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ABSTRACT. A mode is an idempotent and entropic algebra. The aim of this
paper is to describe the structure of subalgebra modes of modes in a product
of varieties, in particular varieties such that at least one of them is a variety of
affine spaces. We show that certain reducts of such modes may be constructed as
Plonka sums. This result is applied to describe subalgebra modes of some binary

modes.

1. Introduction

A mode is an idempotent, entropic algebra, i.e., with each singleton a subalge-
bra, and cach operation a homomorphism [RS2; p. 145]. The two properties may
be expressed algebraically by means of the idempotent and entropic identities

T...rtw=cz, (I)

r T, W...T r, ww =z r, W x ! (E)
THL T InT c Yml c Ymn 11l s Ly Ty W W

that are satisfied in each mode (A4,§2), for any n-ary operation w and m-ary
operation &’ in . Examples of modes are furnished by affine spaces and their
reducts, semilattices and convex sets. Modes were studied in detail in [RS2].
Some further information may be found in the list of references at the end of

the paper.
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201.99.
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Given a mode (A, ) with a set Q of operations w: A*T — A. one may form
the set (A,Q)S or AS of non-empty subalgebras of (A, ). This set A4S carries
an (l-algebra structure under the complex products

wi ASYT — AS; (X, X

o) de o, wl| o e XN}
and it turns out that the algebra (AS, ) is again a mode preserving many of the
algebraic properties of (A, ) [RS2; p. 146]. This self reproducing property plays
an important role in the theory of modes, and also in the theory of semilattice
ordered modes studied under the name of modals in [RS2]. See also [RS3]. [RS].

One of the most important examples of modes is given by affine spaces (or
affine modules) over a ring R. Modes of subspaces of affine spaces over fields
were investigated in [RS1]. In that paper, one described affine geometry. projec-
tive geometry, and the passage between them purely algebraically, using such
modes of subspaces. The results of [RS1] were then generalized in [PRS] to the
case of affine spaces over arbitrary commutative rings with unity. It was shown
there that certain reducts of such modes may be constructed as Pltonka sums
of reducts of affine spaces over the corresponding projective space [PRS: Theo-
rem 3.9]. For certain varieties of modes, this result gives a complete characteri-
zation of algebras of subalgebras.

This paper is a sequel to [PRS] and continues the study of algebras {45.9Q).
It deals with subalgebra modes of modes in a product of varieties. in particular
varieties such that at least one of them is a variety of affine spaces. We refer
the reader to Section 3 for the definition of such product we use in this paper
and a brief discussion concerning the notion in the case of modes. We describe
the structure of subalgebra modes of modes in such products in general. and
then focus our attention to products of certain varieties of binary (or groupoid)
modes. In Section 2, we recall basic definitions and properties of affine spaces and
their algebras of subspaces. Section 3 is devoted to products of mode varieties.
In Section 4, we discuss the structure of subalgebra modes in products of mode
varieties. Finally, Section 5 is devoted to subalgebra modes in certain binarv
mode varieties.

The notation and terminology of the paper is similar to that in the book
[R52] and in the paper [PRS]. We use “Polish” notation for words (terms) and
operations, e.g., instead of w(r,,...,x,) we write x,...x w. Moreover. the
symbol z, ...z, w means that z,,..., r  are exactly variables appearing in the
word w. The traditional notation is used in the case of groupoid words. For such
words we frequently use non-brackets notation, as follows

Ty, =0y, r r, o= (r, v, ),
ey’ =,

no.__ . " ., — .
ry' =y, oy, with y=y, ==y, .
S (o " ; B
My = (e, (o ey) ) with r=u, = o
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Two words (terms) of given type are mode equivalent if each one can be deduced
from the other using only consequences of idempotent and entropic laws. An
identity w, = w, is regular if the sets of variable symbols on both sides are
cqual, and it is linear if the multiplicities of each argument of w, and w, are
at most 1. In particular, for any mode (A4,(Q), the algebra (AS,Q) satisfies all
idempotent and all linear identities true in (A4,). (See [RS2].) Algebras and
varicties are equivalent if they have the same derived (term) operations. We
refer the reader to the book [RS2] for all undefined notions and results.

2. Affine spaces and algebras of subalgebras

Let R be a commutative ring with unity, and let (E,+, R) be a module
over R. For each element r of R, define a binary operation

r: ExFE — E, (z,y) — zyr :==x(1 —71) +yr,
and the Mal’cev operation
P:ExExFE— FE,; (z,y,z) mz—y+=z.

