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ON THE EXISTENCE OF MONOTONE SOLUTIONS 
OF A CERTAIN CLASS OF n T H ORDER 

NONLINEAR DIFFERENTIAL EQUATIONS 

O L E G PALUMBINY 

(Communicated by Milan Medved!) 

A B S T R A C T . This paper deals with existence of monotone solutions of n t h order 
nonlinear differential equations with quasi-derivatives. 

1. Introduction 

The purpose of our paper is to study some conditions for the existence of 
monotone solutions of the differential equation 

L(y) = 0 , (L) 

where 

n - l 

L(y) = Lny + Y_ Pk(t)LkV + /(-, y), 
fc=i 

L0y(t) = y(t), 

Liy(t)=Pl(t)(LQy(t))'=Pl(t)dy(t)/dt, 

Lky(t)=Pk(t)(Lk_iy(t))' for fc = 2 , 3 , . . . , n - l , 

Lny(t) = (Ln_iy(t))', 

n is an arbitrary positive integer, n > 2. It is assumed throughout that P^t)} 

k = 1 , . . . , n — 1, p{(t), i = 1 ,2 , . . . , n — 1, are real-valued continuous functions 
on an interval Ia = [a,oo), —oo < a < oo, and f(t,y) is a real-valued function 
continuous on Ia x Ex, where Ex = (—oo,oo), a 6 - 5 r 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34C10; Secondary 34D05. 
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If n = 1, then L(y) = Lxy + f(t,y) = y' + / ( t , y ) , where /(*,y) is a real-
valued continuous function on Ia x Ex, a E Er. 

The following condition will play important role in our considerations: 
(A) Pk(t) < 0 , Pi(t) > 0 for a l U G J a , fc = l , . . . , n - l , t = 1,2, . . . , n - 1 ; 

f(t,y) < 0 for all (t,y) E Ia x Ex\ n is an arbitrary positive integer, 
n > 2. If n = 1, then / ( t , y ) < 0 for all (t,y) eIaxEl. 

Similar problems for third order ordinary differential equations with quasi-
derivatives have been studied in several papers ([4], [6], [9]). The equation (L), 
where p{(t) = 1, i = 1,2,3, (n = 4) has been studied, for example, in [5], [8], 
[10], [11]. An equation of fourth order with quasi-derivatives has also been stu­
died, for instance, in [1], [3], [12]. n th order equation with (ordinary) derivatives 
has been studied in [7]. Therefore some results achieved in the papers mentioned 
above are special cases of ours. 

Theorem 1 of our paper gives sufficient conditions for a solution of (L) on Ia 

to be monotone on Ia. Theorem 2 gives sufficient conditions for the existence as 
well as monotony of a solution of (L) on Ia. Theorem 3 deals with the existence 
of a monotone solution for the n th order linear differential equation on Ia. 

DEFINITION 1. A nontrivial solution y(t) of a differential equation of the n th 
order is called monotone on the interval [£0,oo) if and only if Lky(t) > 0 for all 
t>t0, fc = 1 , . . . , n — 1, and y(t) > 0 on [tQJ oo). 

DEFINITION 2. Let J be an arbitrary type of interval with bounds tx, t2, 
where —oo < t± < t2 < oo. The interval J is called the maximal interval of 
existence of u: J —•• J5]1, where u(t) is a solution of the differential system 
uf = F(t, u) if and only if u(t) can be continued neither to the right nor to the 
left of J . 

DEFINITION 3 . Let y' = U(t,y) be a scalar differential equation. Then y°(t) 
is called the maximal solution of the Cauchy problem 

y' = U(t,y), y(t0) = yQ (*) 

if and only if y°(t) is a solution of (*) on the maximal interval of existence, and 
if y(t) is another solution of (*), then y(t) < y°(t) for all t belonging to the 
common interval of existence of y(t) and y°(t) . 

We introduce some preliminary results. 

