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(Communicated by Tibor Katrindk ) 

ABSTRACT. A mode is an idempotent and entropic algebra. The aim of this 
paper is to describe the structure of subalgebra modes of modes in a product 
of varieties, in part icu lar varieties such that at least one of them is a variety of 
affine spaces. We show that certain reducts of such modes may be constructed as 
Plonka sums. This result is applied to describe subalgebra modes of some binary 
modes. 

1. Introduction 

A mode is an idempotent, entropic algebra, i.e., with each singleton a subalge­
bra, and each operation a homomorphism [RS2; p. 145]. The two properties may 
be expressed algebraically by means of the idempotent and entropic identities 

x . . . xuo — x , (I) 

x xl...xjnlJ ...xln...xm7iJic (E) 

that are satisfied in each mode (yl,f2), for any n-ary operation UJ and ra-ary 
operation a/ in -1. Examples of modes are furnished by affine spaces and their 
reducts, semilattices and convex sets. Modes were studied in detail in [RS2]. 
Some further information may be found in the list of references at the end of 
the paper. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 08A05, 08A30, 08A99, 03C05, 20L05, 
20L99. 
K e y w o r d s : algebra, mode, variety, product of varieties, algebra of subalgebras, affine space, 
Plonka sum, binary mode variety, identities. 
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Given a mode (A, il) with a set ft of operations UJ: AUJT —> A. one may form 
the set (A,Q)S or AS of non-empty subalgebras of (A,Q). This set AS carries 
an 11-algebra structure under the complex products 

w: AS- - AS ; (X,,..., XUT) ~ {*. ... x„r* \ x, G A',} 

and it turns out that the algebra (AS, Q) is again a mode preserving many of the 
algebraic properties of (A, ft) [RS2; p. 146]. This self reproducing property plays 
an important role in the theory of modes, and also in the theory of semilattice 
ordered modes studied under the name of modals in [RS2]. See also [RS3], [RS4]. 

One of the most important examples of modes is given by affine spaces (or 
affine modules) over a ring R. Modes of subspaces of affine spaces over fields 
were investigated in [RSI]. In that paper, one described affine geometry, projec­
tive geometry, and the passage between them purely algebraically, using such 
modes of subspaces. The results of [RSI] were then generalized in [PRS] to the 
case of affine spaces over arbitrary commutative rings with unity. It was shown 
there that certain reducts of such modes may be constructed as P 1 o n k a sums 
of reducts of affine spaces over the corresponding projective space [PRS; Theo­
rem 3.9]. For certain varieties of modes, this result gives a complete characteri­
zation of algebras of subalgebras. 

This paper is a sequel to [PRS] and continues the study of algebras (.45, {}). 
It deals with subalgebra modes of modes in a product of varieties, in particular 
varieties such that at least one of them is a variety of affine spaces. We refer 
the reader to Section 3 for the definition of such product we use in this paper 
and a brief discussion concerning the notion in the case of modes. We describe 
the structure of subalgebra modes of modes in such products in general, and 
then focus our attention to products of certain varieties of binary (or groupoid) 
modes. In Section 2, we recall basic definitions and properties of affine spaces and 
their algebras of subspaces. Section 3 is devoted to products of mode varieties. 
In Section 4, we discuss the structure of subalgebra modes in products of mode 
varieties. Finally, Section 5 is devoted to subalgebra modes in certain binary 
mode varieties. 

The notation and terminology of the paper is similar to that in the book 
[RS2] and in the paper [PRS]. We use "Polish" notation for words (terms) and 
operations, e.g., instead of iv(.r1,. .. , xn) we write x1...xnw. Moreover, the 
symbol x1 ... xnw means that x1,. .. , xn are exactly variables appearing in the 
word w. The traditional notation is used in the case of groupoid words. For such 
words we frequently use non-brackets notation, as follows 

x\x2 

xy° 

xy" 

x"y 

xx-x2, xl...xn:=(xl 

x , 

•Ti)\ • • • y„ with y = !/] = • • • = u,, 

•r„ (•' '„-! ( - . . (A ' , * / ) . . . ) ) with x ^ x , = • • • = .»•„ 
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Two words (terms) of given type are mode equivalent if each one can be deduced 
from the other using only consequences of idempotent and entropic laws. An 
identity w1 = w2 is regular if the sets of variable symbols on both sides are 
equal, and it is linear if the multiplicities of each argument of wx and w2 are 
at most 1. In particular, for any mode (A, 0), the algebra (AS, il) satisfies all 
idempotent and all linear identities true in (A,Q). (See [RS2].) Algebras and 
varieties are equivalent if they have the same derived (term) operations. We 
refer the reader to the book [RS2] for all undefined notions and results. 

2. Affine spaces and a lgebras of suba lgebras 

Let R be a commutative ring with unity, and let (E, -\-,R) be a module 
over R. For each element r of R, define a binary operation 

r.ExE^E; (x, y) i—> xyr := x(l — r) + yr , 

and the Mal'cev operation 

P: E x E x E —> E ; (x,y,z) H-> X - y + z . 

The algebra (E,R,P) with the ternary operation P and the set R of bi­
nary operations r for r in R is equivalent to the full idempotent reduct 

(F\ {T! !T + • • • + xnrn | T-p .... , rn E R , £ ^ = l j ) of the module (E, + , R). 