The algebra (F, R, P) with the ternary operation P and the set R of bi-
nary operations r for r in R is equivalent to the full idempotent reduct

<E, {.I'lrl +-txr, | Ty, T, €ER, );ri = 1}) of the module (E,+, R).

n n

Consequently, it can be identified with the affine space (or module) over the ring
R. (See, e.g., [RS2].) Carrying out this identification we will refer to the algebra
(F, R.P) as an affine space over R or an affine R-space. It is well known that
the class of affine spaces over the ring R forms a variety. This variety is equiv-
alent to the variety R of Mal'cev modes (A, R, P) with the ternary Mal’cev
operation P and one binary operation r for each r in R, satisfying certain
identities given in [RS2].

The affine subspaces (or affine submodules) of the module (,+,R) (i.e.,
cosets of submodules of (E,+, R)) are exactly the subalgebras of the alge-
bra (E, R, P). Consider the set (E, R, P)S or ES of non-empty subalgebras
of (E,R,P). The set ES forms an algebra under the complex products

r: ESxES — ES; (X, Y)—{zyr| z€ X, yeVt}
for r in R, and
P:ESxFESxES—ES; (X, Y, Z)—A{zyzP| z€ X, yeY, z€ Z}.
It turns out that the algebra (ES, R, P) is again a mode satisfying each linear

identity satisfied by (E, R, P). (See [RS1], [RS2].)
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Projective space is considered here as the set L(E) = (E.+.R)S of sub-
modules of the R-module (F, +, R), together with the semilattice operation +.
where for submodules U and V of F, U4+ V ={u+v | vell. v €1} is
the sum of U and V. The inclusion structure is recovered from (L(£). +) via
U<V ifanonlyif U+V =V.

In [PRS], the structure of the algebra (ES, 1(113) where J}} comprises the
set of units » of R for which 1 — r is also invertible, was described using the
concept of a Ptonka sum ([P1. [RS2; p. 236]). Let (2) denote the category of
Q-algebras and homomorphisims between then. Consider the semilattice (/1. +)
as a small category (H) with a set H of objects and with unique morphisim
h — k precisely when I+ k =k, ic., h <k.Let F: (H)— (£2) be a functor.
Then the Plonka sum of the Q-algebras (h#,Q), for h in H . over the semilattice
(H,+) by the functor F, is the disjoint union HE = {[J(hF | h € H) of the
underlying scts hF', equipped with the Q-algebra structure. given for each n-arv
operation w in & and hy,... h , h="~h +---+h in H. by
w:h Fx...xh,F — hF; (xyocovw,)=a (b —hF o (h — b Fe.
The canonical projection of the Plonka sum HF' is the homomorphism 7:
(ITF, Q) — (H,Q) with restriction 7: hFF — {h}. The subalgebras (AF. Q) =
(n“'l(h),ﬂ) of (HF,Q) arc the Plonka fibres. Recall that for Q-algebras in an
idempotent irregular variety V', the identities satisficd by their Plonka sums are
precisely the regular identities holding in the fibres.

THEOREM 2.1. ([PRS]) For an affine space (E.R.P) in R. cach algchra
((E,]j, P)S, Q) , where Q) C l([]{ U{P}, is a Plonka sum of Q-reducts of affine
R-spaces (E/U, R, P) over the projective space (L(E), +> = ((E.+.R)S.+) hy
the functor F: (L(E)) — () with UF = {x4+U | x € E} and (I — ")}
UF - VF; 24+Uw—xz+V.

Let V' be a variety of 2-algebras equivalent to a variety R ol afline [2-spaces.
For each V-algebra (A4,Q), let V(A) be the smallest subvariety of 17 containing
(A, Q). Then there is a quotient R(A) of the ring R such that the varicties
V(A) and R(A) are equivalent. The algebra (A, ) is equivalent to the faithtul
afline space (A, R(A). ). (The affine space (E, R, P) is said o be faithful if
the module (F, 4+, R) is faithful.)

PROPOSITION 2.2. ([PRS]) Let V' be a varicty of Q-algebras cquivalent to a
variety R of affine R-spaces. Let (A, Q) be in V. If Q C Il'e( b UL then
the algebra ((/1 0)5,Q) is a Plonka sum of V(A)-algebras. cquivalent to affine
R(A)-spaces, over the semilattice ((A, +, R)S, +) = ((;1, +.R(A))S +).
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PRODUCTS OF MODE VARIETIES AND ALGEBRAS OF SUBALGEBRAS
3. Products of mode varieties

