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ABSTRACT. Symmetric differences and a binary operation very close to sym-
metric differences on orthomodular lattices and relations between them are stud-
ied. In addition, associativity, invertibility and regularity of symmetric differences
are investigated and the connection with the Boolean structure of the correspond-
ing orthomodular lattice is presented.

1. Introduction

The symmetric difference A A B of two subsets A and B of a non-void base
sct 2 of a measurable space (€, S) is defined in different equivalent forms, e.g.,

ANB:=(AUB)\ (ANB)
ANAB:=(A\B)U(B\ A)

and it plays an important role in classical measure theory. The congruence ~
on S induced by the symmetric difference A and a measure g on S via A ~,. B
if and only if u(AAB) = 0 converts S into a complete metric space S/~ ([Hal;
510]. [DuSc; Part IIL7]), and it enables to use methods of functional analysis
to obtain such important results of measure theory as the Vitali-Hahn-Saks
theorem ([DuSc; Theorem II1.7.2]), Nikodym’s convergence theorem ([DuSc;
Corollary T11.7.4]), Nikodym’s boundedness theorem ([DuSc; Theorem 1V.9.8]),
cte. Original proofs of these results are based on the Baire category theorem
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([DuSc; Theorem 1.6.9]) and on the fact that any o-algebra & is distributive.
The Baire category theorem, however, has an intimate connection to a weaker
form of the axiom of choice ([Bla]), but nowadays there exist elementary meth-
ods not using the Baire result [AnSw] to obtain all of the above and other results
of measure theory.

In connection with mathematical foundations of quantum mechanics ([Kal].
[Var]), orthomodular lattices (OMLs for short) are studied. In general. OMLs
are not distributive, and states (= probability measures) on OMLs need not
be subadditive. Therefore, any attempt to generalize classical results of measure
theory to orthomodular lattices meets serious problems. However, today there
are some methods which enable us to do this in special cases, where the use of
other methods, e.g., topological methods ([SAKC], [Rie]), is important.

In the present note, we shall study different types of symmetric differences
and a binary operation between them, and we prove some inequalities closely
related to them. Moreover, associativity, invertibility and regularity of the op-
eration of symmetric difference and connections to the Boolean structure of the
corresponding orthomodular lattice are investigated.

2. Operations closely related to symmetric differences

An orthomodular lattice is an algebra (L,V,A,,0,1) of type (2.2.1.0.0)
such that (L,V,A.0,1) is a bounded lattice (which induces a partial ordering
<on Lviaa<bifandonlyif a=aAb, a,b€ L) and ' is a unary operation
on L such that for all a,b € L

(i) a" =a;

(ii) if @ < b, then ¥/ < d';

(ill) aVad =1;

(iv) if a < b, then b=aVbAa' (orthomodular law).

(Here and in the following, we assume that the operation A has higher priority
than the operations Vv, A, 7 and +.) For more details on OMLs. see. e.g.. [Kal .

In the sequel, let L denote an arbitrary, fixed OML.

Let a,b€ L. a, b are said to be orthogonal to each other. in signs a L b, if
a < 0. a, b are said to be compatible with cach other, in signs a " b if there
exist three mutually orthogonal elements a,,b,.c € L such that a = a; V¢ and
b = b, Ve. It is possible to show that for a,b € L the following conditions are
equivalent:

(i) aC'b;
(i) a=aAbVanbd:
(iii) b=bAaVbArd
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(cf. [Var; Lemma 6.7]). Moreover, it is well known that a,b € L are compatible
if and only if there exists a Boolean subalgebra B of L with a,b € B.

