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ABSTRACT. Generalized Pascal triangles (GPT) are constructed top-down from
finite algebras A = (A;*,0) and words w € AT similarly as the classical Pascal
triangle is constructed from (N; +,0) and the constant 1. A GPT will be called
reversible if it also can be locally constructed bottom-up, using a binary oper-
ation. An algebra will be called reversible if all its GPT are reversible. Several
kinds of reversibility are introduced, and some constructions of reversible alge-
bras are presented. Reversible algebras are constructed from algebras satisfying
cancellation laws, or from other reversible algebras. A relationship to reversibility
of cellular automata is briefly discussed.

1. Introduction and notation

Computations of cellular automata (CA) are constructed in the direction of
time: the configuration in time ¢ 41 is computed from the configuration in time
{. (Definitions for one-dimensional CA are presented in the next section.) It is
interesting and important to know whether they can be constructed also in the
opposite directions, whether they are reversible. This question was studied for
a long time, see, e.g., [Ri], [Ka]. There are only few methods how to construct
reversible CA.

ANS Subject Classification (1991): Primary 68Q80; Secondary 08A70.
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This work was supported by Grant 2/1224/94 of Slovak Academy of Sciences.

H41



IVAN KOREC

In the present paper, the reversibility is studied for generalized Pascal trian-
gles (GPT; defined below) which correspond to computations of one-dimensional
CA with 2-element neighbourhood from finite initial configurations. The case of

JA with 2-element neighbourhood is the simplest non-trivial one, and general
neighbourhood can be reduced to 2-element ones (in some sense). A special
case is studied when the reverse computations also use a binary local transition
function; therefore we spoke about binary reversibility in the title. (For one-
dimensional CA in general, the number of arguments of reverse transition rule
can be greater, and for two- and more-dimensional CA it even cannot be recur-
sively estimated because the reversibility problem is undecidable.) Reversibility
of algebras generating GPT is investigated from algebraical point of view, for ex-
ample, identities for direct and reverse local transition functions are presented.
However, for GPT the CA terminology is not used; we shall speak about fi-
nite algebras of signature (2,0). Several algebraical constructions of (in a sense
nontrivial) reversible algebras for GPT are given; they can be immediately trans-
formed to constructions of one-dimensional reversible CA. The constructions will
usually start with algebras satisfying cancellation laws. Notice that the cancel-
lation laws can be checked very easily from Cayley tables, while reversibility is
not so easy to recognize.

2. Generalized Pascal triangles and cellular automata

If A is an alphabet (i.e., a finite nonempty set), then A" will denote the
set of all nonempty words in the alphabet A. The length of a word w will
be denoted |w|. The ith symbol of w will be denoted by w(i); the starting
symbol is w(0), and hence the last symbol is w(w| —1). Z will denote the set

of integers, and N the set of nonnegative integers. For every n € N we denote
D, = {(z.y) ENXN| z+y>n—1}.

By an algebra, we shall always understand a finite algebra A = (A:x*.0) of
signature (2,0) and satisfying the identity o * o = o.

DEFINITION 2.1. To every algebra A = (A;*,0) of signature (2,0) and every

word w € AT the function G = GPT(A, w) will be the mapping G : D, —A
defined by
w(x) if r4+y=|w -1,
, ox G0,y —1) if 2 =0, y>lul.
G(z,y) = , . ,
G(x—1,0)*o0 if y=0, z>w|.

Gz —1,y)*Gz,y—1) if e+y>fwl, >0, y=-0.
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The functions of the form GPT(A, w) for a finite algebra A and a word w € A™*
will be called generalized Pascal triangles (abbreviation: GPT).

An example of GPT can be found in Figure 1. It arises from the algebra on
the left; the role of the algebra on the right will be explained later. It is also clear
from this figure what are rows and columns of GPT, and how the coordinate axes
x, y are oriented (z right downwards and y left downwards). Any value G(z,y)
is written into the unit square with the top vertex (z,y) (and the bottom vertex
(r+1,y+1)).

1
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FIGURE 1.

GPT were originally defined in [K1] by study of the structure of real-time
systolic trellis automata, see [CGS1], [CGS2|. However, GPT also can be used
to describe computations of one-dimensional cellular automata (abbreviation:
('A) from finite initial configurations. To explain that, we shall briefly repeat
the notion of one-dimensional CA at first.

DEFINITION 2.2. A one-dimenstonal CA is an ordered quadruple

C = (SN, f,q), (2.2.1)
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where S is a finite set of states:
N = (ay,...,a,), a neighbourhood vector, is a finite sequence of integers:
f: 8™ — S is a local transition function;
g € S, the quiescent state, satisfies f(q,...,q) =q.
A computation of one-dimensional CA C' is a function F': 7Z x N — S such
that
F(z,t+1) = f(F(z+ay,t),...,F(z+a,,t)) (2.2.2)

forall z€ Z, t € N.

The restrictions of F' to sets Z x {t}, t € N, will be called configurations.
for t = 0 the initial configuration. A configuration (at time t) is called finite it
F(z,t) = q for all but finitely z € Z.