...,V be varieties of Q-algebras of the same fixed type. The varieties
V' are independent if there is an n-ary Q-word z, ...z, d such that the
identity w...x, d =z, holds in V, for each ¢ = 1,...,n. It is we.l known that
whenever the varieties V...,V are independent, each algebra (A,) in their
join V=V, v...vV s isomorphic to a product (A,;,Q2) x ... x (4,,6Q) with
(1,.9Q) in V, for each i = 1,...,n, and algebras (A,,§2) are determined up to
isomorphism. In this case, we denote the join V of V, by V| x ... xV and say
that 1" is the product of its subvaricties V...,V . (See [GLP].) It is casy to
see that, in this case, the product V| x ... x V satisfies the diagenal identity

dd =z vy, ...2, d. (3.1)

rppeorydey ooy do e -

nn

Moreover, if V),....V —are varieties of modes, then so is V, x ... x V . (Cf,
c.ge [RS2: 20 ﬂ, note, however, that in [RS2], the product of varieties is called
a “direct sum”.) On the other hand, if =, ...z, d is a word of a variety V of
Q-modes, and V' satisfies the identity (3.1), then V' is the product V, x ... x V|
, V., with each V, defined by the identity = ...z d

. This is a consequence of a more general theorem (cf., e.g., [MMT; 4.4],
[ I\H\I [']) sayving that a variety V of Q-algebras is the product of its subvarieties
V. whenever x, ...z, d satisfies (3.1), ... 2d = z, and for each w in
Qo oo W ”wrwd r“.‘../nld...xm,‘_... nwr @w . Obviously,
last identities are always satisfied by Q-modes. So, in the case of 2-modes, these
identities reduce to (3.1). The word d is called a decomposition word and is
uniquely defined modulo equational theory of V. As was shown in [AK], in the
case the independent varieties Vi,..., V., have finite bases for their identities,
their product Vi x...xV, is finitely based. too. In the case of varieties of modes,
it is very easy to find its basis.

of its subvaricties V,...

PROPOSITION 3.2. Let V|,..., V. be independent varieties of {2-modes, with
cach Vi satisfying the identity x, ...x, d = x,. Let each V; be defined by iden-
titics t’ = u’ for j =1,2,... k,. Then the product V|, x ... x V  is the variety
of Q- nm(/(s (/(’f'l7)((i by fhf 7(1(71#/157(5

x d...x r, dd=2,2y...x, d, (3.3)

nl - """ nn nn

tj...m”d:;cl...10;...1'”(1 (3.4)

x dry, ...

" 1In 1271

.’17]

forcach i=1,...,n and j=1,...,k, .

1
Proof. Let V be the variety of (2-modes defined by the identities (3.3)
and (3.1). It is easy to see that each variety V, satisfies the identities (3.3) and
(3.1). whenee Vv, vV C V. On the other hand, since the variety V' has
a decomposition word, each algebra (A,) in V' is isomorphic to a product
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(A;,Q) x...x(A,,Q) with each (A,,Q) satisfying z, ...z, d = r,, and hence
also each t; = w']i.. It follows that (A,€Q) is in V; x ... x V | and hence 1
Vix...xV, =V, v...vV . O

[

Let us recall that for any mode (A, Q) the subalgebra mode (AS.Q) satisfies
all idempotent and all linear identities true in (A, Q). If (A, Q) is in the variety
V =V, x...xV asin Proposition 3.2, and the identities (3.3) and (3.4) arc
linear, then the mode (AS, ) of subalgebras is again in V' and decomposes into
product of V-algebras.

4. Products of mode varieties and algebras of subalgebras

At first we give some basic properties of subalgebras of a product of nontrivial
modes.

If V,,...,V, are independent varieties of Q-algebras, an algebra (A.€Q) is in
the variety V|, x ... x V , and (A4,Q) is isomorphic to (A,,€Q) x ... x (1 .Q)
with (A,,Q) in V,, then we say that (4,,Q) x ... x (A4,.9Q) is a factorization
of (A,Q).

LEMMA 4.1. ([FMMT]) Let V,....V be independent varieties of Q-algebras.
Let (A,9Q2) x...x(A4,,Q) be a factorization of an algebra (A.) in the varicty
V=V, x...xV . If (B,Q) is a subalgebra of (A}, Q) x ... x (A, Q). then for
each i = 1,...,n, there is a subalgebra (B, Q) of (A, ) such that (B.S) 1s
isomorphic to (B,Q) x ... x (B,,Q).

)

LEMMA 4.2. Foreach i inaset I, let (A, Q) be an Q-algebra. For a fircd j in

I, let (A;,Q) be equivalent to an affine R-space. If all subalgebras of [T,
: el
are of the form [[(B,,Q), with (B,,) a subalgebra of (A, Q). then
el
(i) the mapping

T <HA1>5'HL(AJ); (HBL.>»—>U1.,

el el

where Bj = + U]. , s an S-homomorphism;
(ii) the mapping

4,9:7T71(UJ.)—+71'71(VJ-); HBL-HHCi,
el el

where B; =x+U;, C; =x+V,, U; CV, and for i # J. ;=B s

an 2-homomorphism.
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Proof.
1) Let B.,,Q) for k =1,....n be subalgebras of A, Q) with B.
oy ik < i
r, + U, . and w be n-ary operation in 2. Then

k=

HBn ~~HB1',7,,W = {(bil)iel <o (bin)iefw | by € Bik}

icl i€l
= {(biy -+ b w)icr | by € By} = HBil B
iel

Moreover,

o Bpw=(z,+U)...(z,t UV w=2z,..0,0+U ..Uw.