Consequently, it can be identified with the affine space (or module) over the ring 
R. (See, e.g., [RS2].) Carrying out this identification we will refer to the algebra 
(E, 7?, P) as an affine space over R or an affine it-space. It is well known that 
t he class of affine spaces over the ring R forms a variety. This variety is equiv­
alent to the variety R of MaFcev modes (A, R, P) with the ternary Mal'cev 
operation P and one binary operation r for each r In i t , satisfying certain 
identities given in [RS2]. 

The affine subspaces (or affine submodules) of the module (E,+,R) (i.e., 
cosets of submodules of (E, -\~,R)) are exactly the subalgebras of the alge­
bra (E,R,P). Consider the set (E,R,P)S or ES of non-empty subalgebras 
of (E,R,P). The set ES forms an algebra under the complex products 

r: ES x ES -> ES ; (X,Y)^{xyr\ xeX, y e Y} 

for r in R, and 

P: ES x ES x ES -> ES ; (X, Y, Z) .-> {xyzP | xeX , yeY, z e Z} . 

It turns out that the algebra (ES,R,P) is again a mode satisfying ecich linear 
identity satisfied by (E,R,P). (See [RSI], [RS2].) 
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Projec t ive space is considered here as the set L(E) = (E.+.R)S of sub-
modules of the It-module (E, +, R), together wi th the semilat t ice opera t ion + . 
where for submodules U and V of E, U + V = {u + v \ u £ U . r G V} is 
the sum of U and V. T h e inclusion s t ruc tu re is recovered from (L(E). +) via 
U < V if an only if U + V = V. 

In [PRS], the s t ruc tu re of the algebra (ES,J_R), where JR comprises the 
set of uni t s r of R for which 1 — r is also invertible, was described using the 
concept of a P l o n k a sum ( [ P l \ [RS2; p. 236]). Let (Q) denote the category of 
^ -a lgebras and homomorphisms between them. Consider the semilat t ice ( / / . + ) 
as a small category (H) wi th a set H of objects and with unique niorphism 
h —> k precisely when h + k = k, i.e., h < k. Let F: (H) — (il) be a functor. 
Then the Plonka sum of the ^ -a lgebras (hF, Q), for h in II. over the semilattice1 

(H,+) by the functor F, is the disjoint union HF = (J(hF \ h G / / ) of the 
underlying sets hF, equipped with the Q-algebra s t ruc tu re , given for each O-arv 
operat ion UJ in Q and hv . . . , h.n , h = h]+--- + h in H. by 

UJ: ^ 1 F x . . . x b n F - ^ b F ; (xv . . . , xn) ^ x^l^ -> h)F . . ..vn(h n - h)F^ . 

The canonical projection of the Plonka sum IIP is the homomorphism ~: 

(HF,tt) —> (H,n) with restriction TT: hF —> {h}. The subalgebras (hF.il) = 

(VT""1 (h),il) of (HF,Q) are the Plonka fibres. Recall tha t for 12-algebras in an 
idempotent irregular variety V, the identities satisfied by their Plonka sums art1 

precisely the regular identities holding in the fibres. 

T H E O R E M 2 . 1 . ([PRS]) For an affine space (E,R.P) in R. each algdmi 

((E,R,P)S,n) , where Q C J°R U {P}7 is a Plonka sum of tt-reducts of affint 

R-spaces (E/U,R, P) over the projective space (L(LJ), +) = ((E. -t. R)S. +) hij 

the functor F: (L(E)) -> (Q) with UF = {x + U \ x G E} and (U — \')F: 

UF -* VF; x + U ^ x + V. 

Let V be a variety of f2-algebras equivalent to a variety R of affine A)-s])aces. 

For each V-algebra (A, Q), let V(A) be the smallest subvariety of \ containing 

(A.Q). Then there is a quot ient R(A) of the ring R such tha t the varieties 

V(A) and R(A) are equivalent. The algebra (A, ft) is equivalent to the faithful 

affine space (A.R(A),P). (The affine space (E,R,P) is said to be faithful if 
the module (E, +JL) is faithful.) 

P R O P O S I T I O N 2 .2 . ([PRS]) Let V be a variety of il-algebras equivalent to n 

variety R of affine R-spaces. Let (A,il) be in V. If Q C J_HI.\) U {L}. thin 

the algebra ((A,Q)S,Q) is a Plonka sum of V(A)-algebras, equivalent to affini 

R(A)-spaces, over the semilattice ((A,+,R)S,+) = ( ( - 4 , + , R(A))S. + ) . 

500 



PRODUCTS OF MODE VARIETIES AND ALGEBRAS OF SUBALGEBRAS 

3. Produc t s of mode varieties 

Let V{,. . . , Vn be varieties of ^-a lgebras of t h e same fixed type. T h e varieties 

\\ Vn are independent if t h e r e is an n-ary ft!-word xl ... xnd such t h a t the 

identity x{ . . . x,nd = xi holds in Vi for each i = 1 , . . . , n . It is we 1 known t h a t 

whenever t h e varieties Vu . . . , V are independent , each algebra (A,Q) in their 

join V -- Vx V . . . V V is i somorphic t o a p r o d u c t (Av ft) x . . . x (A , Q) with 

( T , ^ ) in V; for each i = l , . . . , n , and algebras (Ai,il) are de termined u p to 

isomorphism. In this case, we d e n o t e the join V of 17--by V{ x . . . x Vn and say 

that V is t h e p r o d u c t of its subvarieties V1,.. . , V . (See [GLP].) It is easy to 

see t h a t , in this case, t h e p r o d u c t \\ x . . . x Vn satisfies t h e diagonal identi ty 