By displaying computations of one-dimensional CA we usually use the coordi-
nate system with “space” axis z horizontal and “time” axis t vertical. oriented
downwards. (Then we have z = x —y and t = ¢ + y, where r. y are coor-
dinates used to display GPT.) For CA with neighbourhood vector (—1.1) the
computations from finite initial configurations look like GPT. (NMore precisely.
every such computation consists of two overlapping GPT which do not influence
cach other.) However, also for another neighbourhood vectors there is a rela-
tionship between computations of one-dimensional CA and GPT. To establish
it, we sometimes must use affine transformations of coordinate systems and con-
sider ordered k-tuples of states of CA as elements of algebras generating GPT
(k depends on the neighbourhood vector). Details can be found. e.g.. in [K3].

Remark. The idempotent constant o in the considered algebras is not impor-
tant for reversibility. We leave it here because it is related to the quiescent state
of one-dimensional CA. It also is not substantial for reversibility of C'A. but can
be important for other reasons.

3. The monoid of binary operations

DEFINITION 3.1. The set of all binary operations on A will be denoted
Op,(A).
Ior every f,g € Op,(A) we define

h=fog <= (Ve.yeA) (h(z,y) = f(g(x,y),9(y.1))):

this operation o will be called binary composition (on Op,(A)).
Further, we denote 1, and J, the first and the second projection on A i.c..
for all z,y € A
g =2, Jalmy)=y.

H44



REVERSIBILITY IN GPT AND BINARY REVERSIBILITY IN 1D CELLULAR AUTOMATA

Powers of an operation f € Op,(A) will be defined by f® =1, and f"*! =
J"o f forall n € N. If there is (unique) g such that go f = fog =1,, we
shall write g = f~'.

Since A will be usually fixed, we shall often delete the subscript A. In most
important cases, A will be a finite set of cardinality at least two, but these
assuwmptions will be repeated in all theorems where it is necessary.

LEMMA 3.2. For every set A the structure (Op,(A);o0,1,) is a monoid. Its
centre (i.e., the set of elements which commutes with every element of Op,(A))
consists of Iy and J,

Proof. To prove associativity of o, let us consider arbitrary f,g,h €
Op,(A). For all x,y € A we have

[(fog)oh](x,y) = [fog](h(z,y),h(y,z))
= f(g9(h(z,y), h(y,2)), g(h(y, ), h(z,y)))
= f(lgohl(z,y),lg o hl(y,2)) = [fo(goh)](z,y),

and henee (fog)oh = f o (g o h). Similarly, we have, e.g.,

Foll(ry) = fF(Ix,y), Wy, x) = flz,y) =1(f(z,y), f(y,2)) = [To fl(x,y),
fod(ay) = f(I(z,y), Iy, ) = fly,z) = I(f(z,y), fly,x)) = To fl(z,y),

hence 1 is the unit element, and J belong to the center.

Now assume that h belongs to the center of Op,(A). For every f € Op,(A)
and o,y € A we have [foh|(x,y) = [ho f](z,y), ie.,

f(h(z,y), by, @) = h(f(z,9), f(y,2)) . (3.2.1)

If for some x, y we have {h(z,y),h(y,z)} # {x,y}, then we can choose the
values of f on the (two or three) ordered pairs (h(z,y),h(y,z)), (z,y), (y,z)
so that (3.2.1) will not hold. Therefore we have {h(x,y),h(y,:r)} = {z,y} for
all vy € A (we also can express that by the formula # o h =1). In particular,
hr,2) =a forall z € A.

If h # 1 and h # J, then there are u,v,w,z € A such that

h(u,v) =u#v=nh(v,u) and h(w,z2)=2z+#w=h(z,w).

By (3.2.1), we have f(u,v) = h,(f('u,,'u),f(v,u)) for all f; we may choose
flu.o) = w, f(v,u) = z, and we obtain w = h(w, z), what is a contradic-
tion. O

To every f € Op,(A) a mapping f: A% — A? can be naturally assigned
by the formula 7((:1“,1/)) = (f(x,y), f(y,x)) for all z,y € A. The mapping
[+ f is an injective homomorphism of (Op,(A);0,1,) into the monoid of
all mappings of A? into A?. The range of the homomorphism consists of all
F: A* — A? which satisfy F((z,y)) = (u,v) <= F((y,z)) = (v,u) for all
royour € AL

2
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LEMMA 3.3. If A is a finite set and f,g € Op,(A), then:
(1) gof =1, ifand only if fog=1,;
) gof=J, ifand only if fog=1J,;
) if f1 emists, then it is a term operation in the algebra (A; f):
) if fog=1J,, then g is a term operation in the algebra (A: f).

3
{4
Proof. Wecan use the homomorphism f — f mentioned above, and prop-

erties of mappings of a finite set into itself. For example, if fog = I, then fg =1

(where 1 denotes the identical mapping on A?), hence both f, g are bijections

and gf = 1; then we have go f = I. For (3) we can use that if f~! exists, then

f™ =1 for some positive integer n; then f~! = =1 For (4) we can transform

fog=J, into fo(golJ) =1, which gives goJ = f"~! for some positive n.