Hence

HB“...HBme:HB“...Bme: U,..Uw

iel iel iel
= (HB“>’/T... (IIBin)mu
iel el

(i) Let [[(B;, %), for k = 1,...,n, be subalgebras of [](A4,,Q) with

el €S
B, =, +U;, and w be n-ary operation in §2. Then < I;[I B, ... H] Bmw)w =

7 US
( II B, 4..Bmw>gp, where B, ... B w=1z,...z,w+U;.

iel
Let (HB,A)go— [[ Ciy;s where By, =z, +U;, Cj =z, +V,, and for

€1 el
i#j.C, =B,,. Then

(HB,1>¢... (HBi,,,><pw:HC“...Hme

il iel i€l iel
— Y — ,
[ Cow= (TT 20 T[ B
el 1=y el
RSN Y Y . P r
SINee (‘“...(,j”w—ml...J,"w+vj. 0

The next theorem follows directly from Lemma 4.1 and Lemma 4.2.
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THEOREM 4.3. Let V| ..., V., be independent varieties of Q-modes. For a
fized j an I ={1,...,n}, let Vi be equivalent to a variety R of affine R-spaces.

Let (A;,) x...x(4,,9Q) be a factorization of an algebra (A, Q) in the cariety
Vi=Vix...xV,  If By =x+U, is a subalgebra of (A;, Q) term cquivalent to

(Aj, R(AJ-), P) , then define

T (HA)S—»L(AJ); HB,. — UJ.,

i€l iel

If Q2 C I,)‘,(_,‘j) U {P}. then the algebra ((A,SZ)S,SZ) 1s a Plonka sum of the

algebras

(57.*7'((]./.),!2) = {H(Bi,fl) | (B;,) <(A,Q) for i=1..... n
el and B]- =+ UJ. for r in .»1./}

over the projective  space (<Ai’ +, R(Aj)).ﬂ', +) by the  functor I
((AJ-,+,R(AJ-))S,) — (), with UF = 7r"1(Uj) and (U}- — V)l l(('1) —
77"'(V_'I.); iI;II B, — ,Ie—[l C,, where b’j =+ U_,'- C’j =+ ‘.Yi' and for i # .
C,=D,.

Proof. The proof is similar to the proof of 2.2 (see [PRS]). Lemma 4.2 im-
plies that 7 is an -homomorphism onto the semilattice ((/1/. + 1A ))S.+).
and F'is a functor. The Plonka fibres have the form described in the theorem. For
k=1,...,n,let [[(B,,,) be subalgebras of HI(AI., Q) with B, =0, + 0.

il i€
and let w be n-ary operation in 2. As in Lemma 4.2, [[ B, ... [[ B, « =
el i€l
H, By ...B;,w, where B, ... B, w=wx .. .x,w+ U +- - +U) since w is
i€

derived from l(l)"(/‘]) U{P}. Hence [] B, ... [l B,,w =11 B,,(l/, — ", + ...

icl i€l el
+U,)F... ] B,,(U, — U ++U,)Fw showing that ((4.9)5.92) is a Plonka
i€l
sun as claimed. In particular, if for k= 1,...,n, B;’k =2+ - weobtain that

I1 By ... I1 B,,w= 11 B, ...B,,w, with Ij’“ ‘..B,.”'Vu =00, et I'/.
€l i€l icl ) : :

Certain identities on two variables are easily seen to be satisfied in algebras
of subalgebras of V| x ... xV -algebras. To describe them. we need the following

lemimna.
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LEMMA 4.4. For 1 <i <n, let V, be idempotent varieties of Q-algebras. If
the identity xyv, = x is satisfied in the variety V,, then the identities

T TTYV Uy 0, =T =T TEYV, )V, - Uy (4.5)
are satisfied in the variety V, vV ...V V_ for each permutatior. o of the set

{1.2..... n}.

Proof. First, let us note that cach variety V, satisfies the identity (4.5).
Indeed, since ryv, = x is satisfied in V, it follows that V, also satisfies
rrrryv vy ., = a . a(x(z . zayo v, . 'vifl)v,i)/z;l.,kl v,

=TTV, =T
The same holds for any order of V},...,V, . Consequently, (4.5) holds in the join

IVARRVA S 0

As a consequence of Lemma 4.4, Proposition 2.2 and Theorem 4.3, one has
the following.

