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FRACTAL DIMENSION OF SETS INDUCED BY 
BASES OF IMAGINARY QUADRATIC FIELDS 

JORG M . THUSWALDNER 

(Communicated by Milan Pasteka ) 

ABSTRACT. In an imaginary quadratic number field certain bases form a ca­
nonical number system. These bases induce a tiling of the algebraic numbers of 
this field. Each piece of the tiling consists of all numbers with fixed integer part. 
We map this tiling onto the two dimensional real vector space and determine the 
fractal dimension of the boundary of its pieces. 

1. Introduction 

Let IK = Q(0) be a number field of degree d and Z K the ring of its algebraic 
integers. Let N(6) be the norm of 0, a G ZK and M = { 0 , 1 , . . . \N(a)\ - l } . 
Then we call the pair {a,JV} a canonical number system, if any 7 G Z K has a 
unique representation 

7 = c0 + cxa + • • • + cha
h ; cj G M (j = 0 , . . . , h), ch 7- 0 if h 7- 0 . 

a is called the base of this canonical number system and J\f is the set of its 
digits (cf. K o v a c s - P e t h o [8]). 

A number field Q(0) is called a canonical number field, if there exists a base 
a G .ZK such that {a, JV} forms a canonical number system (cf. [7]). In particular 
any quadratic field is a canonical number field (bases can be computed explicitly 
(cf. [4], [5])). 

In the ring of the Gaussian integers Z[i] the bases of canonical number 
systems are given by b = —n ± i (cf. [6]). Each of these bases gives rise to a 
tiling of the plane. One piece of this tiling consists of all complex numbers with 
a fixed integral part in their b-adic expansion. The tile with integer part zero is 
called the fundamental region. It is defined by 

T={z\ z= E c,fV} 
L j=-oo > 

AMS Sub jec t C l a s s i f i c a t i o n (1991): Primary 11R11, 28A80. 
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where c- are arbitrary 6-adic digits. The boundaries of these pieces have fractal 
dimension. Their fractal dimension was computed to be 

21ogAn 
Я„ (1.1) 

log(n2 + 1) ' 
where An is the positive solution of 

A3 - (2n - 1)A2 - (n - 1)2A - (n2 + 1) = 0 

by W. J. G i l b e r t in [2]. In Figure 1 one can see the fundamental region of 
the base b = — 1 + i, whose boundary has the fractal dimension 1.5236... by 
G i 1 b e r t 's calculations. 

FIGURE 1, 

We will extend this result to imaginary quadratic fields. The bases of canon­
ical number systems in quadratic fields were characterized by I. K a t a i and 
B. K o v a c s in [4] and [5]. In particular for imaginary quadratic fields Q(i VD) 
(D squarefree) we have (cf. [5]) 

b= -A±'\VD, -D^l, 0<2A<A2+D>2 

b= ±(-B±iVD), -D= 1, B 

(1-2) 

OГ 

1(2), 0 < Б < | ( B 2 + D) > 2 . 
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The fundamental regions of these number systems and the tilings they induce are 
defined in the same way as in the Gaussian case. In the same way as discussed 
in [1; pp. 112-115] we map the numbers of the number field into the two dimen­
sional real vector space R2 . This mapping maps the number f3 = a -F b i \[T) 
to (a, b\[D). In Figure 2 the fundamental region for b = — 2 -f- \[2i is shown. 
Similar results were obtained recently by K a t a i (cf. [3]) for another class of 
number systems. 

- 1 . 6 - 1 . 4 - 1 . 2 -i1, • ^ ° r ; ? : V ~ o y f t t : ; ^ , , Pi4 

•o . * : • : • : : • * • • : . 

FIGURE 2. 

2. Approximation of the boundary length 

We will now construct the tiling induced by one of the bases b given in (1.2). 
An approximation of a tile will consist of the set of points with given integral part 
and a fixed number of negative powers. We divide up the plane into rectangles, 
whose centers are the algebraic integers of the field in discussion. The size of the 
rectangles is 1 x \[D for all the bases. 

Let N(b) be the norm of the base b. The fcth approximation of the tiles 
k 

consists of rectangles, whose side lengths are multiplied by (N(b))2 and whose 
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centers are numbers of the form (r r x.. -rQs__1 .. .r_k)b, where the integral 
part is fixed. If fc tends to infinity, we get the desired tiling. The area of each 
tiling remains constant during the approximation process. However, as we shall 
see later, the length of the boundary increases towards infinity. 

First we determine a formula for the length of the boundary of the fcth 
approximation of a tile. Let Qk be the union of all rectangles of size 1 x y/~D 
whose center is an algebraic integer with an expansion not exceeding fc digits. 
The length of the boundary of the fcth approximation of a tile is then exactly 

__ 
(N(b)) 2 times the length of the boundary of Qk. So we can confine ourselves 
to the study of Qk. The tile Qk consists of rectangles of length N(b) and height 
y/D. These rectangles cover the plane in a way as shown in Figure 3 for a special 
case. 