.Г ľlndx.n ... x2ri d... xnl ... xnndd = X1LX22 ... xmi d . (.'5.1) 

Moreover, if 17,,. . . , 17n are varieties of modes, t h e n so is 17. x . . . x Vn. (Cf., 
e.g., [RS2; 2.3], note, however, t h a t in [RS2], t h e p r o d u c t of varieties is called 
a "direct s u m " . ) On t h e o ther h a n d , if xl . . . x d, is a word of a variety V of 
..2-modos, and 17 satisfies t h e identi ty (3.1), t h e n 17 is t h e p r o d u c t V} x . . . x 17._ 
of its subvarieties \\,. . . , 17{ wi th each 17. defined by t h e identi ty x,{ ...xnd 
= .r-. This is a consequence of a more general t h e o r e m (cf., e.g., [MMT; 4.4], 
[FMMT]) saying t h a t a variety 17 of Q-algebras is t h e p r o d u c t of its subvarieties 
\', Vn , whenever x1 . . . xnd satisfies (3.1), x . .. xd = x , and for each uo in 
il. x} j . . .X}UJTU . . . xnl . . . xnuTud = x u . . . xnld... xluT . . . xnujTduJ. Obviously, 
last identities are always satisfied by !(t-modes. So, in t h e case of fi-modes, these 
identities reduce t o (3.1). T h e word el is called a decomposition word and is 
uniquely defined modulo equat ional theory of V. As was shown in [AK], in t h e 
case the independent varieties Vv . . ., V , have finite bases for their identit ies, 
their p r o d u c t V{ x . . . x Vn is finitely based, too . In the case of varieties of modes, 
it is very easy to find its basis. 

P R O P O S I T I O N 3.2. Let Vv . . . , Vn be independent varieties of SI-modes, with 
each V; satisfying the identity X-, . . -x,nd = xi. Let each Vi be defined by iden­
tifies /'. -= wl- for j = 1 ,2 , . . . , krj. Then the product V1 x . . . x 17} is the variety 
of {}-mod,es defined by the identities 

x u . . . xlndx21 . . . x2nd. . . xnl . .. xnndd = xux22 . . . xnnd , (3.3) 

xx . . . tlj . . . xn d = xx . . . w1. . . . xn d (3.4) 

for each i = 1,. . . , n and j = 1, . . . , ki. 

P r o o f . Let 17 be t h e variety of l ]-modes defined b y t h e identit ies (3.3) 
and (3.4). It is easy to see t h a t each variety 17- satisfies t h e identit ies (3.3) and 
(3.4), whence 17L V . . . V V C V. O n t h e other h a n d , since t h e variet}^ V has 
a decomposi t ion word, each algebra (A, Q) in 17 is i somorphic t o a p r o d u c t 
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(A l 7 ft) x ... x (An, ft) wi th each (A-, ft) satisfying xx . . . xnd = XL , and hence 
also each tl- = w1-. I t follows t h a t (A, fi) is in V1 x . . . x Vn, and hence V C 

v 1 x . . . x v r i = v - 1 v . . . v v n . n 

Let us recall t h a t for any mode (A, ft) the subalgebra mode (AS, ft) satisfies 

all idempoten t and all linear identit ies t rue in ( A , f i ) . If (A, ft) is in the variety 

V — Vx x . . . x Vn as in Proposi t ion 3.2, and the identit ies (3.3) and (3.4) are 

linear, t hen the mode (AS, (]) of subalgebras is again in V and decomposes into 

p roduc t of V.-algebras. 

4. Products of mode varieties and algebras of subalgebras 

At first we give some basic propert ies of subalgebras of a p roduc t of nontrivial 

modes. 

If V 1 5 . . . , Vn are independent varieties of Q-algebras, an algebra (A, it) is in 

the variety Vx x . . . x Vn, and (A, J)) is isomorphic to (Al,iY) x . . . x (A/?.<2) 

with (A^ft) in Vt, then we say t h a t (A-pfi) x . . . x (A A1) is a factorization 

of (A, ft). 

LEMMA 4 . 1 . ( [FMMT]) Lel V, , . . . , Vn 6e independent varieties of ft-algcbras. 

Let (A 2 , f t ) X . . . x (A , ft) 6e a factorization of an algebra (A, ft) m /be rarietg 

V = Vx x . . . x Vn . If ( B , ft) is a subalgebra of (Av ft) x . . . x (AM, ft). /br/l /Or 

eae/i i = l , . . . , n . lbere is a subalgebra (B- , f t ) of (A z , f t ) sHeb /ba£ (B . f t ) is 

isomorphic to (B 1 5 ft) x . . . x ( B , ft). 

LEMMA 4 . 2 . FOr each i in a set I, /el (A^, ft) be an ft-algebra. For a fixed j in 

I. /el ( A , ft) be equivalent to an affine R-space. If all subalgebras of W^^r^^ 
3 ' if. I 

are of the form f j (Bv ft), with (B^ ft) a subalgebra of (A2, ft), r7zElj 
i G / 

(i) the mapping 

where B = x + U • , is art ft-homomorphism; 
(ii) lbe mapping 

<P'*-\U.)-XK-\V.); n ^ - n c 

i e I »-e/ 

mbere B • = x + U., C , - x + V, , EF C V, ana! /Or z / j , C = ^ ' ls 

j J J J
 7

 J — J
 J i J 

an ft-homomorphism. 
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P r o o f . 