PROPOSITION 4.6. For 1 < i < n, let V, be independent varicties of

Q-modes. If an identity xyv, = x is satisfied in the variety V, and is mode
cquivalent to a linear identity, then the identities

T TTYU VgV =T =T TTYVy (1) U(2) - - V() (4.7)
arc true in modes of subalgebras of V| x ... x V. -modes, for each permutation

o of the set {1,2,...,n}.

Proof. The proof goes by induction on n. Let n = 2. Let (A4,,Q), (5,,9Q)
bein Vyand (A4,,Q), (B8,,Q2) bein V,. Then (A, xA,)(A, x A,) (B, xB,)v,v, =
A A Bojvy, x AyA,Bovv, = AjAjvy, X A, = A} x A,, because modes of
subalgebras of Vi-modes satisfy zyv, = r, and modes of submodes of V,-modes
satisfy wyv, = x. Similar argument shows that the identity (4.7) implies similar
identity for n + 1, and hence Proposition 4.6 holds. O

COROLLARY 4.8. For 1 <i <n, let V, be independent varieties of 2-modes.
For a fized j in I, let V] be a variety of Q-algebras equivalent to a variety El of
affine R;-spaces. Moreover, let an identity ayv, = x be satisfied in the variety
1:{I and for i # j let algebras of subalgebras of V. -algebras satisfy the identity

ryv, = . Then the Plonka fibres W’I(U).) satisfy the identities

£ ’J?.‘I?y/l)]'l)g e 'l)” =Tr=2... :v;lryv”(])va(g) . e U(T(“)

for cach permutation o of the set {1,2,...,n}.
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5. Certain binary mode varieties
and algebras of subalgebras

In this section, we investigate the structure of algebras in a certain binary (or
groupoid) mode variety, and the structure of modes of their subalgebras. The
variety in question is the join of three varieties. The first one is the variety 17,
of binary modes defined by the identities

yr=x=uxy". (5.1)

The variety is very well known. (See, e.g., [PRS].) It is a Mal'cev variety with
the Mal’cev operation given by

xyzP =y "yt 2

So V, , is equivalent to :R:s.t, for some commutative ring R, generated by one
element, say r. The groupoid multiplication can be identified with the operation
r. In fact, the identities (5.1) hold in a groupoid (G,r) precisely if r* = 1 and
(1-7)" = 1. The ring R, is isomorphic to the ring Z[X]/(X*—1. (X —1)"~1).

The varieties V, , contain many well-known varieties of Mal'cev binary
modes. Among them are the varieties G(n,k) of groupoids studied by Ni-
tschke, Werner [MW], equivalent to affine spaces over the rings R(n.k) =
Z[X]/(X" =1, X*+X ~1). Bach G(n, k) is a subvariety of the variety V, ok
where [n, k] is the greatest common divisor of n and k. To show it. let us first
note that the generator r of the ring R(n,k) satisfies the conditions r" = 1
and r* = 1 — 7. Hence (1 — r)V/Imkl = pn(k/InkD = 1 \which implies that
G(n, k)-groupoids satisfy the identity zy™/!"* = 2. and hence are members
of 1/,”,’”/[“’,\,]. The varieties G(q) of groupoids equivalent to affine spaces over
finite fields GF(q), described by Ganter, Werner [GW], are subvarieties
of G(q—1,k), where r +r¥ =1 and r is a primitive element of GF(q). Am
irregular variety 2m + 1 of commutative binary modes (cp. [JK] and [RS6])

is equivalent to the variety Z2 ", of affine spaces over the ring Z,,, ;. The
Y I=200- =

groupoid multiplication is given by r = m + 1. Here 1 — r = r. For cach va-

riety 2m + 1 there is an n such that 2m + 1 is contained in the variety 17 -

Indeed, since 2m + 1 and m + 1 are relatively prime. Euler’s Theorem shows
that there is n = ¢(2m + 1) such that (m + 1)" = 1 (mod (2m + 1)). Hence
cach 2m+I-groupoid satisfies the identity ry" = . There is another mterest-
ing scries of varieties of binary modes equivalent to varicties Loy These are
subvarieties 9., of the variety S of symanetric binary modes satisfving the
identity ry? = 1, defined by the additional identity

TYSomt P ( oy sy .).1'2”, Yo = (5,5, .11

where y, =gy = 7 = ¥y, =y and vy = oy = =u, =0
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The variety S was thoroughly investigated by B. Roszkowska. See, e.g.,
[Rs1] and [Rs2]. From results of [Rs2], one can easily deduce that each variety
S,y 18 equivalent to the variety ézmﬂ' The groupoid multiplication is given
by r = 2. Since 2 and 2m+1 are relatively prime, Euler’s Theorem again shows
that there is s = p(2m + 1) such that 2° =1 (mod (2m + 1)). [t follows that
cach S, . -groupoid satisfies the identity y°z = = and, consequently, is in the
variety V5.