LEMMA 1. Let A(t,s) be a nonnegative and continuous function for t0 < 
s <t. If g(t), (p(t) are continuous functions in the interval [t0,oo) and 

t 

<p(t)<g(t) + J A(t,s)<p(s)ds, for * E [ i 0 , o o ) , 

to 
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then every solution y(t) of the integral equation 

t 

y(t) = g(t) + JA(t,s)y(s)ds 
to 

satisfies the inequality y(t) > <p(t) in [tQ,oo). 

P r o o f . See [5; p. 331]. D 

LEMMA 2. (Wintner) Let U(t, u) be a continuous function on a domain tQ < 

t < to + a) ot > 0, u > 0, and let u(t) be a maximal solution of the Cauchy 

problem u' = U(t,u), u(tQ) = uQ > 0, (uf = U(t,u) is a scalar differential 

equation) existing on [tQ)tQ + a]; for example, let U(t,u) = I/J(U), where ^(u) 

is a continuous and positive function for u > 0 such that 

oo 
Г d« 

•ф(u) 

Let us assume f(t,y) is continuous on tQ < t < tQ + a, y 6 E™, where y is 
arbitrary and satisfies a condition 

\!(t,y)\<U(t,\y\). 

Then the maximal interval of existence of the solution of the Cauchy problem 

y' = f(t,y),y(t0) = %> 

where \y0\ <uQ, is [tQ, tQ + a ] . 

P r o o f . See [2; Theorem III.5.1] D 

2. Results 

LEMMA 3. Let (A) hold, and let there exist real nonnegative functions ax(t), 

a2(t) such that \f(t,y)\ < ax(t)\y\ + a2(t) for all (t,y) E Iax Ex. Let initial 

values Lky(a) = bk be given for k = 0 , 1 , . . . , n — 1. Then there exists a solution 

y(t) of (L) on [a, oo) which fulfils these initial conditions. 

P r o o f . Let n > 2. The equation (L) is equivalent to the following system 

< ( 0 = ^ + 1 ( 0 / P k ( 0 ^ fc = l , 2 , . . . , n - l , (S) 
n - l 

<W = - E p*(*K+i(f) - /(*>ui(*)), 
fc=i 
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where uk(t) = Lk_xy(t) for k = 1,2, . . . , n . Let us denote fk = fk(t,ulyu2, 
..., un) for k = 1,2,..., n, where 

/fc = "fc+i/Pfc» fc = 1 . 2 , . . . . n - l , 
n - l 

/n = ~I]PfcMfc+l-/(<,«l), 
fc=l 

F(t,u) = (f1,f2,...,fn), 

u = u(t) = (Ul(t), u2(t), ...,un(t)), 

u' = u'(t) = (u'1(t),u2(t),...,u'n(t)). 

It is obvious that the fk are continuous on a set M 6 , where Mb = [a, b] x i?™, 
a < 6 < oo. Let 

{t,u) = ( t , ^ , ^ , . . . , ^ ) , 

where {t,u) is an arbitrary pair from Mfe, and let 

M = X>*I, \F(t,u)\ = _r\fk\. 
fc=i fc=i 

Then 
П — 1 П — 1 

|F( i ,u) | = __\uk+1/pk\ + \-__Pkuk+1 - / ( i , « 1 ) 
k=l k = l 

n—1 n—1 

^ £ Ҝ+iMJ - ___ PkK+l\ ~ /('. wl) 
k=l k=l 

n 

= E ( - p * - i + 1/p f c-i)кi-/(í^i) 
k=2 

n 

< ^ l X ^ I + a - Ҝ I + a 2 
k=2 

n 

< R 2 E K I + «2<^(i + H)» 
k=l 

where Kx, K2, K are the following constants: 

Kx = m a x { - P j b _ 1 ( 0 + l/pfc-i(*)» * e [ a , 6 ] , fc = 2,3,. . . ,n} , 

F.T2 = max{i;.r i,a1(<), < e [a,6]} , 

if = max{l,lf2 ,a2(£), t e [ a , 6 ] } . 
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Let t/%) = K(l + y ) . Then Cauchy problem y' = ip(y), y(a) = y0 > 0 admits 
oo 

the unique solution y(t) = (l+y0)exp(jF.T(<—a))—1 on [a,fe], / ( l / ' t /Xs)) ds = oo, 
| F ( t , n ) | < t7(t, |tx|) = ^ ( M ) - Then, according to Lemma 2, the system (S) ad­
mits a solution u(t) on [a, b], which satisfies the initial conditions ukJtl(a) = bk, 
fc = 0, 1 , . . . , n — 1. Because b > a, b is an arbitrary real number, we obtain 
the assertion of the lemma for n > 2 by going from (S) to (L). If n = 1, the 
system (S) is generated by the unique equation y' = — /(£, y), and in this case, 
the proof is analogous to that one for n > 2. So it is omitted. • 