(i) Let f l (Bik, 0) for k = 1, . . . , n be subalgebras of n O^, -~0 with B k 

iei iei J 

xk + Uk, and UJ be n-ary operation in fl. Then 

HBil---HBin«> = {( 6.l) i e/-"( 6.nW^ I bik e Blk) 
iei iei 

= {(*ii---*in")ie/ I *i* e S i f c} = J j B a . . . . B . n a ; . 
^eI 

Moreover, 

^•i • • • ^ = (*i + ^ i ) • • • K + ^ > = * i • • • * „ " + u i • • • ^ • 

Hence 

HBil---nBin"* = HBil---Bin«>* = Ul---Un" 
iei iei iei 

UBЉ-(UB: 
ei ' yiei 

(ii) Let Yl(Bik,ty, for k = l , . . . , n , be subalgebras of n ( A ^ ) with 
iei iei ' 

Bjk = xk + U•, and uo be n-ary operation in Q. Then ( fj B}1 . . . ]J[ J?-r cO )(^ = 
v * e I ' iei ln ' 

( I I Bn ... BinJ}ip, where Bjx ... Bjnw = x1...xnu + L7- . 

^ ( EI Bik)<p = f [ Cik; where Bjk = xk + t7., Cjk = xk + V., and for 
y iei 7 iei 

i*J,Cik = Bik. Then 

пiO^---(пß-V=п^---пc^ 
>ЄI ' M Є I ' гЄI iЄІ 

= nCil~-Cin»=[IlBil---IlBin«>)<P> 
iei ^ iei iei 

since C\. . . . C-nu) = xA . . . xncj + Vrj. • 

The next theorem follows directly from Lemma 4.1 and Lemma 4.2. 
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T H E O R E M 4 . 3 . Let V . , . . . , " / , be independent varieties of Q-modes. For a 
fixed j in I = {V . . . , n} , let V- be equivalent to a variety R of af'fine R-spaccs. 
Let (Ax, Q) x . . . x (A , Q) be a factorization of an algebra (+ , Q) in tin variety 
V = Vx x . . . x Vn . If B = x + U• is a subalgebra of (A •, Q) term vquivalvnt to 

(AJ,R(A}),P\, then define 

n: mAAs^KAj)-, ]jBt ~ Uj . 
v i e i J iei 

If SI £ ^ V + ) U {P}' then the al(Iehra ((A,tt)S,n) is a Plonka sum of the 
algebras 

(n-](Uj), fi) = { H(Bt, n ) | (Bt,n) < (A„Q) for i = l,....n 

ie I 
and B-—x + U• for x in A 

over the projective space ( ( + - , + , R(A-))S, +) by the functor F: 

((AJ,+,R(AJ))S,) - ( f t ) , with U]F = 7T-l(Uj) and (Uj -* \])F: T r " 1 ^ . ) -

*~ (Vj); I I Bi H-> n Ci9 where 2+ = x + Ujf Cj = x + V] , and for i / j . 
iei iei 

P r o o f . The proof is similar to the proof of 2.2 (see [PRS]). Lemma 4.2 im-

])lies that jr is an Sl-homomorphism on to the semila t t ice ((-4,-, + . R(A-))S. + ) . 

and F is a functor. The Plonka fibres have the form described in the theorem. For 

k = 1, . . . , n, let J7 (Bik,Q) be subalgebras of J ] (A:> ^ ) w i t n B jk = xk + Uk . 
iei iei 

and let UJ be n-ary opera t ion in ft. As in L e m m a 4.2, Yl Bj{ • • • J~J B,,,^ = 
iei /el 

FI Bu . . . BtnLu, where Bjx . . . Bjnu = xx... xnu + (U{ + • • • + UJ. since ^ is 
iei 
derived from j " ) U {P}. Hence UBn---U B

lu^ = f l B]X(l\ — l\ + . • . 
iGI i 6 / /GI 

+ k ; , ) F . . . I I Bin(Un - • £ / (+ . - •+Cf„ )Fu ; showing that ((Afi)/S\$2) is a Plonka 
/ £ / 

sum as claimed. In par t icular , if for k = 1, . . . , n , 2? A. — xA. + f' . we obta in that 

n ^ i • • • n Binu; =T\B/l... Bin»j, with BjX... Bjnuj = x{... ,• ̂  + V . • 
,ei iei iei 

Cer tain iden t i t ies on two variables are easily seen to be satisfied in algebras 
of subalgebras of V] x . . . x "/^-algebras. To describe them, we need the following 
lemma. 
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LEMMA 4 . 4 . For 1 < i < n, let 17. be idempotent varieties of Vt-algebras. If 
the identity xyv,j = x is satisfied in the variety Vi, then the identities 

x... xxyvxv2 . . . vn = x = x... x x y v ^ v ^ . . . va(n) (4.5) 

arc satisfied in the variety Vx V . . . V V for each permutation a of the set 

| i ^ " • } • 

P r o o f . First , let us note t h a t each variety Vi satisfies the identi ty (4.5). 
Indeed, since xyvl = x is satisfied in V%1 it follows t h a t V- also satisfies 

xx . . . xxyvxv2 . . . vn = x ... x(x(x . . . xxyvxv2 . . .. v^Jv^v^ • • • vn 

= x...xxv,i+1...vn =x. 

The same holds for any order of 1715 . . . , Vn. Consequently, (4.5) holds in the join 

r , v . . . v v „ . ' D 

As a consequence of L e m m a 4.4, Proposi t ion 2.2 and Theorem 4.3, one has 
the following. 