For a € L, put a' :== a and a=! := a’. Let n > 1 be an integer and put
N:={l,...,n}. For ay,...,a, € L let

o Ji
com(a,,...,a,) = \/ /\ aj
FRRERRE in€{-1,1} 1EN

denote the commutator of a,...,a, . It is well known that the elements a, ...
...,a, mutually commute if and only if their commutator equals 1.
We define two types of symmetric differences:

alAb:=(aVb)A(and),
avbi=anbt Vbnrd

(a,b€ L). Then A and 57 are commutative binary operations on L which are
closely related to each other via

alAb=(azV),
ayb=(alb)
(a,b € L). Moreover, it holds

(aAb)Aec= ((avb')va),,
al(bAc)=(av (b'va))/
for all a,b,c € L. By [SAKC; p. 19, Proposition 3], we have
alNb=aA(aAb)VbA (aAb),
alec<(alDb)V(bAc),
(avb)A(evd)<(aDc)V(aAd)V(bAc)V(bAd)
for every a,b,c,d € L. It is simple to see that
agb<alAbd
for any a,b € L, and it is easy to give an example that this inequality may
be proper. For this purpose, consider the OML L(R?) of all (closed) linear
subspaces o7 the real plane R?. Let a, b be any two one-dimensiorial subspaces

of R? whick are not compatible. Then a Ab=R? and a7 b = {(O, 0)}
,a,) € L" put

vV A

Jivn €{=1.1} 4EN
{keN| =1} odd

D o
For a ={a,...
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and

N(a) := /\ \/ a'{’ .

AR Jne{-11} €N
[{keN|jp=—1}| cven

Then 7(b,¢) = by ¢ and A(b,¢) = bAc for all b,ec € L. For every binary

operation o on L, every positive integer k and arbitrary elements a,..... a, €1
let @, o---0a, denote the clement ( . (a,0a,)...)0a,.
THEOREM 2.1. Let 4+ be a binary operation on L such that
agb<a+b<alAbd
for all a,b € L. Then for arbitrary ¢ = (cy,...,c,) € L we have
V(e) < S(e) < Ae). )

where S(e) i=c¢, + - +c, .

Proof. We use induction on n. According to the assumption. (1) holds for
n = 2. Now assume n > 2 and suppose that (1) holds. Let a..... a,., €L

1"
and J,....j,4 € {—1,1}. First assume [{k € {1...., n+1} 1 Jp =1} tobe
odd. If j, ., =1, then

. /
a, + "'+(1”+1 = (al + - ~+(1,”) +an+1 2 ((1,1 + +(I")- /\””* !
n+1

!/
—Ji _ Ja
< a; > /\a”+l = /\ai .
iEN

=1

IV

If j,,, = —1, then

\ /
ay+ota, g =(ag o tay) a2 (a4 a,) NG

n+1

Jr / _ Ji

> /\ui Nay, | = /\ai .
€N i=1

Now assume

{k e{l,....n+1}] j, = —1}‘ to be even. If j, 1 = 1. then

aytta, = (a +ta,)ta, <(a 4o F a, )V,
n+1

g _ g
\/ a; \/(1“,+l \/ '

ieEN i=1

IA

Jyy = —1, then

!
ay+-ta, =(ap b ta)ba, ) < lag A+ )V,

1 n—+1

—J / _ Ja

< < /\ o; > Vi, = \/ a;' .
ieN i=1
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The rest of the proof is trivial. O

Remark 2.2

(i) Since the lower and upper bound occurring in Theorem 2.1 are symmetric
in ay,...,a,, this theorem remains valid if a, +--- +a,, is replaced by Qr(q) t
T () where 7 is an arbitrary permutation of N.

(ii) For a € L™ and b € L we have
. corn(a) = v(a) vV (A(a))/,
. v(a) = A(a) A com(a),
: (a) v (com(a))l7
(a) if and only if com(a) =1,
,b+1=b,b+b =1and b+b=0.

Sk oo =
B
=
SN—r
Il

THEOREM 2.3. Assume that the conditions of Theorem 2.1 are satisfied, and
let a=(a,.... a,) € L". Then com(a)C S(a) and

S(a) Acom(a) = a,; Acom(a)+ ---+a, Acom(a)

=a,yAcom(a)+ - +a A com(a)

mT(n)

= Af(a) A com(a),
where m is an arbitrary permutation of N .

Proof. Because of (a) < S(a) < Ala), we have S(a) C x7(a) and
S(a) €' A(a), and hence S(a) C' (v(a) v (A(a))/) , which means S(a) C com(a)
(cf. 1. of Remark 2.2).

