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ONE-DIMENSIONAL CELLULAR AUTOMATA 

IVAN K O R E C 

(Communicated by Tibor Katrindk ) 

ABSTRACT. Generalized Pascal triangles (GPT) are constructed top-down from 
finite algebras A = (A; *,o) and words w G A + similarly as the classical Pascal 
triangle is constructed from (N; + ,0 ) and the constant 1. A G P T will be called 
reversible if it also can be locally constructed bot tom-up, using a binary oper­
ation. An algebra will be called reversible if all its G P T are reversible. Several 
kinds of reversibility are introduced, and some constructions of reversible alge­
bras are presented. Reversible algebras are constructed from algebras satisfying 
cancellation laws, or from other reversible algebras. A relationship to reversibility 
of cellular au tomata is briefly discussed. 

1. Introduction and notation 

Compu ta t i ons of cellular a u t o m a t a (CA) are cons t ruc ted in the direc t ion of 

t ime: the configura t ion in time t -f 1 is compu ted from the configura t ion in time 

/ . (Definitions for one-dimensional CA are presen ted in the nex t sec t ion.) It is 

interes t ing and impor tan t to know whe ther they can be cons t ruc ted also in the 

opposi te direc t ions, whe ther they are reversible. Th i s ques t ion was s tudied for 

a long time, see, e.g., [Ri], [Ka]. There are only few me thods how to cons t ruc t 

reversible CA. 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 68Q80; Secondary 08A70. 
K e y w o r d s : cellular automata , reversibility, cancellation law. 
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In the present paper, the reversibility is studied for generalized Pascal trian­
gles (GPT; defined below) which correspond to computations of one-dimensional 
CA with 2-element neighbourhood from finite initial configurations. The case of 
CA with 2-element neighbourhood is the simplest non-trivial one, and general 
neighbourhood can be reduced to 2-element ones (in some sense). A special 
case is studied when the reverse computations also use a binary local transition 
function; therefore we spoke about binary reversibility in the title. (For one-
dimensional CA in general, the number of arguments of reverse transition rule 
can be greater, and for two- and more-dimensional CA it even cannot be recur­
sively estimated because the reversibility problem is undecidable.) Reversibility 
of algebras generating GPT is investigated from algebraical point of view, for ex­
ample, identities for direct and reverse local transition functions are presented. 
However, for GPT the CA terminology is not used; we shall speak about fi­
nite algebras of signature (2, 0). Several algebraical constructions of (in a sense 
nontrivial) reversible algebras for GPT are given; they can be immediately trans­
formed to constructions of one-dimensional reversible CA. The constructions will 
usually start with algebras satisfying cancellation laws. Notice that the cancel­
lation laws can be checked very easily from Cayley tables, while reversibility is 
not so easy to recognize. 

2. Generalized Pascal triangles and cellular automata 

If A is an alphabet (i.e., a finite nonempty set), then A + will denote the 
set of all nonempty words in the alphabet A . The length of a word w will 
be denoted |iv|. The ith symbol of w will be denoted by w(i); the starting 
symbol is iv(0), and hence the last symbol is Hj(|i/j| — l) . Z wrill denote the set 
of integers, and N the set of nonnegative integers. For every n E N we denote 

Dn = {(x,y) E N x N | x + y > n - l} . 

By an algebra, we shall always understand a finite algebra A— (A; *,o) of 
signature (2,0) and satisfying the identity o * o = o. 

DEFINITION 2 .1 . To every algebra A -= (A; *, o) of signature (2, 0) and every 
word w E A + the function G = GPT(*4, w) will be the mapping G: HI ,, — A 
defined by 

w(x) if x + y = \w\ — 1 , 

o*G(0,7V- 1) if x = 0, y > H , 

G(x- l , 0 ) * o if 2/ = 0, x > H , 

{ G(x - 1 , 1 / ) * G(x, y-1) if x + y > \w\ , x > 0 , y > 0 . 

G{x,y) = < 
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The functions of the form GPT(*4, w) for a finite algebra A and a word w G A + 

will be called generalized Pascal triangles (abbreviation: GPT). 

An example of GPT can be found in Figure 1. It arises from the algebra on 
the left; the role of the algebra on the right will be explained later. It is also clear 
from this figure what are rows and columns of GPT, and how the coordinate axes 
J-, y are oriented (x right downwards and y left downwards). Any value G(x,y) 
is written into the unit square with the top vertex (x, y) (and the bottom vertex 
(x + l,y+l)). 

0 1 3 

0 0 1 0 
1 3 3 3 
3 1 0 1 

0 1 3 

0 

1 

3 

0 0 3 
3 3 0 
1 1 1 1 3 . 3 . . . 3 

1 V . V 1 V / . V 3 
1,3 1 , . . 3 1 , . . 1 , 3 1 , 

i V r . 3 i w . 3 . V i \ 3 i 
.113 . 3 1 ,3 , 3 1 3 

i V . V . - A V . V . W . V a 
1 V . V 1 V . v 1 V . v v v . V 3 

i V . V . - A V i V . V . v . v i V A 
iV.ViV.v . - . 3 .ViV. - . ; iV.ViV 

, 3 j 3 ; . - . 3 . V . - . - . ' . - . - . 3 . V i 3 j 3 ; / . 3 j 3 
i V . V i V . v i V . v . w . v A V i V . - . Y s 

1,3 1 , . . 3 1 , . . 1 , 3 1 , 3 1 , . H 1 ,3 1 , 
i V i - . Y . v A V v Y . v . v . w . w A V i - . 3 ! 

i V r A V v v . v A V v v . v . v . v . v . v A V i 
1 3 . 3 . . . 3 3 3 

1 V . V 1 V . V 1 V . V . V . V 1 V . W . V . V . W . W . V 3 
i V . V . - A V i V . V . v . v i V . V . v . v . v . v . v . v i V A 

lV.13+V.^^•.3.V+V.•.;l13^13•lV.•.•.•.•.•.•.•.•.•.;lV.13•lV 
i V . V . ^ . V . v . v . - A V i V . V . - A V . v . v . v . v i V . V v 3 . ^ 

F I G U R E 1. 

GPT were originally defined in [Kl] by study of the structure of real-time 
systolic trellis automata, see [CGS1], [CGS2]. However, GPT also can be used 
to describe computations of one-dimensional cellular automata (abbreviation: 
CA) from finite initial configurations. To explain that, we shall briefly repeat 
the notion of one-dimensional CA at first. 

DEFINITION 2.2. A one-dimensional CA is an ordered quadruple 

C=(S,N,f,q), (2.2.1) 
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where S is a finite set of states: 
N = (a±,. .. , a ) , a neighbourhood vector, is a finite sequence of integers: 
/ : Sn —> S is a local transition function; 
q G S, the quiescent state, satisfies f(q,. .. , q) = q. 

A computation of one-dimensional CA C is a function F: Z x N —- S such 
that 

F(z, t + l) = f(F(z + a,,t),..., F(z + an, t)) (2.2.2) 

for all z G Z, l G N. 
The restrictions of F to sets Z x {t}, t G N, wrill be called configurations. 

for l = 0 the initial configuration. A configuration (at time f) is called finite if 
F(z,*) = g for all but finitely z G Z. 