The other two varieties we will consider in this section, D . and D} , defined
below, are of interest to us, because they also have interésting moéiels, and
because of their connection to idempotent abelian algebras.

First recall that a groupoid (G, -) is called abelian if it satisfies the so called
term condition.

(TC) If 2y, ...y, w is a groupoid word (term), a, b are in G and
(cy--ye,), (dy,....d,) are in G™, then
ac,...c,w=ad,...d, w implies bc,...c,w =bd,...d w.
(Sce, e.g., [MMT].) As was observed by K. Kearnes [K], idempotent abelian
groupoids are modes. In particular, Kearnes can show that each finite idem-
potent abelian groupoid (G,-) decomposes as the product A x L x R, where
(A,-) is equivalent to an affine space, and (L,) and (R, *), with = *y = yz,

are in the variety D, . of groupoid modes defined by the m-reduction law

z(xy (o (@ zpy) ) =a (2 (2, ) ) (mR)

and the n-cyclic law
Yyt =x. (nC)

Moreover, the variety V(G) generated by (G,-) decomposes as the product
V(A) x V(L) x V(R) of varieties V(A), V(L) and V(R) generated by the
groupoids (A,-), (L, ) and (R,-) respectively. Some of varieties D, , are
very well known. The variety defined by (2R) is the variety L of differential
or LIR-groupoids, see, e.g., [RS5]. It contains as subvarieties the variety D.,
of n-cyclic groupoids, see [RR2]. The variety of kei-modes ([RS2; Chapter 4])
is defined by the identity z?y = y, dual to (2C). In its dual form, i.e., defined
by (2C"), this variety is the variety of symmetric binary modes. [t contains as
subvarieties the varieties D, ,.
There is a very easy way to show that any two of the three varieties Vit

D and Dy, defined dually to Dk,l’ are independent. Similarly, all these

m.n
three varieties are independent. To show this, we will need the following lemma.

LEMMA 5.2. Let V be the variety of all binary modes. Let n and © be positive

~.

integers with n > 1. The following identities are equivalent in the variety V.

(i) oy (ry(. . (z, (@) ) =2 (2 (oo () - )
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(ii) xfw, =z,

(i) ) (2y (- (22 y) ) =y (o (- (g (2ryyy)) )
(iv) =, (25 'ay) = 2,

(v) oy (2o () ) =y (e (o (2 y2,) )

(vi) z,(zy(c (z,y) ) =, (2,(.. . (2,2)...))

Proof.

(i) = (ii): It follows by substituting x, for x,,....r, in (i).

(i) = (iii): As a consequence of the first implication one gets . =

xyx,;, . Then entropicity and (i) imply the following:
(@) ) = (e ) (e (e (o (e y) )
= () (@) e ) (g (- (] )

n—i

= (@) (o) (o) o) (2, (- (7 9))))

Illz)((a"l’;)( (o )(('”1"'/+|)”7H1!/)~-~))
Tyt ((r1’5>( ACeyr) - () -)
( 2 (o (@) 2)) -

(iii) == (i): It follows b) substituting x, for x,,, in (iii).

(ii) == (iv): It follows by the equivalence of (i) and (iii) for i = 1.

{iv) = (v): Applying successively the equivalence of (i) and (iii) one ob-
tains the following identities true in V.

o) (zy(x) 2y)) = a (2y1y),

2, (zy(2q(2) P2y))) = 2, (z,(r41,)),

zy(2y(c () ) =@y (e (o (e, 2, 0))

(v) = (iv): It is obvious.
(vi) = (i): It follows by substituting x; for @, ,... xr .= in (vi). 0
Let us note that by Lemma 5.2, the variety of D, , -modes can be equivalently
defined by the identities
"y =z (R,
and
xy"t = . (€' =nC"
The dual variety DY is defined by the dual identities
ay" =y (7,
and
"y =y. ('
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LEMMA 5.3. For natural k, I, m, n, s and t, any two of the varieties D} ,,
D and V, are independent.

m.n
Proof. Let (i,7) denote the least common multiple of natural numbers ¢
and J. It is easy to see that the following implications hold

(]{m) == (R('m,l)) ’ (R(ms)) ) (Cl*) = ( 7(*7”71)) ’ (C(*ls)) )
((Yn) = (C(n,k)) ) (C(n,t)) ) (R;) = (Rzn,k)) ) ( v(*k-,t)) )
((‘I) = ((7(k,,t)) ) (C(t,n’)) ; (C:) == ( j(*l,s)) ) (C(*m,s)) :

[t follows that one can take as a decomposition words:

2y™F) or 2™y for D and Dy,

m,n
x(m,s)y for Dmﬂl and Vs.t’
ey for V_, and Dy ,.