On the other hand, we have a; C' A afi

iEN
so that. by [Var; Lemma 6.10], a; C com(a) for every j € N. Consequently,
b com(a) for any element b of the orthomodular sublattice of L generated by
ay..... . Put a; := a;Acom(a) forall j € N, and a:= (Gy,...,0,). It is easy
to see tlmt com(a $ =1. Hence in view of 4. ofRemark 2.2, v(a ) S(a) = A(a)

Without loss of generality, we can verify

for any (ky,...,k,) € {-1,1}"

n

m n m n
/\ a; A /\ a; = /\ (a_}. A com(a)), A /\ (aj A com(a))
J=1 Jj=m+1 J=1 J=m+1
n
</\ a V (com(a)) )) A < /\ aj> A com(a)
j=1 g=m+1 .
m T
(/\ a’s A /\ > A com(a)
J=1 J=m++1
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for all m =0,...,n. Hence y7(a) = y(a) A com(a). Since 7(a) < S(a) < A(a)
(by Theorem 2.1) and 7(a) = A(a) A com(a) (according to 2. of Remark 2.2).
we have

v(a) = v(a) A com(a) = S(a) A com(a) = A(a) A com(a).

Therefore we obtain

= v(a) A com(a) = S(a) A com(a) = A(a) A com(a).
0
A mapping m: L — [0, 1] satisfying the two conditions

m(l) =1,
m(aV b) =m(a) + m(b) for all a,b€ L with a Lb

is said to be a state on L.

THEOREM 2.4. Assume that the conditions of Theorem 2.1 are satisfied. let
m be a state on L, let a = (ay,...,a,) € L™, and assume m(com(a)) =1.
Then

m(a, + - +a,) =m(a Tt arr(a)) =m(A(a)),

s

where w is an arbitrary permutation of N .
Proof. By Theorem 2.3, com(a) C' S(a). Therefore
m(S(a)) = m(S(a) A com(a)) +m(S(a) A (com(a))’) = m(S(a) A com(a))

m(a, A com(a)+---+a, Acom(a))
=m(A(a) Acom(a}) = m(A(a)),

Il

where we have used the fact that A(a) C com(a). 0

3. Associativity, invertibility and
regularity of symmetric differences

In the present section, we investigate associativity, invertibility and regularity
of A, and we show that each single one of these properties forces L to be a
Boolean algebra. Since we have the simple relation a 7 b = (a A b)), results
analogous to those obtained here also hold for <7 instead of A.

440



SYMMETRIC DIFFERENCE IN ORTHOMODULAR LATTICES

In order to simplify proofs, in the following, we make frequent use of a method
of Navara (cf. [Nav]) concerning the calculations within the free OML F with
two free generators @ and b. Put ¢ := com(a,b). Then the following hold:

1. The atoms of F are aAb, a Ab, a’ Ab, a’ AV, aNnc, a A, bAC
and b A . _

2. The mappings z — (zAc,zAc’) and (z,y) — =V y are mutually inverse
isomorphisms between F' and [0,¢] x [0, ¢'].

3. [0,¢] is the Boolean algebra with the atoms a A b, a AV, o’ Ab and
a ANb .

1. [0,¢'] = {0, and, a' A’ BN WA '} = MO2.

5. a=aAbVaAb Vanc.

6. b=aAbVa AbVbAC.

LEMMA 3.1. Let a,b € L. Then the following conditions are equivalent:

l. aCb.
2. (aAb)Ab=a.
3. (aAb)A(avb)=al (bA(aVD)).

Proof. The equivalence of 1. and 2. follows from

(aAb)Ab=aAbVarb v A (com(a, b))l7
!/

a=aAbVanb VaA (com(a,b))
and the equivalence of 1. and 3. follows from
(aAb)A(aVvb)=aAnb,
aA(bA(aVb)=aAbV (Com(a,b))/ .

LEMMA 3.2. For a,b < L we have
l. (avb)ANaNnb=alb,
2. (aNb) A (aVb)=aAb,
3. (anNb)NaANb=aVb.