Then we have g = f"~1 o J, which immediately gives a term for g. C

Remark. We could also define an operation e on Op,(A) by the formula

[f.g}(‘Twy) - f(q(y,l‘),g(:v,y)) :

Notice that feg= folJog. We can obtain similar statements for e instead of
o, only the roles of I, J will be interchanged. This statement can be considered
as a duality principle; we shall neither develop nor use it.

4. Reversibility and related identities

DEFINITION 4.1. Let f, g € Op,(A) and a,b € Z.

(1) For a both-side infinite sequence x = (...&_,, Ly, Ly,...) € AZ
we denote by Next, ,(f,x) the both-side infinite sequence
v=_(.Y_1,¥,Y;--.) € A” such that
Y = f(xi 02y, forall i€ Z

(2) We say that g is an (a,b)-reverse of f if for all x € A”

NeXta,b(gaNeXt().l(fv X)) =X. (*111)
(3) We say that f is (a,b)-reversible if there is an (a,b)-reverse of f.
(4) We say that f is reversible if f is (a,b)-reversible for some a.b € 7.

(5) We shall write L-reverse, C-reverse, R-reverse instead of
(0,1)-reverse, (—1.0)-reverse, (—2, —1)-reverse, respectively.
Analogously for the word “reversible™.

The notions from the above definition will be used also for groupoids and
algebras of signature (2.0) in the obvious way: they will concern the binary
operations of the algebras. ("The base sets and the constants will he preserved.)
The letters L. €, R abbreviate the words left. central. right. respectively.
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DEFINITION 4.2. A GPT G will be called reversible if there is a reversible alge-
bra A and a word w such that G = GPT(A,w). Analogously for (a,b)-reversi-
bility, and also for L-, C- and R-reversibility.

To explain the definitions, let us consider two consecutive rows x, y of a
GPT (completed on both sides by the quiescent element, i.e., the constant o
of A):

i-1 T; Tit1 it2 (4.2.2)
Yi2 Y1 Y Yit1 Yiyo

If f is the binary operation of the corresponding algebra, then y, = f(z;, T )

for all 7, and hence y = Next,, ;(f,x). A reverse g of f computes locally x from

v, but it is not clear which yyf are necessary to obtain z,; they are specified by

the pair (a,b).

Examples of L-reversible algebras (and also an L-reversible GPT) can be
found in Figure 1; each of two algebras there is L-reverse of the other. Examples
of C-reversible algebras (and GPT) can be found in Figure 2.
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FIGURE 2.
THEOREM 4.3. Let f,g € Op,(A). Then:
(1) If f is reversible, then f is (a,b)-reversible for some pair
(avb) € {(051)7(‘—1»0)7(ﬁ27*1)}' (4'3'1)

(In other words, f is L-, C-, or R-reversible.)
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(2) g is an L-reverse of f if and only if for all a,y,= € A

g(flz,y), fly,2) =z (1.3.2)
(3) g is a C-reverse of [ if and only if for all x,y,z € A

g(fley), fly,2) =y (1.3.3)
(4) g is an R-reverse of [ if and only if for all x,y,z € A

g(flx.y), fly.2) = =. (1.3.4)

Proof. To prove (1), let us assume that f is (a.b)-reversible: let ¢ be the
function from (4.1.1). The condition (4.1.1) can be rewritten as

g(f(.rH”, iy o) f(@iy, .l:iH)Jrl)) = (-£.3.5)

Since (4.1.1) holds for all x € A// we may consider the latest formula as an
identity with variables @,  ,....x;. (Then ¢ could be fixed. e.g.. replaced by
zero.) The subseripts ought to be (,‘valuated, hence, e.g.. if a = 0. b = 1. then

the variables z, are identical. We may assume « < b: otherwise we

ita+1> it
can exchange a, b and replace g by goJ.
If {a, b}ﬂ{fl 0} = 0, then x; does not occur on the left-hand sl(lv of (4£.3.5).
and hence (4.3.5) implies the 1d9nt1t} x = y. Then card(A
only one binary operation on A. In this trivial case, f is (a,b) re \(‘rsib]o for all
pairs (a,b) € Z?. Hence we may assume {a,b} N {—1,0} # 0 in what follows.
If b > a+2, then four distinct variables occur in the left-hand side of (-1.3.5).
Three of them are distinct from x,, hence they can be replaced by any other
variables. By suitable substitution, we obtain a necessary identity for L-. (- or
R-reversibility. (For example, if b = 0, we have to replace v, .o, by, .

x,, respectively.) So we may assume b < a + 1 in what follows.

) < I. and there is

Now there are only five remaining cases, three from (4.3.1) and two with
a = b. The last two must be transformed.