C'onscequently, each pair of varieties above is independent. ]

LEMMA 5.4. For natural numbers k, I, m, n, s and t, the three varieties
Dy, D and V,, are independent.

m.n
Proof. Let (i,7,k) be the least common multiple of natural numbers 7, j
and k. Let
TYyzw = <;17("“S‘l)y) (yz(k”t’"))(k’t’n) .
Then it is easy to check that the identity w = x is satisfied in the variety D, |
the identity w = y is satisfied in the variety Ve,t’ and finally, the identity w = z
is satistied in the variety Df,. Hence the varieties D, . Dp, and V , are

independent. O

PROPOSITION 5.5. The following hold for any natural numbers k, 1, m, n,

s and t

Dm,n \ DZ,I = D1n,n X D; IR (56)

Dm,n v ‘/s.t - Dm. n X Vs to (;..T)

D;.l v Vts,t = DI:,[ X Vgﬂj» (58)

Dm.n v DZ’,I \2 ‘/s t — Dm.n X DZl X ‘/.s- t- (5())

Proof. It follows directly by Lemma 5.3 and Lemma 5.4. O

Note that bases for the identities satisfied in each of the four varieties above
can be casily deduced using Proposition 3.2. In the first three cases, the bases
can be simplified a little using the following observation.
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For any binary operation z oy the diagonal identity (roy)o (zo0t)=wrot
is equivalent to the conjunction of

(toy)oz==xoz, H.10)
and

o(yoz)=uxo0z. (5.11)

Obviously, the conjunction of (5.10) and (5.11) implies the diagonal identity.
Conversely, the diagonal identity applied in different ways to [(,1: oy)olipo (1)] c
(roz) yields (5.10), and a symmetric argument shows that the diagonal identity
implies (5.11).

In fact, the identities (5.10) and (5.11) are mode equivalent. Indeed. if (5.10)
holds, then (zxoy)oz=(zoz)o(yoz)=xo(yoz). The proof in the opposite
direction is similar.

PROPOSITION 5.12. Let k, [, m, n, s, t be natural numbers.
(i) The variety of D,  xDj ,-modes is defined by the identities

m.n

( m, ) ko) .’I:Z(k’”) _ (l‘l,/ ) (K, n)
(lyl\)(k.n) _ Zy(lv.n) _ (.T y)(k ) .

or by the identities

(Irny)(m,[)z _ l_(m,l)z _ (Iun)(m,l}z )
Z(m’l)(:ljyk) _ Z(m,l)y _ (m l)(.l‘ 'l/)

(ii) The variety of D -modes 1s defined by the identilics

m, ’IL

(Im l/)(m s) — m('lnus)z _ (IU )(m S)Z,
('m,s)(

_(m.,s)

ry') =2 )

r ==z

z z°y).

iii) The variety of D; ,xV._ -modes is defined by the identities
k|l st

(:L"I/k)z(k"f) _ ,UZ(A:,t) — (Ily)z(k’t) i

(1 I/ k ) ::I,(]\’.f) )(k.f) ]

= z(«"y

Proof. We prove only (i). Proofs of (ii) and (iii) can be done in a similar
way. First note that if we take the word zyd = roy = ry""*) as a decomposition
word for D and Dy ,, then the identities (3.4) of Proposition 3.2 take the form

m,n
of the first two identities of (i). Then z o (xy*) = z(axy?)lk) = syt =6y
implies z o (z oy) = z(xyF)km) — 2y — -6y But. by the remark
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before 5.12, the last identity is equivalent to the diagonal identity (zoy)o(zot) =
rot. Then 5.12 (i) follows by Proposition 3.2. O

The decomposition of D,
gether with results of Section 4 allows one to give a description of subgroupoid
modes for groupoids in this variety.

VDy vV, ,-modes given in Proposition 5.5 to-

PROPOSITION 5.13. Let k, I, m and n be natural numbers. For each
D, . xDj -mode (G,-), the mode (GS,-) of submodes of (G,-) satisfies the
identities
o yak) = 2 = (a"y)at
Proof. Since each identity (mR) is linear and equivalent to (R, ), and
similarly, (mR*) is linear and equivalent to (R} ), 5.13 follows by Lemma 4.1,

Lemma 4.4 and Proposition 4.6. O

THEOREM 5.14. Let k, [, m, n, s and t be natural numbers. Let (A,,-) x
(A7) x (Ay,-) be a factorization of a D, VDy VV, -mode (A,-). Then the
mode (AS,-) of submodes of (A,-) is a Plonka sum of binary modes satisfying

the identities
( m(yT )) S — (%m(yﬂ”k))gl,

over the semilattice ((A,, +, R(A,))S,+). Moreover, if (A,-) = (A,-) x (A,,")
is in the variety D,V V_,, then the corresponding Plonka fibres satisfy the
identities

a(a™y)' =z = (a"y)’z.