By displaying computations of one-dimensional CA we usually use the coordi­
nate system with "space" axis z horizontal and "time" axis t vertical, oriented 
downwards. (Then we have z ~ x — y and t = x + y, where x. y are coor­
dinates used to display GPT .) For CA with neighbourhood vector (—1, 1) the 
computations from finite initial configurations look like GPT. (More precisely, 
every such computation consists of twro overlapping GPT which do rrot influence 
each other.) However, also for another neighbourhood vectors there is a rela­
tionship between computations of one-dimensional CA and GPT. To establish 
it, we sometimes must use afiine transformations of coordinate systems and con­
sider ordered k-tuples of states of CA as elements of algebras generating GPT 
(k depends on the neighbourhood vector). Details can be found, e.g.. in [K3]. 

Remark . The idempotent constant o in the considered algebras is not impor­
tant for reversibility. We leave it here because it is related to the quiescent state 
of one-dimensional CA. It also is not substantial for reversibility of CA, but can 
be important for other reasons. 

3. The monoid of binary operations 

DEFINITION 3 .1 . The set of all binary operations on A will be denoted 
Op 2 (A) . 

For every f,g G Op2(A) we define 

h = f°9 <=> (Vx\HGA) (h(x,y) = f(g(x,y),g(y,x))) ; 

this operation o will be called binary composition (on Op 9 (A)) . 
Further, we denote I A and J A the first and the second projection on A . i.e.. 

for all x, y G A 
l
A(x^y) = xi J

A ( x ^ ) = y-
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Powers of an opera t ion / G O p 2 ( A ) will be defined by / ° = I A and / n + 1 = 

/ " o / for all n G N. If there is (unique) g such that go/ = / o g = I A , w e 

shall write g = f~x . 

Since A will be usually fixed, we shall often delete the subscript A . In most 
impor tan t cases, A will be a finite set of cardinal i ty at least two, but these 
assumpt ions will be repeated in all theorems where it is necessary. 

LEMMA 3 . 2 . For every set A the structure ( O p 2 ( A ) ; o, I A ) is a monoid. Its 

centre (i.e., the set of elements which commutes with every element of O p 2 ( A ) ) 
consists of I A and J A . 

P r o o f . To prove associativity of o, let us consider a rb i t ra ry f,g,h G 

O p . , ( A ) . For all x,y G A we have 

[ ( / ° g) ° h] (x, y) = [/ o g] (h(x, y), h(y, x)) 

= f(g(h(x, y), h(y, x)) ,g(h(y, x), h(x, y))) 

= f([goh\(x,y),[goh](y,x)) = [/ o (g o h)] (x, y) , 

and hence ( / o g) o h = / o (g o h). Similarly, we have, e.g., 

[fo\](x,y) = f(l(x,y),I(y,x)) = f(x, y) = l(f(x, y), f(y, x)) = [I o f}(x, y), 

[f o ,]}(x, y) = f(j(x, y), J(y, x)) = f(y, x) = j ( / ( . t , y), f(y, x)) = [3 o f](x, y), 

hence I is the uni t element, and J belong to t he center. 

Now7 assume t h a t h belongs to the center of O p 2 ( A ) . For every / G O p 2 ( A ) 
and ,r, y G A we have [f o h](x,y) — [ho f](x,y), i.e., 

f(h(x, y), h(y, x)) = h(f(x, y), f(y, x)) . (3.2.1) 

If for some x, y we have [h(x, y), h(y, x)} ^ {x,y}, t h e n we can choose the 

values of / on the (two or three) ordered pairs (h(x, y), h(y, x)), (x,y), (y,x) 

so t h a t (3.2.1) wrill not hold. Therefore we have {h(x, y), h(y, x)} = {x,y} for 

all j \ y G A (we also can express t h a t by t he formula h o h = I ) . ]n par t icular , 

h(a\x) -• x for all x <E A. 

If h ^ I and h ^ J , t hen there are u, v, w, z G A such t h a t 

h(u, v) = u ^ v = h(v, u) and h(w, z) = z -£ w = h(z, w) . 

By (3.2.1), we have f(u,v) = h(f(u,v),f(v,u)) for all / ; we may choose 

f(u.c) — w, f(v,u) = z, and we obta in w = h(w,z), wha t is a contradic­

tion. • 

To every / G O p 2 ( A ) a mapp ing / : A 2 —> A 2 can be na tura l ly assigned 

by the formula f((x,y)) = (f(x,y),f(y,x)) for all x,y G A . T h e mapp ing 

/ (—* / is an injective homomorph i sm of ( O p 2 ( A ) ; o, 1A) into t h e monoid of 

all mappings of A 2 into A 2 . T h e range of the homomorph i sm consists of all 

F: A 2 —> A 2 which satisfy F((x,y)) = (u,v) <^=> F((y,x)) = (v,u) for all 

.r, //, a, v G A . 
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L E M M A 3 . 3 . If A is a finite set and / , g G O p 2 ( A ) . l/ien: 

(!) g ° / = I A Z /
 a n ( i o n ^ ^/ / ° g = ! A / 

(2) o o / = J A z/ and On/;// z/ / o O = J A ; 

(3) «/ / - 1 exists, then it is a term operation in the algebra ( A ; / ) •' 

(4) if f ° g — J A , l/ien g ^s a term operation in the algebra (A; / ) • 

P r o o f . We can use the homomorph ism / K-> / ment ioned above, and^prop-

erties of mappings of a finite set into itself. For example, if fog = I , t hen fg=\ 

(where 1 denotes the identical mapp ing on A 2 ) , hence bo th / , g are bijections 

and gf = 1; then we have g o / = 1 . For (3) we can use t h a t if / _ 1 exists, then 

fn -= I for some positive integer n ; then / _ 1 = / n _ 1 . For (4) we can t ransform 

/ o g = J A into / o (O o J ) = 1, which gives O o J = / n _ 1 for some positive n. 

Then we have g = / n _ 1 o J , which immedia te ly gives a t e rm for g. D 

R e m a r k . We could also define an opera t ion • on O p 2 ( A ) by t he formula 

[fm9](x,y) = f(g(y,x),g(x,y)). 

Notice t h a t / • g = / o J o O . We can obta in similar s t a t emen t s for • instead of 
o, only t he roles of I, J will be interchanged. This s t a t emen t can be considered 
as a duali ty principle; we shall nei ther develop nor use it. 

4. R e v e r s i b i l i t y and r e l a t e d ident i t i e s 

D E F I N I T I O N 4.1. Let /,O e 0p2(A) and O,b e Z. 
(1) For a both-s ide infinite sequence x = (. . . x _ 1 , x 0 , x 1 ? . . .) G A z 

we denote by Nex t a 6 ( / , x ) the both-s ide infinite sequence 

y = ( • • • y _ i J 2 / 0 ' 2 / i ' - - - ) e A Z s u c h t h a t 

% = f(Xi + aiXi + b) for a R l G Z -

(2) We say t h a t g is an (a,h)-reverse of f if for all x G A z 

N e x t a ^ ( O , N e x t M ( / , x ) ) = x . (4.1.1) 

(3) We say t h a t / is (a, b)-reversible if there is an (O, b) -reverse of / . 

(4) We say t h a t / is reversible if / is (O, 6) -reversible for some cub G Z . 