PROPOS IT ION 4 .6 . For 1 < i < n, let Vi be independent varieties of 

il-modcs. If an identity xyvi = x is satisfied in the variety Vi and is mode 

equivalent to a linear identity, then the identities 

x... xxyvxv2 .. . vn = x = x... xxyva{1)vcv{2) .. . VtT{n) (4.7) 

arc true in modes of subalgebras of \\ x . . . x V -modes, for each permutation 
a of the set {1 , 2, . . . , n} . 

P r o o f . T h e proof goes by induct ion on n. Let n = 2 . Let (A x, fi), (BVQ) 

be in \\ and ( A 2 , 0 ) , ( B 2 , f i ) be in T72. T h e n (A1xA2)(A1xA2)(B1xB2)v{v2 = 

A^A^ByV^'iiy x A2A2B2vyv2 = AlA{v2 x A2 = A^ x A2, because modes of 

subalgebras of \\-modes satisfy xyv] = x , and modes of submodes of V^-modes 

satisfy xyv2 = x. Similar a rgumen t shows t h a t the ident i ty (4.7) implies similar 

identi ty for n + 1, and hence Propos i t ion 4.6 holds. • 

COROLLARY 4 .8 . For 1 < i < n, let V{ be independent varieties of fl-modes. 

For a fixed j in I, let V- be a variety of fl-algebras equivalent to a variety R. of 

ajjinc R -spaces. Moreover, let an identity xyv- = x be satisfied in the variety 

R , and for i ^ j let algebras of subalgebras of V^algebras satisfy the identity 

xyvj = x. Then the Plonka fibi^es 7 r _ 1 (c7) satisfy the identities 

x . . . xxyxhv2 . . . vn = x = x... xxyva{x)va{2) . . . va(n) 

for each permutation a of the set {1, 2, . . . , n} . 
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5. Certain binary mode varieties 
and algebras of subalgebras 

In this section, we investigate the s t ruc tu re of algebras in a cer tain binary (or 

groupoid) mode variety, and the s t ruc tu re of modes of their subalgebras . T h e 

variety in quest ion is the join of three varieties . T h e first one is the variety \ 's f 

of binary modes defined by the identit ies 

yHx = x = xyl . (5.1) 

T h e variety is very well known . (See, e.g., [PRS].) It is a MalVev variety with 
the Mal'cev opera t ion given by 

xyzP := xyf~ • ys~ z . 

So 1/ f is equivalent to R for some commuta t ive ring i t s generated by one 

element, say r . T h e groupoid mult ipl icat ion can be identified wi th the operat ion 

r. In fact, the identit ies (5.1) hold in a groupoid (G,r) precisely if rs — 1 and 

( 1 - r ) * = 1. The ring Rst is isomorphic to the ring Z[X]/(X"-l, (X - l ) ' - l ) . 

T h e varieties Vs t contain many well-known varieties of Mal 'cev binary 

modes . Among t hem are the varieties G(n, k) of groupoids s tudied by M i -

t s c h k e , W e r n e r [MW], equivalent to affine spaces over the rings /?(/?. k) = 

Z[X]/ (Xn -1, Xk + X -1). Ecich G(n,k) is a subvariety of the variety V„\ , / r„ k, . 

where [n,k] is t he greatest common divisor of n and k. To show it. let us first 

note t h a t the generator r of the ring R(n,k) satisfies the condit ions r" = I 

and rk = 1 - r. Hence (1 - r)
n/>> f c] = rn(fc/[n,k]) _ ^ which implies tha t 

G(n, k) -groupoids satisfy the identi ty xyn^n,k^ = x, and hence are members 

of Vn ni\n k-\ • T h e varieties G(q) of groupoids equivalent to affine spaces over 

finite fields GF(q), described by G a n t e r , W e r n e r [GW], are subvarieties 

of G(q — l,k), where r + rk = 1 and r is a primitive element of GF(q). Any 

irregular variety 2m + 1 of commuta t ive binary modes (cp. [JK] and [RS6]) 

is equivalent to the variety Z, , of affine spaces over the ring zT.. , , . The 

groupoid mult ipl icat ion is given by r = m + 1. Here 1 — r = r . For each va­

riety 2m + 1 there is an n such t h a t 2rn + 1 is contained in the variety \ 1Kn • 

Indeed, since 2m + 1 and m + 1 are relatively prime, Eider ' s Theorem shows 

t ha t there is n = cp(2m + 1) such t ha t (m + 1)" = 1 (mod {2m + ! ) ) • Hence 

each 2 m + l - g r o u p o i d satisfies the identi ty xy" = x. There is another interest­

ing series of varieties of binary modes equivalent to varieties ZL.} n ] • I hese are 

subvarieties S2ni+{ of the variety S of symmetric binary modes satisfying the 

identity xy2 = >?, defined by the addi t ional identi ty 

-n/*2m+i : = ( . . . ( i / , . / V / / ; 5 ) x 4 . . . ) ; r 2 / n - ( / 2 m 4 1 = ./•, ( ^ , ^ 1 * 

where y{ = y:] = •••-= y2w + x = y and x.2 = .r, = • • • = x2in = x. 
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The variety S was thoroughly investigated by B. R o s z k o w s k a . See, e.g., 
[Rsl] and [Rs2]. From results of [Rs2], one can easily deduce tha/t each variety 
^2?/j + i *s equivalent to the variety Z . The groupoid multiplication is given 
by r = 2. Since 2 and 2ra + l are relatively prime, Euler's Theorem again shows 
that there is s = if (2m + 1) such that 2s = 1 (mod (2ra + 1)). It follows that 
each S2inj_l-groupoid satisfies the identity ysx = x and, consequently, is in the 
variety V 2 . 

