111.11 Alnn lim m( /\ g, (e ! “)(( . t ’,>)) .

The second assertion can be proved similarly.
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THEOREM 3. Let (x,), be a sequence of observables, (£,), be the sequence

of corresponding coordinate functions, (g,), be a sequence of Borel functions
g,: R* — R. If (gn(§1,...,§n))n converges P-almost everywhere, then

(g"(gsl, cee :cn))n converges m-almost everywhere, i.e., there exists T =
limsupg, (2,...,,) and £ =liminf g, (z,,...,z,) and
n—oo n—00

m(limsupgn(zl, ... ,:cn)(——oo,t)) = m(linnliorcl)fgn(xl, sz )(—00, t))

n—*00

for every t. Moreover, P({u € RY; limsupg, (& (v),...,&,(v) < t}) =
Z((—o0o,t)) for every t € R.

Proof. Since (g,(¢,,.-- ,{n))n converges P-almost everywhere,
N. 1
P({u eR"Y; hrrlnjolipgn(ﬁl(u), €, (w) < t})
— P({u €RY; liminfg, (€, (u),.. £, (w) < t}> (3.1)

for every t € R. From this fact and Proposition 3, we obtain
k+i
. . . 1
plgr;o lenolo il_l_’rgom( /\’c gy, :cn)((—oo, t—;)))
n=

k+1i
= pler;olen;olEm m( ngn(:cl,..., )((—o0, t—1 >)> (3.2)
n=

Put

0o
¢((-—00,t)) \! P
By (3.1), (3.2) and Proposition 3

m(p((-00,0))) = P({u e B limsupg, (€. n8) <t}).  (33)
By (3.3), we obtain that the function F: R — (0,1) defined by the equality

F(t) = m(p((—o0,t)))

||<8

/\ WXy, ., )((—oo,t-—l ), teR.

is a distribution function.

By a theorem of D. Butnariu and E. P. Klement ([1])
probability measure g on (Q,S) such that

F(t) =m(p((—o0,t))) = /tp((-oo,t)) du

Q2

“here exists a
b
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for every t € R. Therefore, by the Beppo Levi theorem,

0= lim F(t)= /tlilll o((—o0,t)) dp.

t——nc

Q
Since L,o((—oo, 1‘)) >0, we obtain
tllggo (=00, t)) =0 a.c. [u].
hence,

1‘71411711)O o((—00,t))(w) =0 (3.1)

for p-almost all w € Q. Similarly, by flim F(t) =1, we obtain
[ — D0

I’lrig.cgo((‘oo,f))(w) =1 (3.5)

for p-almost all w € Q. Finally,

0= lim (F(s) — F(t)) = / lim <p((-oo,s)) - ,9((~x.l))> dyi.

t—s— t—s—
Q

hence,

lim p((—50,0)) (@) = p((~00,5)) («) (3.6)

for p-almost all w € Q. By (3.4)-(3.6), there exists a set 4 € S such that
p(A) =1, and the function F_: R — (0,1) defined by

F,(t) = ¢((—00,)) (w)
is a distribution function for all w € A. Let F: R — (0,1) be a fixed distribu-
tion function. Let A , Ay be the corresponding Lebesgue-Stieltjes probability
measures. Put for any F € B(R) and w € Q

- ([ A(B) fwea,
T(B)w) = { Ao () ifw¢ A

The mapping Z: B(R) — F is an observable. Moreover,

7 ((—00,t))(w) = A, (=00, 1)) = F,(t) = o((—20, 1)) (w)

for every w € A. Therefore

m(Z ((—o0,t))) = /E((—oo,t)) dp = /ap((oot)) du

Q Q

k41
= lim lim lim m( g, (x ,;r”)((——x.f—l—l)>)>.

P—0C k00 100
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We have proved that T is the lim sup «,, . Similarly, it can be proved the existence

n—0oC

of liminfx, . Then (3.2) implies the equality T ((—o0,t)) = 2 ((—00,t)), t € R,

hence, (g(ay,...,x

n-—oC
)), converges m-a.e. to T. Moreover, by (3.1)-(3.2) and

n

Proposition 3,

P({u e RN, limsupg“(ﬁl(u), L€ (w) < t})

n--00
k+i

= lim lim lim m /\ 9, (s z,)((—o0, t—% )

p—0o0 k— 00 1—00

=m(Z((—o0,1))).

n=~k
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