(5) We shall write L-reverse, C-reverse, R-reverse instead of 

(0, 1)-reverse, ( — 1 , 0)-reverse, ( — 2, —1)-reverse, respectively . 

Analogously for the word ^reversible'1. 

The notions from the above definition will be used also for groupoids and 

algebras of s ignature (2.0) in the obvious wTay: they wrill concern the1 binary 

operat ions of the algebras. (The base sets and the cons tan ts will be preserved.) 

The let ters L. O, R abbrevia te the words left, central , right, respectively . 
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DEFINITION 4.2. A G P T G will be called reversible if there is a reversible alge­
bra A and a word w such that G = GPT(A,w). Analogously for (a, 6)-reversi­
bility, and also for L-, C- and R-reversibility. 

To explain the definitions, let us consider two consecutive rows x, y of a 
GPT (completed on both sides by the quiescent element, i.e., the constant o 
of A): 

^i-2 ^i-1 ^i ^i + 1 ^i+2 ' m m (4 .2 .2) 

2/i—-2 y%-l yi 2/i-fl yi+2 

If / is the binary operation of the corresponding algebra, then yi = f(xi)xi^l) 
for all i, and hence y = Next 0 -, (/, x). A reverse g of f computes locally x from 
y, but it is not clear which y. are necessary to obtain xi; they are specified by 
the pair (a, b). 

Examples of L-reversible algebras (and also an L-reversible GPT) can be 
found in Figure 1; each of two ctlgebras there is L-reverse of the other. Examples 
of C-reversible algebras (and GPT) can be found in Figure 2. 

0 1 2 3 4 5 6 7 8 4 1 3 . .3 . . 5 4 2 2 5 8 . 
13 4 . . 1 . . 1 7 3 6 7 8 . . 0 1 2 3 4 5 6 7 8 
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. V б i 3 . •.-.•.•.•.•.•.•.•.•.•.•. •.-.•. 
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F I G U R E 2. 

T H E O R E M 4.3. Let f,g e O p 2 ( A ) . Then: 

(1) If f is reversible, then f is (a, b) -reversible for some pair 

( a , 6 ) e { ( 0 , l ) , ( - l , 0 ) , ( - 2 , - l ) } . 

(In other words, f is L-, C-, or R-reversible.) 

(4.3.1) 
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(2) g is an L-reverse of f if and only if for all x, H, z £ A 

g(f(x,y)J(y,z))=x. (1.3.2) 

(3) g is a C-reverse of f if and only if for all x, y, z £ A 

g(f{x,y)J(y,z))=y. (4.3.3) 

(4) O 25 an R-reverse of f if and only if for all x+y^z £ A 

g(f(x,y),f(y,z)) = z. (1.3.H 

P r o o f . To prove (1), let us assume tha t / is (O, b)-reversible; let g be the 

function from (4.1.1). T h e condit ion (4.1.1) can be rewri t ten as 

9(f(*i + (l,Xi + a+Y),f(Xi + biXi + b+l)) = Xi • ( 4 A r ) ) 

Since (4.1.1) holds for all x £ A < we may consider the latest formula as an 
identi ty with variables x.i+a, . . . , x- . (Then i could be fixed, e.g., replaced b\ 
zero.) T h e subscr ipts ought to be evaluated, hence, e.g., if a = 0. b = 1. then 
the variables xi,a+x , xi+b are identical. We may assume O < b: otherwise we 
can exchange O, b and replace g by O o J . 

If {a, b}n{ —1,0} = 0, then xr does not occur on the left-hand side of (4.3.-")). 

and hence (4.3.5) implies the identi ty x = y. Then c a r d ( A ) < 1. and there is 

only one binary operat ion on A . In this trivial case, / is (a, b) reversible for all 

pairs (a, b) £ 7? . Hence we may assume {a, 6} D { — 1,0} 7̂  0 in what follows. 

If b > O + 2, then four dist inct variables occur in the left-hand side of (4.3..")). 

Three of t hem are dist inct from x? , hence they can be replaced by any other 

variables. By sui table subs t i tu t ion , we obtain a necessary identi ty for L-. C- or 

R-reversibility. (For example, if 6 = 0, we have to replace x. . x , , l>v x , . 

,TA, respectively.) So we may assume b < a + 1 in what follows. 

Now there are only five remaining cases, three from (4.3.1) and two with 

a = b. T h e last two must be t ransformed. 

[f O = b = — 1 , we may replace the opera t ion g by the opera t ion g{(x, y) = 
g(x,x). Then we have 

fh (f(Xi-\ > Xi)i f(xHxi+\)) = 9(f(Xi-n * J , / ( * ; - 1 , ^ / ) ) = x, : 

hence / is C-reversible. For O = 6 = 0 we can similarly use the function 

O2(:r,H) = O(H,H), and the proof of (3) is completed. 

T h e identit ies in (2) (4) almost immediate ly correspond to the definition of 

L-. C-, and R-reverse. • 

Generally speaking, (O, b) -reverse of a function is not uniquely determined., 
as we can see from the following example. 
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E X A M P L E 4 .4 . Let A = N, and let C, L, R be the pair ing func t ions (i.e., 

C(x,y) = (x + y)(x + y + l) + x a n d C(L(x),R(x)) = x for all x,y £ N) . T h e n 

the function C is L-reversible, C-reversible, and also R-reversible. I ts L-reverse is 

L, (T, y) = L(x), and its R-reverse is R1(x, y) = R(y). There are infinitely many 

( '-reverses of C; the simples t ones are L2(x,y) = L(y) and R1(x,y) = R(x), one 

of more complica ted is g(x,y) = C(L(R(x)), R(L(y))). T h e function f(x,y) = 

C(C(.r, //), C(x, H)) has infinitely many X-reverses for all three X £ {L, C, R} . 

If we assume that A is finite, the s i tua t ion is simpler as we can see from 

the following theorem. Roughly speaking, the s i tua t ion is similar to that with 

inver t ing of mappings of a set in to itself. No t ice that the no t ion "X-reverse" 

corresponds to a one-sided inverse of a mapping . Hence the term "left X-reverse" 

would be more adequa te ( then also "right X-reverse" ough t to be in t roduced) . 

However, since we are in teres ted mos t ly in opera t ions on finite se ts, this more 

complica ted term seems to be unnecessary in the presen t paper . 

We shall say that / £ O p 2 ( A ) substantially depends on bo th its a rgumen ts if 

there are :r, ;/j, z, a, D, w £ A such that / ( x , z) ^ /(/j , z) and f(u, v) ^ f(u, iv). 

T H E O R E M 4 . 5 . Let A be a finite set and / , g £ O p 2 ( A ) . Then: 

(1) / / g is a C-reverse of f. then g = f~l o J . 

(2) / / g is a L-reverse or an R-reverse of / . then g — f~l . 

(\\) For every (a, b) £ Z" . a ^ b there is at most one (a, b) -reverse of f. 
(4) If f substantially depends on both its arguments, then there is at most 

one pair (a, b) £ Z such that a < b and f is (a, b) -reversible. 