The other two varieties we wrill consider in this section, Z) „, and DZ , defined 
J Tit ? Tl r\ -1 

below, are of interest to us, because they also have interesting models, and 
because of their connection to idempotent abelian algebras. 

First recall that a groupoid (G, •) is called abelian if it satisfies the so called 
term condition. 

(TC) If xyx . . . ynw is a groupoid word (term), a, b are in G and 
(cv...,cn), (dv...,dn) are in Gn, then 
acx . . . cnw = adx ... dnw implies bcx .. . cnw = bdx . . . dnw. 

(See, e.g., [MMT].) As was observed by K. K e a r n e s [K], idempotent abelian 
groupoids are modes. In particular, K e a r n e s can show that each finite idem-
potent abelian groupoid (G, •) decomposes as the product Ax L x R, where 
(A, -) is equivalent to an affine space, and (L, •) and (it, *) , with x * y = yx, 
are in the variety Dm n of groupoid modes defined by the ra-reduction law 

XA M' • • (Xm-1 * XmV) • • • ) ) = X l(X2(- ' • (Xrn-l ' XJ ' ' )) ( m R ) 

and the rj-cyclic law 
xyn = x . (nC) 

Moreover, the variety V(G) generated by (G, •) decomposes as the product 
V(A) x V(L) x V(R) of varieties V(A), V(L) and V(R) generated by the 
groupoids (-4,-), (L, •) and (R, •) respectively. Some of varieties Dni are 
very well known. The variety defined by (2R) is the variety L of differential 
or LIR-groupoids, see, e.g., [RS5]. It contains as subvarieties the variety D2n 

of n-cyclic groupoids, see [RR2]. The variety of kei-modes ([RS2; Chapter 4]) 
is defined by the identity x2y = H, dual to (2C). In its dual form, i.e., defined 
by (2C), this variety is the variety of symmetric binary modes. It contains as 
subvarieties the varieties D 2 . 

There is a very easy way to show that any two of the three varieties Vs f, 
I)m .. and Dk }, defined dually to Dk t, are independent. Similarly, all these 
three varieties are independent. To show this, we will need the following lemma. 

LEMMA 5.2. Let V be the variety of all binary modes. Let n and i be positive 
integers with n > i. The following identities are equivalent in the variety V. 

(i) ,-, (:r2(. . . (x,^(xri+1y)) •••))= *, M- • • (*.-!*.) •••))• 
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(ii) xnx2 — xx, 

(iii) x, (x2(. . . (x^x^ly)) . . .)) = xx(x2(. . . ( : V i ( ^ 7 l + i ) ) • • 0 

(iv) xl(x2~
lx^) = xxx2, 

(v) xv (x2(. . . (xny) . . .)) = xv(x2 (. . . (xn_xxn) ...)), 

(vi) xx (x2(. . . (xny) . . .)) = x{ (x2(. . . (xnz) ...)). 

P r o o f . 

(i) =^> (ii): It follows by substituting xY for x2,...,x} in (i). 

(i) = > (iii): As a consequence of the first implication one 

x'"x.;+1 . Then entropicity and (i) imply the following: 

x, {x2{... (x'l-lv) ...))= {x»xi+l){x2{x.3{... x,{x';-(y)...))) 

= {xlx2){{x'rlxl+l){x,{...{x]'-;!j)))) 

= (xlx2){{xlx3){{xT2xi + l)M- • • K ' f l 

д-ets x 

'*/)))): 

= ( ^ ^ ( ^ i ^ l - ' - ^ ^ ^ i ^ + i ) ' ' " ^ y) •••)) 

= (xix2)((xix3)(--- ((xixi)- (x\xi+\)) •••)) 

= x1(x2(...(xixi+i)...)). 

(iii) => (i): It follows by substituting xi for xi+i in (iii). 

(ii) => (iv): It follows by the equivalence of (i) and (iii) for / = 1. 

(iv) => (v): Applying successively the equivalence of (i) and (iii) one ob­

tains the following identities true in V. 

x l (X2VX '3 XAJJ = x\ \X2X'SJ ' 

x1(x2(x3(x2~''Kx[-))) = x{(x2(x3x4)) , 

Xl (X2 (• • • (XnV) ••))= Xl (X2 (• • • (Xn-lXn) •••))• 

(v) => (iv): It is obvious. 

(vi) = > (i): It follows by substituting x{ for x.i+v . . . ,xn, z in (vi). D 

Let us note that by Lemma 5.2, the variety of D.m n-modes can be equivalently 

defined by the identities 

xmy = x (Rm) 

and 
xyn = x . (Cn — nC: 

The dual variety D*n n is defined by the dual identities 

xym = y (K,! 
and 

x"y = y • (C*' 
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LEMMA 5.3. For natural k, I, m, n, s and t, any two of the varieties D% {. 
1)ni n and Vs t are independent. 

P r o o f . Let (i,j) denote the least common multiple of natural numbers i 
and j . It is easy to see that the following implications hold 

(RJ => (R
imj))> (RM); (en =» (c*mJ)) > (ch)); 

(C n ) =* (C(n,k)), (C(n4)); (Rl) = > (R*(n<k)), (R\k,t)); 

(C,) = > ( < W > (C(t,n))> (C*s) = > ( C ( / , . ) ) . (<?(*„.,,,))• 

It follows that one can take as a decomposition words: 

xyW or xmJy for Dmn and /?£, , 

• ^ " " ^ for Dmtn and F M , 

xy^ for l/M and £ £ , . 