[f @ = b= —1, we may replace the operation g by the operation g (2. y) =
g(x,x). Then we have

9 (f( Li 1> )»f(-’”,w"ﬂ—l)) = g(f(l'iflv"’i)vf(*"i L)) =

hence f is C-reversible. For ¢« = b = 0 we can similarly use the function
g,(r,y) = g(y,y), and the proof of (3) is completed.
The identities in (2) (4) alinost immediately correspond to the definition of

=

I.-. C-, and R-reverse. Ci

Generally speaking, (a,b)-reverse of a function is not uniquely determined.
as we can see from the following example.
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ExXaMPLE 4.4. Let A = N, and let C, L, R be the pairing functions (i.c.,

C(r,y) = (r+ y)(x2+ y+1) +x and C(L(m),R(x)) =z for all #,y € N). Then

the function C is L-reversible, C-reversible, and also R-reversible. Its L-reverse is
L,(r.y) = L(z), and its R-reverse is R, (z,y) = R(y). There are infinitely many
(-reverses of C; the simplest ones are L, (z,y) = L(y) and R, (z,y) = R(z), one
of more complicated is g(x,y) = C(L(R(z)). R(L(y))). The funciion f(x,y) =
C(Cary), Cla, g/)) has infinitely many X-reverses for all three X € {L, C,R}.

If we assume that A is finite, the situation is simpler as we can see from
the following theorem. Roughly speaking, the situation is similar to that with
inverting of mappings of a set into itself. Notice that the notion “X-reverse”
corresponds to a one-sided inverse of a mapping. Hence the term “left X-reverse”
would be more adequate (then also “right X-reverse” ought to be introduced).
However, since we are interested mostly in operations on finite sets, this more
complicated term seems to be unnecessary in the present paper.

We shall say that f € Op,(A) substantially depends on both its arguments if
there are r.y, z,u,v,w € A such that f(z,2) # f(y,2) and f(u,v) # flu,w).

THEOREM 4.5. Let A be a finite set and f,g € Opy(A). Then:
) If g is a C-reverse of f, then g = f 1olJ.
y If g is a L-reverse or an R-reverse of f, then g = f~
3) For every (a,b) € Z*, a # b there is at most one (a,b)-rcverse of f.

) If f substantially depends on both its arguments, then there is at most
one pair (a,b) € Z. such that a <b and [ is (a,b)-reversible.

1

Proof. For (1) and (2) let us substitute z := z into the identities (4.3.2),
( 1.3.3), (4.3.4): the obtained identities correspond to the equation go f =.J, in
the second case ((1) in the theorem), and to go f =1, in the other cases. From
these equations g can be (uniquely) computed.

To prove (3), let us denote f,(z) = f(z,2), g,(2) = g(z,2) for all z € A.
The identity (4.3.5) implies gl(fl(z:)) = z, hence f,, g, are permutations of
A . Notice that g, is uniquely determined by f (and also by f,, of course).

From similar reasons as in the previous theorem, we may assume a < b. If
0 ¢ {a.a+ 1,b,b+ 1}, then x; does not occur in the left-hand s'de of (4.3.5),
and hence card(A) < 1. Then (3) trivially holds because there is exactly one
binary operation on A. Let 0 € {a,a + 1,b,b+ 1} in what follows.

For b > a + 1 let us distinguish four cases:

a=-1, a=0, b=-1, b=0. (4.5.1)

In the first case, (4.3.5) implies the identity g(f(y,z), f(z,2)) = 2. Since f| is
a permutation of A we can replace f(z,z) by (any variable, e.g.) 2z, and we
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obtain the identity g(f(y,x),z) = z. The last identity implies that g depends
only on its first argument, and f only on its second argument, i.e.,

g(u,z) = g](u), f(y,x):f1($)
for all u,z,z,y € A. Since g, is uniquely determined by f, the operation g is
uniquely determined, too. (The statement about f will be used later.) For the
remaining three cases in (4.5.1) we can similarly consider the identities

g(f(zy),2) =2, gz fly,x)) ==,  g(z flz,y) = .

Now only three cases b =a+1, —2 < a < 0 remain. But in these cases, explicit
formulas for g were given in (1) and (2).

To prove (4), notice that if f is (a,b)-reversible, then (4.3.1) holds. (This is
not an immediate consequence of Theorem 4.3. (1), but can be proved similarly.)
Further, if two of identities (4.3.2) - (4.3.4) hold, then we can obtain an identity
of the form x = y. Then card(A) < 1, and f cannot depend on both arguments.

which is a contradiction. 0

THEOREM 4.6. Let A be a finite set, f,g € Opy(A) and X € {L.C.R}.
Then f is an X-reverse of g if and only if g is an X-reverse of [ .

Proof. Let us consider X = (', and let us write * instead of f and -
instead of g. We have to prove that the identity

(xxy)®(y*z)=y (1.6.1)

implies the identity
(ze3y)x(yd2)=y. (4.6.2)

Then, by the symmetry, also the later identity implies the former.
Let us consider the mapping F of A® into A? defined by

Flr,y,z) = (xxy,y*z,2xx).