LEMMA 4. Let y(t) be a solution of (L) on Ia, and let (A) hold. Let t0 G Ia 

and Lky(t0) > 0 for k = 0 , 1 , . . . , n — 1. Then Lky(t) > 0 on the interval [t0, oo) 
for k = 0 , 1 , . . . , n — 1. 

P r o o f . Let n > 2. Integration of the relationship Lny = (Ln_1y)' over 
[t0,t], t0<t, yields 

n - l * * 

Ln_lУ(t) = Ln_lУ(ť0) - _c / адL*y(s)ds - / /(*' УOO) d s 

* = ł to to 
t * n _ j 

= V Д ) + / ( - / ( ' . ïW)) ds + jj2(-Pn_k(s)Ln_ky(s)) d*. 
t0 to fc=1 

Let us denote L n _ 1 y( t 0 ) + f (—f(s,y(s))) ds by -f-T(̂ ). This notation is correct 
to 

because the function y(£) is fixed. It is obvious that /.T(t) > 0. We have 

K-Mt) = K(t) + f n__(-Pn-k(s)Ln_ky(s)) ds. (1) 
to fe=1 

It can be proved that (s0 = s) 
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Ln-ky(s) = 
s 

= Ln-kУ(to) + Ln-k+iУ(to) fn

 d % g 

J Fn-k-hlv«5l 
*0 

ds^ f ds2 

+ Ln-k+2У(to) I'ггAгT / V 
J Fn-k-flv511 J Pn-

- .- -k-г2V52) 
CO tO 

+ ... 
S i вfc-3 

. r (f \ f d^i f ds2 f dsk_2 

+ »-M °> J Pn_h+1(8l) J Pn_k+2(s2)- J Pn_2(sk_2) 
to t_ t0 

5 5 i 8_ S f c _ 2 

+ / d 5 l f ds2 f ds3 f Ln-lУ(Sk-l) d s 

J Pn-k+l(Sl) J Pn-k+2(S2)J Pn-k+з(Sз)'" J Pn-ЛSk-l) Sk~г 

to ІQ t0 to 

for k = 2,3, . . . , n — 1. Denoting the last (A; — 1)-dimensional integral by 
Ik(s), and the previous sum by Gk(s), Gx(s) = 0, I^s) = Ln_1y(s) for 
k = 2,3,. . . ,n — 1 we have (s0 = s) 

Ln-ky(S) = Gk(s)+Ik(s) 

for k = 1,2,..., n — 1. Hence 

_„___(.) = A-(t) + / £ (~Pn.k(s) [Gk(s) + Ik(s)]) ds 

t0
 k=1 

= K(t)+ f Y_(~Pn-k(s)Gk(s)) ds+ f J2(-Pn-k(s)Ik(s)) d*. 
J I -i J l i 
t0 *=- t„ fc=1 

Denoting K(t) + / _ _ 1 ( - - ' n - * W G _ W ) d* by g(t) and / ( -P B _ f c (*) I f c ( -0) ds 
to k—1 to 

by Jk(t), we have 

n - l 

^n- iy (0 = 5(0 + __. jfc( ť). 
k=l 

It is obvious that 
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W^-Wd^/d^---
to to to 

T _______, 
'"J Pn-l(»k-l) * - 1 ' 

to 
t 

U*) = f{-Pn-i(*)L--iV(»))--
to 

for k = 2, 3 , . . . , n — 1. By a change of notation, we get 
t S f c - l , «Sfc-2 