P r o o f . For (1) and (2) let us subs t i tu te z := x in to the iden t i t ies (4.3.2), 

( 1.3.3), (4.3.4); the ob tained iden t i t ies correspond to the equa t ion go f — J A in 

the second case ((1) in the theorem), and to go f = I A in the o ther cases. From 

these equa t ions g can be (uniquely) compu ted . 

To prove (3), let us deno te f1(z) = / ( z , z ) , gx(z) — g(z,z) for all z £ A . 

The iden t i ty (4.3.5) implies g1(/i(^,)) = z, hence fx, g1 are pe rmu ta t i ons of 

A . Notice that a1 is uniquely de te rmined by / (and also by fx, of course). 

From similar reasons as in the prev ious theorem, we may assume a < b. If 

0 ^ {O,O + l ,b , b + 1 } , then :r- does no t occur in the lef t-hand s:.de of (4.3.5), 

and hence c a r d ( A ) < 1. Then (3) trivially holds because there is exac t ly one 

binary opera t ion on A . Le t 0 £ {a, a -f 1, 6, b + 1} in wha t follows. 

For b > a -h 1 let us dis t inguish four cases: 

a = - l , a = 0 , b = - l , 6 = 0 . (4.5.1) 

In the first case, (4.3.5) implies the iden t i ty g(f(y,x),f(z,z)) = x. Since / . is 

a pe rmu ta t i on of A , we can replace f(z,z) by (any variable, e.g.) 2 , and we 
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obtain the identity g(f(y,x),z) = x. The last identity implies that g depends 
only on its first argument, and / only on its second argument, i.e., 

9(u,z) = : g ] 0 ) , f(y,x) = fi(x) 

for all u,z,x,y E A . Since g1 is uniquely determined by / , the operation g is 
uniquely determined, too. (The statement about / will be used later.) For the 
remaining three cases in (4.5.1) we can similarly consider the identities 

d(f(x, y), z) = x , g(z, f(y, x)) = x , g(z, f(x, y)) = x . 

Now only three cases b = a -f 1, —2 < a < 0 remain. But in these cases, explicit 
formulas for g were given in (1) and (2). 

To prove (4), notice that if / is (a, b)-reversible, then (4.3.1) holds. (This is 
not an immediate consequence of Theorem 4.3. (1), but can be proved similarly.) 
Further, if two of identities (4.3.2) --(4.3.4) hold, then wre can obtain an identity 
of the form x = y. Then card(A) < 1, and / cannot depend on both arguments, 
wmich is a contradiction. • 

THEOREM 4.6. Let A be a finite set, f,g E Op2(A) and X e {!., C , / ?} . 
Then f is an X-reverse of g if and only if g is an X-reverse of f. 

P r o o f . Let us consider X = C, and let us write * instead of / and 0 
instead of g. We have to prove that the identity 

(x * y) 0 (y * z) = y (4.6.1) 

implies the identity 
(xGy)*(y®z)=y. (4.6.2) 

Then, by the symmetry, also the later identity implies the former. 
Let us consider the mapping F of A 3 into A 3 defined by 

F(x, y, z) = (x * y, y * z, z * x) . 

The mapping F is bijective; to show that, we prove that F is injective (and use 
that A 3 is finite). If F(x1,y1,z]) = F(x2,y2, z2), then, by the definition of F. 
we have 

xi * 2/i = X2 * 2/2 ' 2li * zi = 2/2 * Z2 > zi * xi = Z2 * X2 ' 

By the first two equalities and (4.6.1), we have 

2/i = (xi * 2/i) ® (2/i * zi) = (x2 * 2/2) © (2/2 * z2) = 2/2 • 

Similarly, we can obtain xx = x2 and zx = z2. Hence F is injective, and then 
also bijective. Now let us define 

G(u, D, w) = (w 0 u, u 0 v, v 0 w) 
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for all (u,v,w) G A 3 . Let us take arbitrary x,y,z G A . The third and the 
first component of F(x,y,z) are z * x and x * y, respectively. Hence the first 
component of G(F(x, y, z)) is equal to (z * x) 0 (x * y), which is equal to x by 
the identity (4.6.1). Similarly, the second and the third component are y and 
z. Therefore GF is the identical mapping on A 3 . Since F is bijective, we have 
G = F~ ] , and hence 

F(G(x,y,z)) = (x,y,z) 

for all x,y,z G A . By the definitions of F, G, the first component of the 
left-hand side is (z 0 x) * (x 0 y), and hence (4.6.2) holds. 

The cases X = L and X = R can be proved similarly. We have to define 
G(u, v, w) = (u 0 v,...) and G(u, v, w) = (v 0 w,...), respectively. • 

Remark . We could use any An, n > 3 instead of A 3 in the proof above. 
However, A 2 would not suffice. On the other hand, considerations with A 2 

suffice to construct X-reverse of F provided we know that it exists (compare 
(1), (2) of Theorem 4.5). 

5. Reversible algebras constructed from quasi groups 

Remember that a quasigroup can be defined as a structure (B; *, \ , / ) with 
three binary operations which satisfies the identities 

y * (y\x) = x , (x/y) * y = x , 

(x*y)/y = x, y\(y*x) = x , 

y/(x\y) = x, (y/x)\y = x. 

The last two identities are superfluous because they follow from the previous 
ones; we have x = (y/x)\((y/x) * x) = (y/x)\y and x = (x * (x\y))/(x\y) = 
y/(x\y). However, we shall mainly use these identities. 

We shall explain the idea used below. Let us take any GPT of a quasigroup, 
lot us complete it by the element o on both sides, and let us divide it into squares 
so that every square contains two elements of the GPT. The sides of squares will 
bo horizontal and vertical, and their length will be \/2 (or, equivalently: the 
diagonals of the squares will be parallel with the coordinate axes, and their 
length will be 2). Let us call these squares shortly 2-squares. An illustrating 
example is in Figure 3, where Pascal triangle modulo 2 is displayed; to obtain 
a more transparent figure, all o = 0 are replaced by dots. 
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FIGURE 4. 

If we know the (contents of the) 2-squares in one column, then we can con­
struct 2-squares of both neighbour columns. More precisely, two consecutive 
2-squares of a column uniquely determine both the left and the right neighbour 
of the upper 2-square. In the left part of Figure 4, u = (ux, u{)) and v = (r{. r{)) 
are determined by x = (x1,x()) and y = (y1,y0). Let us turn the GPT 9()c 

counterclockwise, and let us shift the new rows as it is displayed in the central 
and the right part of Figure 4. Then every 2-square is (uniquely) determined by 
the two 2-squares over it (H is determined by x, y); the corresponding rule en­
ables us to form a new GPT from 2-squares. (The figure obtained by turning the1 

original GPT need not be a GPT and need not contain any new GPT. However, 
it contains arbitrarily large pieces of new GPT.) Since also v is determined by 
x, 2/, the obtained GPT is L-reversible. This is the idea behind the following 
lemma. 
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LEMMA 5.1 . Let ( B ; * , \ , / ) be a quasigroup, and let the operations 0 , 0 on 
A = B 2 be defined by 

(xpx 0 ) e(HpHo) = ((yi/xo)/xnyi/xu), (5.1.1) 

(xi, ^0) ® (2/i,2/o) = W W *o\(2/i\2/0)) C5-1-2) 

/ « r all ( .rp.r ( )), (yl,y0) G A . F/ieH l/ze following identities hold: 