Consequently, each pair of varieties above is independent. D 

LEMMA 5.4. For natural numbers k, I, rn. n, s and t, the three varieties 
I)£ j . D and V f are independent. 

P r o o f . Let ( i , j , k) be the least common multiple of natural numbers i, j 
and k. Let 

xyzw := (x^'s-l)y)(yz{k^){k^n) . 
rFhen it is easy to check that the identity w = x is satisfied in the variety Djn n , 
t he identity w = y is satisfied in the variety Vs f, and finally, the identity w = z 
is satisfied in the variety D^ l., Hence the varieties D n, D^ t and VH t are 
independent. D 

PROPOSITION 5.5. The following hold for any natural numbers k, I, m, n, 
s and t 

Dm^Dl^D^xDtj, (5.6) 

Dm>nVVsj=Dm<nxVStt, (5.7) 

KiVV8>t=D*ktlxVStt, (5.8) 

Dm,n V D*kJ V VStt = Dmn x D*kl x Vst. (5.9) 

P r o o f . It follows directly by Lemma 5.3 and Lemma 5.4. D 

Note that bases for the identities satisfied in each of the four varieties above 
can be easily deduced using Proposition 3.2. In the first three cases, the bases 
can be simplified a little using the following observation. 
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For any binary opera t ion x o y the diagonal iden t i ty (x o y) o (z o l) = j - o l 

is equivalen t to the conjunc t ion of 

(x o H) o 2; = x o z , (5.10) 

and 

x o (y o z) = x o z . (5.11) 

Obviously , the conjunc t ion of (5.10) and (5.11) implies the diagonal identity . 

Conversely, the diagonal iden t i ty applied in different ways to [(x o y) o (p o r/)] o 

(roz) yields (5.10), and a symme t r ic a rgumen t shows that the diagonal identity 

implies (5.11). 

In fact, the iden t i t ies (5.10) and (5.11) are mode equivalen t . Indeed, if (5.10) 

holds, then (x o y) o z = (x o z) o (y o z) = x o (y o z). T h e proof in the opposi te 

direc t ion is similar. 

P R O P O S I T I O N 5 .12 . Let k, I, m, n, s, t be natural numbers. 

(i) The variety of D 71xD^ ^rnodes is defined by the identities 

(xmy)z(k>n) = xz{k'n) = (xyn)z^n) , 

z{xyk)^n) = zy^n)=z{xly)^n), 

or by the identities 

(xmy){m'l)z = x{m'l)z = (xyn){m'l)z , 

z{m'l)(xyk) = z{mX)y = z{m'l)(xly) . 

(ii) The variety of D n x V , f-modes is defined by the identities 

(xmy){r"'s)z = x{m's)z = (xyu){r"-s)z, 

z{m's)(xy') = z{m-s)x = z{m's)(xsy) . 

(iii) The variety of D£ (XVs t-modes is defined by the identities 

k,,.(k,t) _ qiy(k,t) _ (,7.L,\Ak-t) (xyk)z^ = y z ^ = (Vу) zy 

c ( V ) ( M ) = ^{k'f) = z(xsy){k-f) . 

P r o o f . We prove only (i). Proofs of (ii) a n d (iii) can be done in a similar 

way. Firs t no te that if we take the word xyd = xoy = xy{n'k) as a decomposi t ion 

word for Dm n a n d D% l , then the iden t i t ies (3.4) of Propos i t ion 3.2 take t h e form 

of the first two iden t i t ies of (i). T h e n z o (xyk) = z(xyk){n'k) = zy{k'n] = z o // 

implies z o (x o y) = z(xy^k'n^Yk'n^ = zy{k'n) = z o y. B u t . by the remark 
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before 5.12, the last ident i ty is equivalent to the diagonal ident i ty (xoy)o(zot) = 

x o t. Then 5.12 (i) follows by Proposi t ion 3.2. • 

The decomposi t ion of Dm nVZ?£ /VV^ ^-modes given in Proposi t ion 5.5 to­

gether with results of Section 4 allows one to give a descript ion of subgroupoid 

modes for groupoids in this variety. 

P R O P O S I T I O N 5 . 1 3 . Let k, I, m, and n be natural numbers. For each 

Dn) nxDl rmode (G, • ) , the mode ( G 5 , •) of submodes of (G, •) satisfies the 

identities 

x \yxk) = x = (xmy)xk . 

P r o o f . Since each ident i ty (mR) is linear and equivalent to ( I2 m ) , and 

similarly, (mR*) is linear and equivalent to ( I ? m ) , 5.13 follows by L e m m a 4.1 , 

L e m m a 4.4 and Propos i t ion 4.6. • 

T H E O R E M 5 .14 . Let k, I, m, n, s and t be natural numbers. Let ( -4 p - ) x 

(T 2 , - ) x (.A3,-) be a factorization of a Dni n V D ^ tWVs t-mode (Ar). Then the 

mode (AS, •) of submodes of (A, •) is a Plonka sum of binary modes satisfying 

the identities 

x(xm(yxk))t = x=(xm(yxk))Sx, 

over the semilattice ( (-43 , + , R(A3))S, + ) . Moreover, if (A, •) = (Ax, •) x (A 3 , •) 

is in the variety Djn n V Vs t , then the corresponding Plonka fibres satisfy the 

identities 

x(xmyY = x = (xmy)sx. 