A*k-3 «i-/(-u.иK, / . d\ г > / d^ 
J J Pn-k-flV5k-2/ J Pn-k+2 

._ - k - f l ( 5 k - 2 ) / Pn-k+2\Sk-3) 
to to to 

'f____\A. 
to 

for k = 2,3, . . . , n — 1. Changing the order of the variables 5, s1,s2,...., sk_1 

yields: 

^=/w(Wd^/dfcr • / ( - W ) *--
t 0 S 5! Sk-2 

The last integral can be rewritten in the form 
t 

Jk(t) = y Mfc(t, s)Ln_lV(s) ds, fc = 1,2,..., n - 1, 

to 

where 

^^/dto/dfe-/(-^^)d-
S Si Sk-2 

M1(t,s) = -Pn_1(s) 

for A; = 2,3, . . . , n — 1. Hence 
n-l i 

Ln_xy{t) = 9(t) + __ Mk(t, s)Ln_iy(s) ds 
fc=1 to 

«»- ! 

= 9(t)+ / __Mk^S)Ln-MS)^S 

J I 1 to fc=1 
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and 
t 

K-iy(t) = 9(t) + J A(t, s)Ln_lV(s) ds , (2) 

to 

where 
n - l 

A(t,s) = Y_]Mk(t,s). 
k=i 

Because t0 < s, t0 < sk, s < t, sk < i, we have g(t) > 0, A(t,s) > 0. It is 
obvious that 

t 

0 < jA(t,s)g(s)ds, 

to 

t 

g(t)<g(t) + J A(t,s)g(s)ds. 
to 

Because 
t 

K-Mt) = 9(t) + J A(t, s)Ln_lV(s) ds , 
to 

according to Lemma 1, we have 

K-Mt) > 9(t) = V(t) > 0 on [*0, oo) . 
Because 

t 

- V a v W = Ln-2y(*o) + f t " " 1 ^ d s ^ Ln-2y(*o), 
J Pn-l\s) 
to 

we have Ln_2y(t) > 0 on [<0,oo). By using a similar procedure, we will get 
Lky(t) >Lky(t0) > 0 on [t0,oo) for fc = 0 , 1 , . . . ,n - 3. 

We note that if n = 2, then the expressions (1) and (2) are the same. If 
n = 1, then the assertion of the lemma follows from the fact that 

y'(t) = -f(t,y(t))>0 for t>t0. 
The lemma is proved. • 

Now let us consider the linear differential equation (L') and the condition 
(A'), where 

(L') Lny + nEPfc(f)Lfcy = 0, 
fc=0 

(A') Pk(t) < 0, p{(t) > 0 for all t G Ia, Pk, p{ are continuous functions on 
Ia for k = 0 , 1 . . . , n — 1, i = 1,2,..., n — 1; n is an arbitrary positive 
integer. 
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LEMMA 5. Let (A5) hold, and let the initial values Lky(a) = bk be given for 
fc = 0 , 1 , . . . , n — 1. Then there exists a solution y(t) of (L') on Ia which fulfils 
these initial conditions. 

P r o o f . The proof of this lemma is similar to the proof of Lemma 3, and 
so it is omitted. D 

LEMMA 6. Let (A') hold, and let y(t) be a solution of the linear differential 
equation (L') on the interval Ia which satisfies the following initial conditions 
Lky(t0) > 0, t0 G Ia for fc = 0, l , . . . , n - 1. Then Lky(t) > 0 on [t0,oo) for 
k = 0 , 1 , . . . , n — 1. 

P r o o f . The proof of this lemma is similar to the proof of Lemma 4, and 
so it is omitted. D 

THEOREM 1. Let (A) hold. If the equation (L) has a solution y(t) on [a, oo) , 
and if Lky(a) > 0 for fc = l ,2 , . . . , n — 1, y(a) > 0, then y(t) is monotone 
on [a, oo). 

P r o o f . This is an immediate corollary of Lemma 4 for 10 = a, and the fact 
that y(t) > y(a) for all t 6 Ia. D 

R e m a r k . If Lky(a) > 0 for fc = 1, 2 , . . . , n — 1 in Theorem 1, then Lky(t) > 0 
for t > a, fc = 0 , 1 , . . . , n — 1. This follows from the proof of Lemma 4 for t0 = a 
because Lky(a) > 0, and Lky(t) > Lky(a) on [a,oo) for fc = 0 , 1 , . . . , n — 1. 