The mapping F' is bijective; to show that, we prove that F' is injective (and use
that A® is finite). If F(z,,y,,2,) = F(2,,y,, 2,), then, by the definition of F.
we have

T, Ky, =Ty kYo, Yp ¥ 2 =Yy * 2o, T KT = Ly KTy
By the first two equalities and (4.6.1), we have
Y = (1'1 * yl) b (yl * Z1) = (1'2 * yz) b (y, * 32) =Y,

Similarly, we can obtain z; =z, and z, = z,. Hence F' is injective, and then
also bijective. Now let us define

G(u,v,w) = (wHu, u B v, vHw)
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for all (u,v,w) € A3. Let us take arbitrary x,y,z € A. The third and the
first component of F(z,y,z) are z x x and z * y, respectively. Hence the first
component of G(F(z,y,z)) is equal to (2 *z) @ (z * y), which is equal to = by
the identity (4.6.1). Similarly, the second and the third component are y and
z. Therefore GF is the identical mapping on A®. Since F is bijective, we have
G = F~', and hence

F(G(z,y, z)) = (z,y, 2)

for all r,y,z € A. By the definitions of F, G, the first component of the
left-hand side is (z @ z) * (z @ y), and hence (4.6.2) holds.

The cases X = L and X = R can be proved similarly. We aave to define
G{u,v,w) ={(u®dv,...) and G{u,v,w) = (vHw,...), respectively. O

Remark. We could use any A™, n > 3 instead of A3 in the proof above.
However, A? would not suffice. On the other hand, considerations with A2
suffice to construct X-reverse of F' provided we know that it exists (compare
(1). (2) of Theorem 4.5).

5. Reversible algebras constructed from quasigroups

Remember that a quasigroup can be defined as a structure (B;*,\,/) with
three binary operations which satisfies the identities

y*x(y\z) =z, (z/y)xy==1,
(zxy)/y=2z, y\(yxz)=1,
y/(z\y) =z, (y/z)\y = .

The last two identities are superfluous because they follow from the previous
ones; we have = = (y/z)\((y/z) * z) = (y/x)\y and z = (z = (z\y))/(z\y) =
y/(r\y). However, we shall mainly use these identities.

We shall explain the idea used below. Let us take any GPT of a quasigroup,
let us complete it by the element o on both sides, and let us divide it into squares
so that every square contains two elements of the GPT. The sides of squares will
be horizontal and vertical, and their length will be /2 (or, equivalently: the
diagonals of the squares will be parallel with the coordinate axes, and their
length will be 2). Let us call these squares shortly 2-squares. An illustrating
example is in Figure 3, where Pascal triangle modulo 2 is displayed; to obtain
a more transparent figure, all o = 0 are replaced by dots.

1
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1
1 1
1 1
1 1 1 1
1 1
1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1
1 1
1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1

Ficure 3.

Yo ra
vy v
uy Ty U1
o Zo vo Zq Yo 2o Yo
Tl 1 L Y1
N
Yo %o )
Uy uy

FIGURE 4.

If we know the (contents of the) 2-squares in one column, then we can con-
struct 2-squares of both neighbour columns. More precisely, two consecutive
2-squares of a column uniquely determine both the left and the right neighbour
of the upper 2-square. In the left part of Figure 4, u = (u,.u,) and ¢ = (v .v)
are determined by = = (z,,x,) and y = (y;,y,). Let us turn the GPT 90°
counterclockwise, and let us shift the new rows as it is displayed in the central
and the right part of Figure 4. Then every 2-square is (uniquely) determined by
the two 2-squares over it (u is determined by z, y); the corresponding rule en-
ables us to form a new GPT from 2-squares. (The figure obtained by turning the
original GPT need not be a GPT and need not contain any new GPT. However.
it contains arbitrarily large pieces of new GPT.) Since also v is determined by
2, y, the obtained GPT is L-reversible. This is the idea behind the following
lemma.
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LEMMA 5.1. Let (B;*,\,/) be a quasigroup, and let the operations (5, on
A = B? be defined by

(21, 2o) D (yy,y0) = (Y1 /70) /2y, 9,/ 7,) (5.1.1)
(T1,%)) ® (W1, ¥0) = (@, \@g, 2\ (Y1 \Yy)) (5.1.2)

for-all (&, xq). (Y, y,) € A. Then the following identities hold:

(zoy)@(ydz) ==, (5.1.3)
(z2y)d(yoz)==1. (5.1.4)

Proof. Let x = (x,,z,) and similarly for the other letters. To prove the
first identity, let us denote u =z @y, v =y Pz, and w = u @ v. Then we have

(uyswg) = (i /eo) 20y, /2y) (v, v9) = ((21/Y0) /Y15 21 /Y0) »
w = \uy = ((y,/2o)/2,)\(y, /) = @, ,
wy = ug\(v,\vy) = “0\((”0/?/1)\”0) =ug\y; = (Y, /2o)\y, = 2,

and therefore w = x. The second identity can be proved similarly. {For B finite
it also directly follows from the first one.) Let z,y,z € A and u = z @y,
r=y oz, w=u®v. We have