(x®y)®(y(Bz) = x, (5.L3) 

(a: 8) 2/) © (2/ ® 2) = x . (5.1.4) 

P r o o f . Let x = (x1,x0) and similarly for the o ther le t ters . To prove the 

first identity, let us deno te u = x@y, v = y 0 z, and w = u 0 v. T h e n we have 

( " P u o > = ((yi/xo)/xi>y\/xo)' (vnvo) = ((zi/yu)/yvzi/yo)> 

w{ = H,\H0 = ((yJxo)/xi)\(yJxo) = xi > 

w0 = H0\(U!\U0) = u0\((v0/yi)\v0) = u0\Vl = (yJx0)\yA = x0 , 

and therefore w = x. T h e second iden t i ty can be proved similarly. (For B finite 

it also direc t ly follows from the first one.) Le t x,y,z E A and u = x 0 y, 

r = y 0 z , w = u 0 v. We have 

(Hp u()) = ( t r 1 \ x o , x 0 \ ( H 1 \ H o ) ) , (v!,v0) = (H 1 \H 0 ,H 0 \ ( z 1 \ z ( ) ) ) . 

Since ( « ; p w0) = ((v1/u0)/u1, vju0), we have 

"0 = lh/uv = (?1 i \y0)/( : ro\(2/i\2/o)) = x o ' ^ 1 = ^ 0 / ^ 1 = ^o /C^A^o) = x i ' 

and therefore again w = x. • 

An i l lus tra t ing example to L e m m a 5.1 is in Figure 5. T h e s tar t ing algebra 
is the addi t ive group modulo 2; the pairs (i,j) in the cons t ruc ted algebras are 
replaced by the digits 2i-\-j (e.g., (1 , 1) by 3 ) . T h e presen ted G P T corresponds 
to the algebra on the left; to ob ta in a nicer figure, zeros are replaced by do ts 
in the G P T . The L-reverse algebra is displayed on the right . Notice t ha t the 
same G P T can be obta ined also from an (L-reversible) algebra of cardinal i ty 3 . 
(See Figure 1. The L-reverse G P T is displayed there, and therefore the right 

algebra, in Figure 1 corresponds to the left a lgebra in Figure 5. T h e former is no t 

a subalgebra of the la ter. However, this s i tua t ion would take place if we replace 
bo th algebras by par t ia l ones, defined only on places necessary for the presen ted 
G P T . ) 

T h e opera t ions 0 , 0 cons t ruc ted in L e m m a 1 are L-reversible. Nicer, 
C'-reversible opera t ions (on a bigger set) can be cons t ruc ted from t h e m by 
the following lemma. 
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L E M M A 5.2. Let the operations 0 . ® on A satisfy the identities 

(5.1.4). Let the operations EB, [3 OH the set C = A 2 be defined by 

(xx, x0) BB [Vl, y0) = (x0 ®yvy1@y{)), 

(xvx0) ®{yi,y0) = (x0(g)y1,y1 ® y0) 

for all (x},x0), (y^,y0) £ C . Then the following identities hold: 

(x ffl y) KI (y ffl z) = y , 

(x^y) ffl (yMz) = y . 

(5.1.3). 

(5.2.1) 

(5.2.2) 

(5.2.:,) 

(5.2. П 

P r o o f . By t h e symmetry, it suffices to prove t h e first identity. If we denoi e 

.r = (,r J,.T ( )), and similarly for other letters, we have for a rb i t rary x.y. : t C : 
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(We did not use (5.LI), (5.1.2). Hence Lemma 5.2 can be applied also for ©, 

0 , which do not arise from a quasigroup by Lemma 5.1.) D 

Lemmas 5.1 and 5.2 can be reformulated as follows: 

T H E O R E M 5.3. 

(1) I/(B;*,\,/) is a quasigroup, then the operations ®, (g) defined by (5.1.1) 

and (5.1.2) are L-reversible; each of them is L-reverse of the other. 

(2) // every of operations 0 , 0 on a set A is L-reverse of the other, then 

the operations E0, IE defined by (5.2.1) and (5.2.2) are C-reversible; each of them 

is a C-reverse of the other. 

COROLLARY 5.4. Let ( B ; * , \ , / ) be a quasigroup, and let the operations EB, 
M on A = B 4 be defined by 

(x3,x2,x1,x0) ffl (y3,y2,yily0) = ((y3/x0)/x1,y3/x0, (y1/y2)/y3,yl/y2) , 
(5.4.1) 

(x.v x2, xx,x0) E (y3, y2,yx,y0) = (X^XQ, x0\(y3\y2), y3\y2, y2\(yx\y0)) 
(5.4.2) 

for all \x3,x2lx1,x0), (y3,y2,y1,y0) G A . Then the operations ®, eg) are 
C-reversible; each of them is the C-reverse of the other. (I.e., the identities 
(5.2.3), (5.2.4) hold.) 

To prove that, we can simply apply Lemma 5.2 and Lemma 5.3. The formulas 
(5.4.1), (5.4.2) can be also written directly from Figure 6; the original GPT is 
divided into rectangles, each of which consists of two 2-squares, amd then it is 
turned 90° counterclockwise (however, no shift of new rows is necessary). 
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For the simplest nontrivial application of the corollary, we again take the 
additive group modulo 2. Figure 7 shows an inner part of Pascal's triangle mod­
ulo 2, divided into rectangles as explained above, and then rotated 90° coun­
terclockwise. Zeros are again replaced by dots. Figure 8 shows the 16-element 
algebra obtained by Corollary 5.4, one of its GPT, the suitable 4-element subal-
gebra and its C-reverse. Rectangles from Figure 6 are replaced by hexadecimal 
digits in the obvious way (a rectangle containing (x.v x2, x{, x()) is replaced by 
Hx:i -f 4x2 -f 2xx -f x0), and dots are displayed instead of zeros. The rectangle in 
GPT corresponds to Figure 7. 
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FIGURE 7. 

We can generalize the constructions presented above, so that we shall not 
start from GPT, but from more general objects which are constructed similarly 
as GPT, but instead of one binary operation * two binary operations <. • aiv 
used. The operation * will be used in odd steps, and Q in even steps. (The parity 
of a step can be understand as the parity of x + y when G(x. y) is computed: 
see Definition 2.1.) In the left part of Figure 4, it means that 

(1) * is used when the lower elements of 2-squares are computed, and 
(2) (•) is used when the upper elements of the 2-squares (in the next row) 

are computed. 