Andif (A,-) = (Ay, ) x(Ay, ") is in the variety D} V'V,

st then the corresponding
Plonka fibres satisfy the identities

z(zyF) = & = (2y*)*z

Proof. It follows by Theorem 4.3, Proposition 4.6, Corollary 4.8 and
Proposition 5.5. O

FxAMPLE 5.15. The lattice of subvaricties of the variety S of symumetric binary
modes was described in [Rs1]. Tt is isomorphic to the lattice N = NUoo of natural
numbers with divisibility relation and with the greatest element added. Each
subvariety S, | is defined by one additional identity (Sgn41)- Bach variety

S, coincides with D, ,. By Lemma 5 3, the varieties S.,. and Sz”“ are

. N . N . el [« ot T raQ

independent, and by Proposition 5.5, Syn V Sy, oy = Sym x S5, This was

first proved in [Rs2]. Moreover, it was shown there that in fact S,., V.S, | =
S on i1y By Lemma 4.4, cach variety Sym (4,41 satisfies the identity

m . — = '

y52”+1 = I. (,).1())
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In fact, as was shown in [Rs2], this identity defines Sy (4,41~ Thisis obviously
simpler than the axiomatization that follows from Proposition 5.12. An argument
similar to that for Theorem 5.14 shows that the mode (AS,-) of submodes of
(A,-) in the variety Sym(y,,41, Is a Plonka sum of binary modes satisfving (5,16,

Let us note, that for a symmetric binary mode (G, ), the mode (GS.+) does
not necessarily satisfy the symmetric identity. Indeed, consider the groupoid
(Z,.:) = (Z,,2). In (Z,S.-). one has ({0} - {0,1.2,3}) - {0.1.2.3} = {0.2} -
{0,1,2,3} = {0,2} # {0},

Exanpri 5.17. The variety S, = D, of symmetric binary modes is also
coutained in the variety L of differential groupoids. The lattice of subvarictios
of the variety L is described in [RR1]. It is isomorphic to the lattice 11 x 1
with the greatest and the smallest elements added, where N" is the lattice of
non-negative integers with the usual ordering as the lattice ordering. For (/. )
in N x N, the subvariety Li_j is defined by one additional identity

ST p— (5.1%)

Let us note that S, = D, , = L ,. Subgroupoid modes of 5 -modes do not
inherit the symmetric identity, but they satisfy the identity (12,).

The natural question arises. Do the subgroupoid modes of .5-groupoids sat-
isfy any of the identities (5.18)7

To answer this question, let us note that any finite groupoid satisfies an
identity of the form (5.18). Indeed, if (G, ) has cardinality n. then for cach y in
G. the mappings R : G — G g gy, form a finite cyclic monoid. Hence there
arc an index 7 and a period p such that R!"f” = R;/. It follows that for cach
rin G, zy'tP? = xy'. Consequently, any x and y in (G, -) satisfv the identity
xy™ = zy™ where m is maximal among all indexes, and [ is the least common
multiple of all periods. Since the subgroupoid mode of a finite S -groupoids is
finite, it necessarily satisfies an identity of the form (5.18). However. this is no
longer true if, instead of a single groupoid, we consider the class S5 of all
subgroupoid modes of all \S,-groupoids.

THEOREM 5.19. The variety L of differential groupoids is generated by the
class 5,5 of subgroupoid modcs of S, -groupoid.

Proof. We will find a sequence (F,,-),(F,,-),... of 9 -groupoids. such
that for each (i,5) € N” x N, there is a groupoid (F,..-) in this sequence such
that (F,.S,-) does not satisfy the identity (5.18). For each natural number n.we

define (F),,,-) to be the free S,-groupoid on n+1 free generators .y, Y., -
For cach (F, ,,,-),let A, , = {x}, one element subalgebra of (£ _-)- élllfl let
B, =y, U---Uy,F,  bethe union of the orbits y, Fooe y by
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Then it is easy to check the following

‘A1n+lBu+l - {Tyz ' I: 17"'7”}7
“1n+ll));~:+] :{J}U{Eyzyj l 7‘]:]7”"’ a‘nd 2#7}7
A B:H ={xy,| i=1,...,n}U {zyiyjyk | i,7,k=1,...,n and

i, J, k are pairwise different}

. . TG ey N n+1 __ n—1 .
and soon. It is easy tosee that A B, 7} = A, B, j,andthatall A | B, |,

A B;“:H ...... A, By, are pairwise different. It follows that in (F, ,,95,-),
ry" is different from all x, zy, ..., ry™~!. Consequently, 5.19 holds. O
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