(uyug) = (z,\z(, x()\(yl\y0)> ) (v, v0) = (U1 \Yo» Yo \(21\2)) -

Since (w,,w,) = ((v,/uy)/uy, v, /u,), we have

wy = vy /g = (1 \yy)/ (26 \ (¥, \Yo)) = g s wy = wyjuyp = xof(s\vy) =,
and therefore again w = z. O

An illustrating example to Lemma 5.1 is in Figure 5. The starting algebra
is the additive group modulo 2; the pairs (7, j) in the constructed algebras are
replaced by the digits 2i+j (e.g., (1,1) by 3). The presented GPT corresponds
to the algebra on the left; to obtain a nicer figure, zeros are replaced by dots
in the GPT. The L-reverse algebra is displayed on the right. Notice that the
same GPT can be obtained also from an (L-reversible) algebra of cardinality 3.
(Sce Figure 1. The L-reverse GPT is displayed there, and therefore the right
algebra in Figure 1 corresponds to the left algebra in Figure 5. The former is not
a subalgebra of the later. However, this situation would take place if we replace
both algebras by partial ones, defined only on places necessary for the presented
GPT.)

The operations , ® constructed in Lemma 1 are L-reversible. Nicer,
C-reversible operations (on a bigger set) can be constructed from them by
the following lemma.
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[V S )
=N W o
= N W o
N = O W
N, O W
W N = O
= N W o
O W N =
O W N =
=N WO W

FIGURE 5.

LEMMA 5.2. Let the operations &, ® on A satisfy the identities (5.1.3).
(5.1.4). Let the operations B, X on the set C = A? be defined by
<171 vxo) By y) = (2 By Yy 2 y) (5.2.1)
(zy,x) By ) = (2g QD Yy @) (5.2.2)
forall (x,,2z,),(y;.y,) € C. Then the following identities hold:
(rBy)R(yBz) =y, (5.2.3)
(rRy)ByKz)=y. (5.2.4)
Proof. By the symunetry, it suffices to prove the first identity. If we denore
= (r;,x,), and similarly for other letters. we have for arbitrary .y, € C:
(rBy) W (yB2) = (rgcyy by B sz
= <(.1/[ '!/u) ) <!/() RN ) (y(j o ‘:1) & (:1 - :(.)\,’ = \/\.{/y- ,1/.‘.} = .
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(We did not use (5.1.1), (5.1.2). Hence Lemma 5.2 can be applied also for @,
®, which do not arise from a quasigroup by Lemma 5.1.) O

Lemmas 5.1 and 5.2 can be reformulated as follows:

THEOREM 5.3.

(1) If (B;*,\,/) is a quasigroup, then the operations @&, ® defined by (5.1.1)
and (5.1.2) are L-reversible; each of them is L-reverse of the other.

(2) If every of operations &, ® on a set A is L-reverse of the other, then
the operations B, W defined by (5.2.1) and (5.2.2) are C-reversible; each of them
is a C-reverse of the other.

COROLLARY 5.4. Let (B;%,\,/) be a quasigroup, and let the operations B,
X on A = B* be defined by

<"1':s* Loy Ty :E()> & (ys,yz,yl,y()) = <(y3/x(,)/l‘1, y3/$(n (yl/yz)/?)37 y_[/y?> s
5.4.1)

(g a9 1, 20) B (Ys) Yo Y1 Yo) = (@ \zg, o\ (Y3 \Ys)s ¥3\Yas Yo\ (Y1 \Yo))
(5.4.2)

for all (xy,xq,x,2), (Y3,Ys,Y1:Yy) € A. Then the operations &, ® are
C-reversible; each of them is the C-reverse of the other. (lLe., the identities
(5.2.3), (5.2.4) hold.)

To prove that, we can simply apply Lemma 5.2 and Lemma 5.3. The formulas
(5.4.1), (5.4.2) can be also written directly from Figure 6; the original GPT is
divided into rectangles, each of which consists of two 2-squares, and then it is
turned 90° counterclockwise (however, no shift of new rows is necessary).

T3
&ro
v vo
s T V3 v
wy o
T2 Zo Y2 Yo
u Y3 T3 Ty Y3 Y1
U Y2
u: uo
Y1 u3 uy
Yo

FIGURE 6.
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For the simplest nontrivial application of the corollary, we again take the
additive group modulo 2. Figure 7 shows an inner part of Pascal’s triangle mod-
ulo 2, divided into rectangles as explained above, and then rotated 90° coun-
terclockwise. Zeros are again replaced by dots. Figure 8 shows the 16-clement
algebra obtained by Corollary 5.4, one of its GPT, the suitable 1-element subal-
gebra and its C-reverse. Rectangles from Figure 6 are replaced by hexadecimal
digits in the obvious way (a rectangle containing (i, x,..r,.r,) is replaced by
8y + 4w, + 2, + ), and dots are displayed instead of zeros. The rectangle in
GPT corresponds to Figure 7.

11 1
1
1 [T 1
1 1 1 1
11 111
1 I
1 1] 1 1] 1
1 1 1 1
11 1 1
1
1] 1 1 1
1 1 1
1] 1 1 11
1 . 1 ]
1] 1 1 1] 1 ]
1 1 1 ]
1 1 1
1
1 1 1
1 1

FIGURE 7.