556 



REVERSIBILITY IN GPT AND BINARY REVERSIBILITY IN I D CELLULAR AUTOMATA 

D 1 D 
D V . V 

D W . - D C 

D V . V D V w.-.w 
C 1 C . . 1 c 
c. c .'.'. c 

. D . . . D 
C D C . . D C 

D 1 . . D 1 
W . - D W 
• V D V . V 

• W . - D C 

• Л C D V 

c 

D V . V 
D D 1 C D C . - D C 

D C 1 C D C 
1 i D c 1 c 

• : - D D Í C 

• . • D V D C 

. • D V . V 
- .DVDC . -DC 

. D C 1 C D C 
DVC W c 

1CD . ' . 1 DC 

C 1 C . . 1 C 

• .•DV. 
;D D I C D C 

V D V . V 
W . V 

^УЛ УAc 

. D 1 D 
F D V . V 
W . V 

^УЛ 

:::ï:'í 
. - . - . • D V 
. - . - D W 
. W . V 
D D 1 C D C . - D C 

D C 1 C D C 

té 

n m > W 

W . - D C 

'WS 
• : ^ c 

c • : ^ с 

• С ° 1 С

С

С 

О 0 ! 0 . 1 ! 0 

•осЛс.-сс 

• П 1 ) 1 С . 1 1 С

П

1 ) 1 С 

-о°Лс.-Лс

с

с 

Л0.1!0.'.-.1!0 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 0 0 3 3 3 3 0 0 E E D D D D E E 

1 C C F F F F C C 2 2 1 1 1 1 2 2 

2 8 8 B B B B 8 8 6 6 5 5 5 5 6 6 

3 4 4 7 7 7 7 4 4 A A 9 9 9 9 A A 

4 0 0 3 3 3 3 0 0 E E D D D D E E 

5 C C F F F F C C 2 2 1 1 1 1 2 2 

6 8 8 B B B B 8 8 6 6 5 5 5 5 6 6 

7 4 4 7 7 7 7 4 4 A A 9 9 9 9 A A 

8 0 0 3 3 3 3 0 0 E E D D D D E E 

9 C C F F F F C C 2 2 1 1 1 1 2 2 

A 8 8 B B B B 8 8 6 6 5 5 5 5 6 6 

B 4 4 7 7 7 7 4 4 A A 9 9 9 9 A A 

C 0 0 3 3 3 3 0 0 E E D D D D E E 

D C C F F F F C C 2 2 1 1 1 1 2 2 

E 8 8 B B B B 8 8 6 6 5 5 5 5 6 6 

F 4 4 7 7 7 7 4 4 A A 9 9 9 9 A A 

0 1 C D 

0 O O D D 

1 C C 1 1 

C 0 0 D D 

D C C 1 1 

0 1 C D 

0 0 1 1 0 

1 C D D C 

C 0 1 1 0 

D C D D C 

Figure 8. 

So we can generalize Lemma 5.1 as follows. 

LEMMA 5.6. Let ( A ; * , \ o , / o ) , ( A ; Q , \ e , / e ) be two quasigroups (with the 
same base set), and let the operations ©, eg) OH A 2 be defined by 

(xi,xQ)®{yvy0) = ( ( y 1 / e a ; 0 ) / o x 1 , yx /e xQ), 

(xvx0) ® < y i ,y 0 ) = (Xl \0 x0, x0 \e (Vl \o y0)) 

(5.6.1) 

(5.6.2) 

for all (xA,xQ), (y1,y0) G A 2 . Then each of 
(I.e., the identities (5.1.3), (5.1.4) hold.) 

is an L-reverse of the other. 

The similar generalization of the formulas from Corollary 5.4 is straightfor­
ward. Now we show a modification of Lemma 5.1 based on another division of 
G P T into 2-squares. Now every 2-square will contain the elements of G P T in 
the lower left corner and in the upper right corner. The rotation and the shift 
will not be changed. Then we can prove: 
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LEMMA 5.7. Let ( B ; * , \ , / ) be a quasigroup, and let the operations 0 , 0 on 
A = B 2 be defined by 

(xvx0) 0(2/^2/0) = ((yjy0)/x1,x1/x0), (5.7.1) 

(x^x0) 0 (yvy0) = (xjy0,x0\(xjy0)) (5.7.2) 

for all (x1, x0), (H1, y0) £ A . Then each of the operations ®. 0 is L-reverse of 
the other. 

If we want to obtain similar formulas for R-reversibility, we have to join the 
symmetry with respect to vertical axis. (Equivalently, we can replace the rotation 
90° counterclockwise by the symmetry with respect to the axis y:; remember that 
it is oriented left downwards.) 

6. Further constructions of reversible algebras 

Etere we shall present several simple constructions of reversible algebras from 
finite algebras satisfying left cancellation law 

V. . . (x * y = x * z = > y = z) , 

or right cancellation law (given by similar formula, with x on the right side of *) . 
If the left or the right division with respect to * exists, we shall denote it by \ or 
/ , respectively. Further, we shall show how to obtain a new reversible algebras 
from a given one and a permutation of its base set. We shall also investigate some 
properties of the corresponding GPT . We start by an easy general theorem: 

T H E O R E M 6.1. 

(1) For every X G {L, C, R} the class of X-reversible algebras is closed under 
subalgebras, homomorphic images and direct products. 

(2) If an algebra ( A ; / , o) is L-, C- or R-reversible, then the algebra 
(A; J A o / , o) is R-, C- or L-reversible, respectively. 

P r o o f . For (1), we can use that every X-reversibility was characterized 
by an identity (see Theorem 4.3). Notice that for direct products we may not 
replace "X-reversible" by "reversible". (In CA terminology, we obtain a reversible 
local rule, but its reverse need not be binary.) For (2), we can vise the same 
characterization, but now the concrete form of identities is substantial; notice 
that if g is an X-reverse of / , then g o J is an X-reverse of J o / . • 

Let A — (A; *,o) be an algebra which satisfies left or right cancellation law. 
We shall consider operations 0 on A 2 defined by formulas of the form 

(xx,x0)Q) (yvy0) = (at * ^ . , 7 f c ) , 
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where a, j3, 7 E {x, y} and i, j , k E {0 ,1} . This seems to be t h e simplest possible 
formula which really uses the opera t ion *, (If we replace t he r ight -hand side by 
(l'\-i ai*Pj) ? w e ob ta in a formula as simple as the original one. However, it can be 
reduced to the original one by interchanging the componen t s in all th ree ordered 
pairs in the formula.) There are 64 such rules bu t 

(a) some of t h e m can be reduced to others; 
(b) some seems to give only tr ivial algebras, and 

(c) for some there is no hope to ob ta in reversible algebras. 

So we can substant ia l ly reduce the number of considered rules. (Notice t h a t the 

form of the theorem below will be similar to t h a t of L e m m a 5.1.) By (a) , we can 

restrict our considerat ions to a = x. Left [right] cancellat ion law can be applied 

probably only if k = i or k = j , respectively. Therefore, by (c), we shall assume 

^: £ {hj}- Fur ther , if i = j = k, t hen the componen t s xn, yn (n = 1 — i) play 

no role in the construct ion; therefore we shall consider only the case i 7̂  j . If 

7A- ^ {ai->Pj}-> t hen we can use (left or r ight) division in each of x 0 y, y 0 z 

separately. So we could use Theorem 6.3 below and use a p e r m u t a t i o n ins tead 

of *. Therefore, by (b) , we shall exclude this case. (The above considerat ions 

are not rigorous. However, they serve only to choose t he var iants of 0 into the 

following theorem. They are not used in its proof.) 

T H E O R E M 6 . 2 . Let * be a binary operation on a finite set A . and let the 

operations 0 n be defined for all x = (xl,xQ) E A 2 , y = (yx,yQ) E A 2 as 

follows: 

x®1y = (xx *xQ,Vl) , x 0 5 p (xQ*x1,y1), 

x 0 2 y = (xx * xQ, yQ), xQ6y = (xQ * xvyQ) , 

x 0 3 y = (x1 * yQ, xQ) , x 0 7 y = (xQ * yvxx) , 

x 0 4 H = (xx *yQ,yx), xQ8y = (xQ*y1,yQ). 