Proof.
1. is obvious. For a,b € L we have aV bC a A b, and hence, by 1. and
Lemma 3.1 (a Ab) A (aVb) = (aAbA (aVb)) AaVb) =aAnb. 3. follows in

an analogous way. O

Let a.b € L. a,b are said to be complemented to each other (one is said to
be a complement of the other) if a Vb =1 and a A b = 0. This is obviously
cquivalent to the fact that a Ab = 1. a,b are called perspective to each other,
in signs a ~ b, if they have a common complement in L, i.e., if there exists
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an element ¢ of L with aVe =bVe=1and aAc = bAc = 0. Hence.

perspectivity of a and b is equivalent to the existence of an element ¢ of L
satisfying a Ac=bAc=1.

PROPOSITION 3.3. Let a,b € L, and let ({a,b}) denote the orthomodular
sublattice of L generated by a and b. Then 1. -5. hold:

1. aAb=0 if and only if a =b,

2. aAb=1 if and only if a ~b" holds in ({a,b}),
3. aAb=aVb ifand only if aNb=10,

4. aAb=aANb if and only if aVb =0,

5 alAb=bAd if and only if a <b.

Proof. 1. follows from 2. or 3. of Lemma 3.2, 2. follows from the fact that
for a,b € L the condition that a ~b" in ({a,b}) is equivalent to a Ab=a' AV
= 0. 3. and 4. follow from 2. and 3. of Lemma 3.2, respectively. For a,b € L it
holds aAb=aAb Va AbV ((‘,om(a, b))l, which implies 5. O
PROPOSITION 3.4. Two elements a,b of L are perspective to each other if
and only if there exists an element ¢ of L with aNc=bAc.

Proof. A calculation shows that a A ((a Ab) Ab) =1 for all a.be L.
Now, let a,b be arbitrary, fixed elements of L. If there exists an clement ¢ of L
with a A ec=bA ¢, then

al((abhe)Ae)=1=bA((bAc) Ne)=bA ((ae) Ne).
and hence a ~ b. (The element (a A ¢)’ A ¢ is a common complement of a and
b in L.) The rest of the proof is trivial. Cl

LEMMA 3.5. For a,be L we have aCa/AbC).

Proof. It is clear. O
LEMMA 3.6. Two elements a,b of L commute if and only if there crists an
element ¢ of L with a/Nc¢=Db.

Proof. Leta,be L. 1If aC
3.

b. then a A(aAb) = b according to Lemma 3.1.
The rest follows from Lemma -

. 0]

A binary operation o on L is called invertible (regular) if for arbitvary
a,b € L each one of the equations aowr = b and yoa = b has at least (at
most) one solution in L.
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THEOREM 3.7. The following statements are equivalent:

L is a Boolean algebra.

The binary (n-ary) operations /\ and <7 coincide.
A is associative.

A\ is invertible.

A\ 1s regular.

6. A is distributive with respect to /\.

Proof. The equivalence of 1. and 2. follows from 4. of Remark 2.2. It
is well known that 1. implies 3. -6. If 3., respectively 4., holds, then the fact
that any two elements of L commute follows from Lemma 3.1, respectively
Lemma 3.6, and hence L is a Boolean algebra. Proposition 3.4 together with
[Kal; Proposition 1.3.7] shows that 5. implies 1. Finally, assume that 6. holds.
Then for al a,b € L we have '’ A (a Ab) =a’ ANa/\a' Ab, which is equivalent
to ' A(aVb)=a Ab, hence aCb, and L is a Boolean algebra. O

THEOREM 3.8. In the variety of OMLs, there does not exist a binary term
inducing a reqular, respectively invertible, binary operation on every OML.

Proof. Let ¢t be a binary term (in the variety of all OMLs), let {0,a,d’,
b, 0. 1} denote the OML MO2, and let t also denote the term function on MO2
induced by t. Then the transpositions (a a’) and (b ') are automorphisms of
MO2. If t(a,b) ¢ {a,a’}, then t(a,b) = (a a’)t(a,b) = t((a a’ja, (a a’)b) =
t(a',b), and if t(a,b) ¢ {b,b'}, then t(a,b) = (b b')t(a,b) = t((bb)a, (b )b) =
t(a,b"). Hence, in any case, the binary operation on MO2 induced by ¢ is neither
regular nor, since MO2 is finite, invertible. O
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