We can generalize the constructions presented above, so that we shall not
start from GPT, but from more general objects which are constructed similarly
as GPT, but instead of one binary operation * two binary operations =. -« are
used. The operation * will be used in odd steps, and ) in even steps. (The parity
of a step can be understand as the parity of = + y when G(r.y) is computed:
sce Definition 2.1.) In the left part of Figure 4, it means that

(1) * is used when the lower elements of 2-squares arce computed. and

(2) & is used when the upper elements of the 2-squares (in the next row)

are computed.
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Figure 8.

So we can generalize Lemma 5.1 as follows.

LEMMA 5.6. Let (A;x,\,, /), (A;®,\,,/ ) be two quasigroups (with the
same base set), and let the operations @, @ on A? be defined by

<171,~'L'()> @ <y17y()> = <(1/1 /( xo) /o Ty, Yy /e x()> ) (5-6'1)
(e x0) @ (Y Yo) = (@1 \p Zor Zo \e (U1 \, ¥o)) (5.6.2)

for all {x,,x,),{y,,y,) € A*. Then cach of &, ® is an L-reverse of the other.

(l.c.. the identities (5.1.3), (5.1.4) hold.)

The similar generalization of the formulas from Corollary 5.4 is straightfor-
ward. Now we show a modification of Lemma 5.1 based on another division of
GPT into 2-squares. Now every 2-square will contain the elements of GPT in
the lower left corner and in the upper right corner. The rotation and the shift
will not be changed. Then we can prove:

1
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LEMMA 5.7. Let (B;x,\,/) be a quasigroup, and let the operations &, & on
A = B? be defined by

(z,20) B (Y1, 50) = (Y1 /yo) /21,2, /7)) (5.7.1)
(1,20) ® (Y1, Y0) = (21 \Yg> 2o\ (21 \9,)) (5.7.2)

for all (xy,2,),(y;,y,) € A. Then each of the operations @&, © is L-reverse of
the other.

If we want to obtain similar formulas for R-reversibility, we have to join the
symmetry with respect to vertical axis. (Equivalently, we can replace the rotation
90° counterclockwise by the symmetry with respect to the axis y; remember that
it is oriented left downwards.)

6. Further constructions of reversible algebras

Here we shall present several simple constructions of reversible algebras from
finite algebras satisfying left cancellation law

V... (;It*y::r,*z == y:z),

or right cancellation law (given by similar formula, with = on the right side of ).
If the left or the right division with respect to * exists, we shall denote it by \ or
/, respectively. Further, we shall show how to obtain a new reversible algebras
from a given one and a permutation of its base set. We shall also investigate some
properties of the corresponding GPT. We start by an easy general theorem:

THEOREM 6.1.

(1) For every X € {L,C, R} the class of X-reversible algebras is closed under
subalgebras, homomorphic images and direct products.

(2) If an algebra (A;f,0) is L-, C- or R-reversible, then the algebra
(A;J, o f,0) is R-, C- or L-reversible, respectively.

Proof. For (1), we can use that every X-reversibility was characterized
by an identity (see Theorem 4.3). Notice that for direct products we may not
replace “X-reversible” by “reversible”. (In CA terminology, we obtain a reversible
local rule, but its reverse need not be binary.) For (2), we can use the same
characterization, but now the concrete form of identities is substantial: notice
that if g is an X-reverse of f, then goJ is an X-reverse of Jo f. O

Let A = (A;*,0) be an algebra which satisfies left or right cancellation law.
We shall consider operations & on A? defined by formulas of the form

(T, 20) © (Y1, Yg) = (o % B;,m)

558
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where «, 3,7 € {z,y} and 1,5,k € {0,1}. This seems to be the simplest possible
formula which really uses the operation *. (If we replace the right-hand side by
(Vi */3j> , we obtain a formula as simple as the original one. However, it can be
reduced to the original one by interchanging the components in all three ordered
pairs in the formula.) There are 64 such rules but

(a) some of them can be reduced to others;
(b) some seems to give only trivial algebras, and
(c) for some there is no hope to obtain reversible algebras.

So we can substantially reduce the number of considered rules. (Notice that the
form of the theorem below will be similar to that of Lemma 5.1.) By (a), we can
restrict our considerations to o = x. Left [right] cancellation law can be applied
probably only if k =14 or k = j, respectively. Therefore, by (c), we shall assume
k € {i,j}. Further, if ¢ = j = k, then the components z,, y, (n=1—1) play
no role in the construction; therefore we shall consider only the case ¢ # 7. If
Y € {a;,8;}, then we can use (left or right) division in each of z®y, y© 2
separately. So we could use Theorem 6.3 below and use a permutation instead
of *. Therefore, by (b), we shall exclude this case. (The above considerations
are not rigorous. However, they serve only to choose the variants of © into the
following theorem. They are not used in its proof.)