(1) If * satisfies left cancellation law, then the operations 0 X , © 6 are 

C-reversible, and the operations 0 4 , 0 8 are R-reversible. 

(2) If * satisfies right cancellation law, then the operations 0 2 ; 0 5 arc 

C-reversible, and the operations 0 3 , © 7 are L-reversible. 

P r o o f . For each 0 n we can proceed as follows.. Let x = (x1,xQ), and 
analogously for the other let ters . Let us (formally) compu te u = x*y, v = y*z. 
We want to reconstruct bo th components of one of x , y, z from u, v. Two 
of six components are given immediately, and a further one can be obta ined by 
/ or \ applied to sui table components of u, v. In every case, we obta in bo th 
components of one variable x, y, or z. So we could wri te a formula for the 
reverse operat ion. Its verification is t hen very easy. 
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As an examp le consider 0 r Then u = (x1 * x^yj, v = (</i * y"_~1'' 
. . J ± «, — u \i\ - l l iere tore 

immediate ly know yx = u(), zx = vQ , and we can compute y0 - "o \ 1 
tiic G-reverse of 0 : is 

K ^ o ) ©i ( U P U O ) = (uo\vv uo) • 

Similarly, we can obtain, e.g., the C-reverse of 0 6 : 

(uvu0) 0 ( i (vY,v{)) -= (u{)\uv H()), 

and also the requested reverses of all remaining operat ions . 0 

R e m a r k . Some of the operat ions from Theorem 0.2 give G P T of very simple 

s t ruc ture only. E.g., these G P T considered as te rnary relations on N arc de­

finable in Presburger ar i thmet ics ( the e lementary theory of (N; + ) ) . We do not 

prove t h a t in the present paper . However, ©r} for n = 1,4, 5, 7 can give G P T of 

ra ther complex s t ruc ture . For example, the operat ion * on {0, 1.2} defined by 

x*y = y if x / 2 , 2 * 0 = 1 , 2 * 1 = 2 , 2 * 2 = 0 

can be used to define the binary operat ion of the left algebra in Figure 2 as • , . 

T H E O R E M 6 . 3 . Let * be an X-reversible (X e {L,R,C}) operation on a 

finite set A . and let <p be a permutation of the set A . Then the operations :-. 
0 defined (for all x,y G A ) by 

x 0 y = (j)(x * y), (0.3.1) 

x 0 y = </>(x) * </%) (0.3.2) 

are X-reversible. 

P r o o f . Let G) be an X-reverse of * and rb = <0 L. Then the opera!ion 

xQy = 4>(x) 0 - 0 ( y ) 

is an X-reverse of 0 . Indeed, we have 

(x 0 y) 0 (H 0 z) = V(<K* * v)) © ^ ( ^ ( y * - ) ) = (-r * y) • (/y * c ) . 

what is equal to x , y or z (depending on X). Up to now finiteness of A was 
not used. For 0 we can use Theorem 4.0. If A is finite, t hen ) is X-reversible, 
and the definitions of 0 and 0 have the same form in essential. • 

COROLLARY 6 .4 . Every X-reversible (X G { L , C , i t } ) operation • on a fi­
nite set A can be obtained from an idempotent X-reversiblc operation * and a 
permutation cj) by formula (0.3.1) (and by formula (0.3.2) as well). 

P r o o f . If G) is X-reversible , then the unary opera t ion h(x) = x • x is a 
pe rmuta t i on of A . For any idempoten t opera t ion * the ident i ty (0.3.1) would 
imply x = (b(h(x)) ; hence <fi = / /0 1 . If we knowT <p (and i ), we can use (6.3.1) 
to cefine the opera t ion *. Verification of required proper t ies is s t ra ightforward. 
T h e proof for (0.3.2) is similar. G 
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KxAMPLF 6.5. We shall apply Corollary 6.4 to the idempotent C-reversible 

operation 

(xvx0)O0 (yvy0) = (xvy0) 

on the set A 2 , where A =- {0, 1, 2}. Any element (i,j) E A 2 will be replaced by 
the digit 3/ +j; this method was already used above for A = {0, 1}. (The main 
reason why we use a bigger set here is to obtain substantially different examples 
of GPT.) Notice that the definition of 0 O is still simpler than the definitions 
in Theorem 6.2, and that all G P T of the algebra (A;0 O ,O) are trivial: they 
contain nonzero elements only on the margins of width depending on the initial 
word. A typical example is in Figure 9 (where the C-reverse algebra is on the 
right). Two next figures contain G P T of algebras obtained from (A;Q ( ),0) by 
t he formula (6.3.1). 

0 

0 1 2 3 4 5 6 7 8 

0 0 1 2 0 1 2 0 1 2 

1 0 1 2 0 1 2 0 1 2 

2 0 1 2 0 1 2 0 1 2 

3 3 4 5 3 4 5 3 4 5 

4 3 4 5 3 4 5 3 4 5 

5 3 4 5 3 4 5 3 4 5 

6 6 7 8 6 7 8 6 7 8 

7 6 7 8 6 7 8 6 7 8 

8 6 7 8 6 7 8 6 7 8 

2 

. 1 
1 

1 

,1 
1 

1 

3 4 . 6 5 . . 7 8 
^ . . 4 3 . 8 3 . 1 8 6 

2 . . 1 3 3 2 6 3 1 2 6 6^ 
. . 1 . 3 5 . 6 4 2 . 6 6 

. . 1 . . 5 3 . 7 5 . . 6 6 
. 1 . . 2 3 3 1 8 3 . . 6 6 

. 1 . . 2 . 3 4 2 6 3 . . 6 6 
1 . . 2 . . 4 5 . 6 3 . . ( 3 6 

1 . . 2 . . 1 5 3 . 6 3 . . 6 6 
2 . . 1 2 3 3 . 6 3 . . 6„ 

. . 2 . . 1 2 . 3 3 . 6 3 . . 6 
.„2 . . 1 2 . . 3 3 . 6 3 . . 