THEOREM 2. Let (A) hold, and let there exist nonnegative real functions ax(t), 
a2(t), such that | / ( i , t / ) | < ^i ( 0 M + a 2 ( 0 for a^ (*>2/) ^ ^a x ^i • Let the initial 
values LQy(a) = y(a) > 0, Lky(a) > 0 be given for k = 1,2, . . . , n — 1. Then 
there exists a solution y(t) of (L) on [a, oo) which fulfils these initial conditions, 
and this solution is monotone on [a, oo). 

P r o o f . The existence of this solution follows from Lemma 3. The monotony 
of this solution follows from Lemma 4 and the fact y(t) > y(a) for all t > a. 

D 

THEOREM 3 . Let (A') hold, and let the initial conditions y(a) > 0, Lky(a) > 0, 
fc = 1,2, . . . , n — 1, be given. Then there exists a solution y(t) of (L') on 
[a, oo) which satisfies these initial conditions, and this solution y(t) is monotone 
on [a,oo). 

P r o o f . The existence of the solution satisfying the above initial conditions 
follows from Lemma 5. This solution is monotone according to Lemma 6 and 
the fact y(t) > y(a) for all t > a. D 
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3. Examples 

EXAMPLE 1. The equation (L), where n = 5, p{(t) = V, i = 1,2,3,4, Px(t) = 
- 5 t 5 , P2(t) = -10t4, P3(t) = - 3 t 2 , P4(t) = - 1 / t , f(t,y) = - 3 3 4 < V admits a 
solution y(t) = t2 on [l,oo) such that i*.y(l) > 0 for k -= 0 ,1 ,2 ,3 ,4 . According 
to Theorem 1, this solution y(t) is monotone on [1, oo) . We note that Theorem 2 
cannot be used because of the form of / ( £ ,y ) . 

EXAMPLE 2. Let n = 5 in (L), pk(t) = ekt for k = 1,2,3,4, Px(t) = - 2 e 9 * , 
P2(t) = - 2 e 7 ' , P3(t) = - 6 e 4 ' , P4(t) = - 1 0 , / ( i , y ) = - e 1 0 * y/3e2< + y 2 , 
L0y(l) = e, L i y ( l ) = e 2 , L2y(l) = 2 e 4 , L3y(l) = 8 e 7 , L4y(l) = 5 6 e n . It 
is obvious that | / ( t , y ) | < e 1 0 t (V3e*+ |y | ) = e10t \y\ + y/3elu for all (t,y) G 
I±x Ex. According to Theorem 2, the equation (L) admits a monotone solution 
y(t) on [ l ,oo) , where Lky(t) > 0 for t > 1, k = 0 ,1 ,2 ,3 ,4 . This solution y(i) 
is the function e*. 

EXAMPLE 3. Let n be an arbitrary number from { 1 , 2 , . . . } , let pk(t) = t k 

fc = l , 2 , . . . , n - l , Pfc(t) = - e - f c t , fc = 0 , l , . . . , n - l , f(t,y) =-e~* y/T+tf. 
Then | / (« ,y) | < e - * ( l + |y|) = e"* |y| + e " ' for all (*, y)eI1xE1, Lky(l) = 1 
for k = 0 , 1 , . . . , n — 1 in the equation (L). According to Theorem 2, then there 
exists a solution y(t) of (L) which is monotone on [ l ,oo) . 

EXAMPLE 4. Every solution of the linear differential equation (L') on [a, oo), 
where p{(t) = l+t2i, Pk(t) = -ekt, i = 1,2, . . . , n - 1, k = 0 , 1 , . . . , n - 1, n is 
an arbitrary fixed positive integer which fulfils the initial conditions y(a) > 0, 
Lky(a) > 0 for fc = 1 ,2 , . . . , n — 1, a € Ex, is monotone on [a,oo) according to 
Theorem 3. 
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