THEOREM 6.2. Let * be a binary operation on a finite set A, and let the
operations ©, be defined for all x = (v,,z,) € A%, y = (y,,y,) € A? as
follows:

(1) If = satisfies left cancellation law, then the operations ©,, (g are
C-reversible, and the operations ©,, ©4 are R-reversible.

(2) If = satisfies right cancellation law, then the operations ., ©5 are
C-reversible, and the operations ©,, ©, are L-reversible.

Proof. For each &, we can proceed as follows. Let = = (r,z,), and
analogously for the other letters. Let us (formally) compute u = %y, v = y*z.
We want to reconstruct both components of one of x, y, z from u, v. Two
of six components are given immediately, and a further one can be obtained by
/ or \ applied to suitable components of u, v. In every case, we obtain both
components of one variable x, y, or z. So we could write a formula for the
reverse operation. Its verification is then very easy.
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= {y, * Y- z,) . We

. ~ m P o p [
As an example consider @, . Then u = (Z, *xy,,), Therefore
= u,\v, . Therefore

immediately know y, = u,, 2, = v, and we can compute Yo
the C-reverse of @, is
(uy ) 00y (o, v0) = (ug\vy, ug) -

Similarly, we can obtain, e.g., the C-reverse of «i:

(g, ) @ (v, 00) = (ug\vys u,)

and also the requested reverses of all remaining operations. -

Remark. Some of the operations from Theoremn 6.2 give GPT of very simple
structure only. E.g., these GPT considered as ternary relations on N arc de-
finable in Presburger arithmetics (the elementary theory of (IN:+) ). We do not
prove that in the present paper. However, ) for n =1,4.5,7 can give GPT of
rather complex structure. For example, the operation * on {0, 1.2} defined by
rxy=y if xz#2, 2x0 =1, 2x1 =2, 2%2 =10
can be used to define the binary operation of the left algebra in Figure 2 as - .
THEOREM 6.3. Let x be an X-reversible (X € {L,R,C}) opcration on a
finite set A, and let ¢ be a permutation of the set A. Then the operations -
© defined (for all r,y € A) by

rhy=¢lxxy), (6.3.1)
Ty = ¢(x)* dy) (6.3.2)

are X-reversible.

Proof. Let @ be an X-reverse of * and ¥» = ¢~ !. Then the operation

v ey = () © Y(y)

is an X-reverse of &. Indeed, we have

(oY) o (ydz)=v(dexy)) ov(oly*z)) = (rxy) - (y*2).
what is equal to z, y or z (depending on X). Up to now finiteness of A was
not used. For ® we can use Theorem 4.6. If A is finite, then : - is X-reversible.

—

and the definitions of @ and 7 have the same form in essential. |

COROLLARY 6.4. Fuvery X-reversible (X € {L,C, R}) operation - on a [i-
nite set A can be obtained from an idempotent X-reversible operation = and
permutation ¢ by formula (6.3.1) (and by formula (6.3.2) as well).

Proof. If @ is X-reversible, then the unary operation h(x) =& - & is a
permutation of A For any idempotent operation * the identity (6.3.1) would
imply = = ¢ (h(:r)); hence ¢ = h='. If we know ¢ (and 1), we can use (6.3.1)

to cefine the operation *. Verification of required properties is straight forward.

The proof for (6.3.2) is similar. 7
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loxanmprLE 6.5, We shall apply Corollary 6.4 to the idempotent C-reversible
operation
(2, 20) O (U1, %0) = (€1, 90)

on the set A%, where A = {0,1,2}. Any element (i, j) € A? will be replaced by
the digit 37 + j; this method was already used above for A = {0,1}. (The main
reason why we use a bigger set here is to obtain substantially different examples
of GPT.) Notice that the definition of @), is still simpler than the definitions
in Theorem 6.2, and that all GPT of the algebra (A;®,,0) are trivial: they
contain nonzero elements only on the margins of width depending on the initial
word. A typical example is in Figure 9 (where the C-reverse algebra is on the
right). Two next figures contain GPT of algebras obtained from (A;™,,0) by
the formula (6.3.1).

012345678 1192 - 3,45 65, . T 8, 012345678
- 17..2%.7.7173.32°6.3°1°2 6.6
0101201201 2| 4152 -1 .35, 647266 01000333666
1{012012012| 4% 52 -1 .,233183,. .66, 111111444777
2/012012012t 2. 1. .2 .45.63,. .66/12/22255583838
3/345345345(52 - 1. .2 .,1,233,.63,..6,3/00033366F6
4(3453453456/(2 - 1. .52, .12 .33,.63,..14/111444777
5/345345345 | 41 5212 - 333,.63,. 1512226555888
616786786781 52 41,2 - 3.3, 6.3,16/000333666
7/678678678]|1 - 52 41,2 © 8335 6071111444777
8/6786786°78 "522‘.'i1;22" -‘3323-_ 8/222555888
S . 3.3
R O

11?'22?':'i1T" 222 :'i1;2?'. .'?3235'§6235':'§6266
111‘52?._.i1?.:.522 i1;2?.' ' fsgsé.?szsé. .?6266
2 1.2 et .7373°.7673"." .76

FIiGURE 9.
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