And if (A, •) = (A2, •) x (A3, •) is in the variety D^ }Ws t , then the corresponding 

Plonka fibres satisfy the identities 

x(xykY = x = (xyk)sx. 

P r o o f . It follows by Theorem 4.3, Proposi t ion 4.6, Corollary 4.8 and 

Proposi t ion 5.5. • 

K X A M P L K 5 .15 . T h e lat t ice of subvarieties of the variety 5 of symmetr ic binary 
modes was described in [Rsl] . It is isomorphic to t he la t t ice N = NUoo of na tu ra l 
numbers with divisibility relation and with the greatest element added. Each 
subvariety 5 ) / / + 1 is defined by one addi t ional identi ty ( 5 2 n + 1 ) . Each variety 
5,,M coincides with D,m2. B y L e m m a 5.3, the varieties 52 ? n and 5 2 n + 1 are 
independent , and by Propos i t ion 5.5, 5 2 m V S2n_^l = 5 2 m x 52n_ f.1 . This was 
first proved in [Rs2]. Moreover, it was showrn there t h a t in fact S2„, V 5 2 n + 1 = 
5 , m ( . , / M _ 1 } . B y Lemma 4.4, each variety 5 2 „ , ( 2 n + 1 ) satisfies the identity 
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In fact, as was shown in [Rs2], th is ident i ty defines S2m^2n + \) • L ^ u s i s obviously 
simpler t h a n t h e ax iomat iza t ion t ha t follows from Propos i t ion 5.12. An argument 
similar to t h a t for T h e o r e m 5.14 shows t h a t t he mode (AS,-) of submodes of 
(A, •) in t he variety 5 2 m / 2 n + L ) is a Plonka sum of binary modes satisfying ( 5.1(>). 

Let us note , t h a t for a symmetr ic binary mode (G, •) , the mode (GS. •) does 

not necessarily satisfy the symmetr ic identity . Indeed, consider the groupoid 

(Z,,,-) = (zT4 ,2). In (zT+SV), one has ({0} • {0, 1, 2, 3}) • {(). L 2. :*} = { 0 . 2 } -

{ 0 , 1 , 2 , 3 } = {0,2} ^ { 0 } . 

EXAMPLE 5.17. T h e variety S4 = D2 2 of symmetr ic binary modes is also 

contained in the variety L of differential groupoids. T h e lat t ice of subvarieties 

of the variety L is described in [RR1]. It is isomorphic to the lat t ice Nn x l\ 

with the greatest and the smallest elements added, where N is the lat t ice of 

non-negat ive integers with the usual ordering as the lat t ice ordering. For (i.j) 

in N x N, the subvariety Lj • is defined by one addi t ional ident i ty 

xyi+j = xf . ( 5 . 1 8 ) 

Let us note t h a t S4 = D.? 2 — L()2. Subgroupoid modes of *S'.-modes do not 

inherit the symmetr ic identity, bu t they satisfy the identi ty (R2) • 

The na tu ra l quest ion arises. Do the subgroupoid modes of ^ - g r o u p o i d s sat­

isfy any of the identit ies (5.18)? 

To answer this question, let us note t h a t any finite groupoid satisfies an 

identi ty of the form (5.18). Indeed, if (G, •) has cardinal i ty n. then for each // in 

G, t he mappings R : G —-> G; g »—> gy, form a finite cyclic monoid. Hence there 

are an index i and a period p such tha t Rl+P = R' It follows that for each 

x in G, xyl+p = xf . Consequently, any x and y in (G,-) satisfy the identity 

Xy*"+l — Xym ^ where rn is maximal among all indexes, and / is the least common 

multiple of all periods. Since the subgroupoid mode of a finite ,S'4-groupoids is 

finite, it necessarily satisfies an identity of the form (5.18). However, this is no 

longer t rue if, instead of a single groupoid, we consider the class SrS of all 

subgroupoid modes of all S/.-groupoids. 

THEOREM 5 .19 . The variety L of differential groupoids is generated by tin 
class S4S of subgroupoid modes of S\{-groupoid. 

P r o o f . We will find a sequence (F2, •), (F.}, •), . . . of .S^-groupoids. such 
t ha t for each (i,j) £ N° x N, there is a groupoid (FA., •) in this sequence such 
t h a t (FkS, •) does not satisfy the identi ty (5.18). For each na tura l number //. we 

define (Fn4_v •) to be the free ^ - g r o u p o i d on n-f-1 free generators .v. y{ yn • 

For each ( F n + ] , •), let - 4 n + 1 = {x} , one element subalgebra of (Fn + r •) • and let 

^,,-f-i = y\Fn + \ u • • • U y,nFn + ] be the union of the orbits l)\Fn^ x U,+' n ~\-
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Then it is easy to check the following 

^,,+ 1^1 + 1 = W i I ? = l , . . . , n } , 

<--/f + i #!•, + ! = M u { x y . ^ . | ij = l , . . . , n and i / / , } , 

/l// + |/3;) + 1 = {iry. | i = l,...,n}U{xyiyjyk \ ij,k = l , . . . , n and 

z,j, k are pairwise different} 

and so on. It is easy to see that A,1B\l

l^_1 = An_x_lB]l

l~1 , and that all -4 . . I?n+i, 
: 1 / / + j I^ + 1, • • •, An + lB

1

j

l

i+l are pairwise difTerent. It follows that in (Fn+lS, •), 
./•//" is different from all x, X7j, . . . , xyn~1. Consequently, 5.19 holds. • 
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