. 2 . . 1 2 . . . 3 0 3 0 . 6 3 . . 
0 2 • • l o 2 • • • • 3 o 3 o - 6 ^ 3 o ' 

2 . . 1 2 3 3 . 6 3 . 
. . 1 02 3 0 3 0 . 6 3 

• . ; 1 2 2 : л - : : л - 3 з з ; 6 б 
; 1 2 2 л - : : : : : л - 3 з з ; 6 

. . . . i V . • . • . • . • . • . • . • / . • . • . ' . З з 3 з -
.2 . . 1 2 3 o 3 o . 6 3 . . 6 6 

. 2 . . 1 2 3 0 3 o . 6 3 . . 6 6 
2 . . 1 2 3 3 . 6 S . . 6 6 

2 . . 1 2 3 o 3 o . 6 3 . . 6 6 
. . 1 2 3 3 . 6 3 . . 6 6 

. . 102 3 3 . 6 3 . . 6 6 
. 1 2 3 o 3 o . 6 3 . . 6 6 

. 1 2 3 3 . 6 3 . . 6 6 
T 2 3 3 . 6^,3^. . 6^6 
1 2 . . . . 3 3 . 6 3 . . 6 ' 

1 

0 1 2 3 4 5 6 7 8 

0 0 0 0 3 3 3 6 6 6 

1 1 1 1 4 4 4 7 7 7 

2 2 2 2 5 5 5 8 8 8 

3 0 0 0 3 3 3 6 6 6 

4 1 1 1 4 4 4 7 7 7 

5 2 2 2 5 5 5 8 8 8 

6 0 0 0 3 3 3 6 6 6 

7 1 1 1 4 4 4 7 7 7 

8 2 2 2 5 5 5 8 8 8 

F I G U R E 9. 
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0 1 2 3 4 5 6 7 8 

0 0 2 4 0 2 4 0 2 4 

1 0 2 4 0 2 4 0 2 4 

2 0 2 4 0 2 4 0 2 4 

3 1 5 7 1 5 7 1 5 7 

4 1 5 7 1 5 7 1 5 7 

5 1 5 7 1 5 7 1 5 7 

Є 3 6 8 3 6 8 3 6 8 

7 3 6 8 3 6 8 3 6 8 

S 3 6 8 3 6 8 3 6 8 

A 
2 1 2 

4 2 4 

„2J„2^ 
4 2 8 2 

2 7 4 8 . 
^ • 6 6 l 3 3 l 

V.V.Vi 
2.V.V.63 
VAV.-2 
2 3 2 8 . 4 

K**y?¥ 
7 . 6 2 8 . 

2 . 3 V 4 V l 3 l 2 V . V . V . V 4 V . V . 
4 , 2 3 , 2 3 , 2 3 , 2 6 7 . 4 3 , 

2 7 . 7 . 7 . 7 . 6 3 2 1 1 
4 2 3 , 2 3 , 2 3 , 2 3 ^ . 3 7 2 2 

0 7 7 7 7 1 [: p 4 
4,2 3'2 3*2 3'2 3*2 . 4 7 6 1" 
2 7 . 7 . 7 . 7 . 7 . 2 5 3 6 . 

4 2 3,2 3,2 3,2 3,2 3 4 4 1 1 3A 2 7 . 7 . 7 . 7 . 7 . 5 5 5 2 . 1 
4,2 3,2 3,2 3,2 3,2 3 4 7 7 7 . 2 
2 7 . 7 . 7 . 7 . 7 . 5 5 6 6 3 4 . 
,2 3,2 3,2 3,2 3,2 34 11 3 3 5 1 
7 . 7 . 7 . 7 . 7 . 5 5 6 . 1 7 5 . 
3,2 3,2 3,2 3,2 3 4 7 1 3 2 2 8 1 
. 7 . 7 . 7 . 7 . 5 5 6 . 7 4 4 6 . 
,2 3,2 3,2 3,2 3 4 7 1 3 2 6 5 1 3 
7 . 7 . 7 . 7 . 5 5 6 . 7 . 8 5 . 1 
3 2 3,2 3,2 3 4 7 1 3 2 3 4,8 1 2 
. 7 . 7 . 7 . 5 5 6 . 7 . 5 7 6 4 . 
7 W . V . V 5 V . V . V 7 V 1 V . 
. V . V . V 5 V . V . W 1 V . A 
7 W . V 5 V . V . W 1 W 1 V . 

3 , 2 3 4 7 1 3 , 2 3 4 5 , 6 . 6 2 5 1 
. 7 . 5 5 6 . 7 . 5 7 1 3 . 8 4 2 . 
7 2 . V 5 V . V . W l 6 3 V 2 4 l 6 6 V . 
. V 5 V . V . W 1 V 2 W . V V 
^ V . V A V . V V . V i ^ V . 

7 1 3 , 2 3 4 5 6 . 7 . 1 . 5 4 4 1 
5 . 6 . 7 . 5 7 1 3 , 2 3 , 2 . 4 , 5 , 5 , 5 . 

1 3 2 3 4 5 6 . 7 . 7 . 2 7 7 7 1 
S o - A - ^ X 1 3 , 2 3 . 2 3 ^ 4 , 2 6 6 6 . 
3 2 3 4 5 6 . 7 . 7 . 5 7 . 3 3 3 
.7 . 5 7 1 3,2 3,2 3 4,5 3 . 1 11 
2 3 4 5 6 . 7 . 7 . 5 7 1 1 2 2 2 
7 . 5 7 1 3 2 3 2 3 4 5 6 2 4 4 4 . 
3 4 5 6 . 7 . 7 . 5 7 1 8 2 5 5 1 
.5 7 1 3,2 3,2 3 4 5 6 4 8 4 7 5 . 
4 5 6 . 7 . 7 . 5 7 1 6 7 6 5 8 1 
5 7 1 3,2 3,2 3 4 5 6 6 3 8 7 6 . 

5 6 . 7 . 7 . 5 7 1 3 . 3 7 6 3 3 
7 1 3 , 2 3 , 2 3 4 5 6 . 1 . 5 3 3 1 1 

6 . 7 . 7 . 5 7 1 3 2 . 4 1 1 5 2 
1 3 , 2 3 , 2 3 4 5 6 . 7 . 2 5 2 4 7 . 

. 7 . 7 . 5 7 1 3 2 3 4 4 7 2 5 3 

0 1 2 3 4 5 6 7 8 

0 0 2 4 0 2 4 0 2 4 

1 0 2 4 0 2 4 0 2 4 
2 0 2 4 0 2 4 0 2 4 

3 1 5 3 1 5 3 1 5 3 
4 1 5 3 1 5 3 1 5 3 
5 1 5 3 1 5 3 1 5 3 

6 7 6 8 7 6 8 7 6 8 

7 7 6 8 7 6 8 7 6 8 

8 7 6 8 7 6 8 7 6 8 

4 2 Л 
2

2 V ř 

4 2 4 
„ 2 3 2 1 

„ 4 • 3 2 
, 2 ^ • 3„ . 

~ 4 o 2 • - o - -

„ 2 3 H • . , 2 . 
4 . 1 . 4 . 

2 1 2 2 1 
4 2 4 4 2 . ' 

2 3 2 1 2 3 , - -
4 . 3 2 4 . 1 

4/-
2 4 . 

3 2 1 . 

3 2 1 2 . 2 1 

3 „ 2 4 4 . 1 
3 2 1 2 

3 2,A 
• 3 2 1 

yy 
. 4 2 .V 
4 2 2 1 4 2 

„ 2 3 ^ 2 o l 
o 4 , • 3 2 

^ o 1 • 3 , 
~ 4 o 2 • • « ! 

n
2 3 , • - „ 2 

4 . 1 . 4 
2 1 2 . 2 1 

2 4 . 4 2 
3 2 1 2 3^ 

3 2 4 . 1 
• 3 2 1 2 

• 3 2 4 . 
• • 3 2 1 

á 
4 2 . V 

3 2 1 2 
3 o 2 ~ 4 . 

3 o 2 o 1 , 

.-.V 

4 2 . 3 r 
2

2V. 

2 . 1 

4 2 . V 
V2V 

3. 

зV 

I 

F I G U R E 10. F I G U R E 11. 
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