-2A+2D1 ,1/2 

-A+D1' 

-A2-D 0 A2+D 

A-D1' 

FIGURE 3. 

The framework is constructed as shown in Figure 4. The basic edges, we call 
them X , Y and Z , will be used in the following construction. X and Y are 
the lengths of the two parts of the horizontal edge of the rectangle. Z is the 
length of the vertical one. Figure 4 shows the parts for a special case. Next we 
investigate, how these basic edges change from one approximation step to the 
next. It is clear that each of the rectangles in Figure 3 changes to a "staircase" 
consisting of N(b) rectangular "steps". Our next question is to determine how 
the boundary of this staircase emerges from the edges X, Y and Z. Since each 
staircase is self-similar to all the others it suffices to consider only one of them. 
We take the one containing 0 and call it S. To be able to count the steps arising 
from X and Y, respectively, we need the b-adic expansion of — 1 . It is given by 

- l = b2 + 2,4b+ (N(b)-1) 

if D 7_ - 1 ( 4 ) . If D = -1(4) one obtains 

- l = b2+£b+(/V(b)-l). 

(2.1) 

(2.2) 
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A2+D 

1 A 

T D " 2 

X 

A 

FlGURE 4. 

Y z 

T D " 2 

X 

A 

FlGURE 4. 

11 

D». 

1 

T D " 2 

X 

A 

FlGURE 4. 

A Aг-A+D 

T D " 2 

X 

A 

FlGURE 4. 

A2-A+D 

From these representations we get information about the position of the stair­
cases in the neighbourhood of S relative to S. Note that the coefficient of b in 
(2.1) and (2.2) determines the number of steps that emerge from X. Since the to­
tal number of steps is N(b) we know the number of the remaining steps emerging 
from Y. Table 2 shows, how the k + 1st step of approximation of the boundary 
of the fundamental region emerges from the A:th step. 

kth. approximation k + lst approximation (lst case) 

X 

Y 

z 

(2A - 1) x X + 2A x Z 

(N(b) - 2A + 1) x X + (N(b) -2A)xZ 

Y 

kth approximation k + lst approximation (2nd case) 

X 

Y 

z 

(B-l)xX + BxY 

(N(b) -B + l)xX + (N(b) -B)xZ 

Y 

T A B L E 1. 

R e m a r k 2.1 . The two cases are related to the different expansions of —1 stated 
in (2.1) and (2.2). 

With the help of Table 1 we are able to establish a matrix recurrence that 
gives us the number of X, Y and Z edges after k + 1 steps: 

•"fc+i 
ьk+i 
c*:+i 

2A-1 0 2A 
= | N(b) -2A + 1 0 N(Ь) - 2A 

0 1 0 
(2.3) 
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,.(*) We refer to the matrix occuring in (2.3) by T b , to the vectors by vb . In the 
second case one obtains a similar matrix. The general equation is 

v{

b

k+1)=Tbvlk). (2.4) 

The initial value vx is given by (2, 2, 2 ) T because the first step of the approxi­
mation is a rectangle containing two pieces of every edge type. Then the length 
of the boundary of Qk is given by 

S*,i = ( N(b) - A ) v{

b

k) = ( N(b) - A J T;;-1 f 2 J (2.5) 

in the case D ^ 1(4). For the case D = 1(4) gk2 is defined in the same way. 
From this it follows from the definition of Qk that the length of the boundary 
of the kth approximation of a tile is given by 

*k,i = N{b)-igkti ( i = l , 2 ) . (2.6) 

Let pb(X) be the characteristic polynomial of Tb. One easily verifies (for example 

by inserting the value \/N(b) in pb(X)) that there exists a positive eigenvalue 

Xb with A6 > x/jY(b). Combining this with (2.5) and (2.6) one gets 

, l i m sk,i = °° ( i = 1,2). 
>oo 

3. The fractal dimension of the boundary 

We are now in a position to give the fractal dimension of the boundary of the 
tiles induced by bases of imaginary quadratic number fields. It turns out to be 
the natural generalization of G i 1 b e r t 's result (cf. [2]): 

THEOREM 3.1. Let b be the base of a canonical number system of an imaginary 
quadratic field. pb(X) shall be the characteristic polynomial of the matrix Tb 

occuring in (2.4). Let Xb be the dominant eigenvalue of pb(X). Then the fractal 
dimension of the boundary of a tile consisting of all complex numbers having the 
same integral part in their b-adic expansion is given by 

_ 21ogЛfe 

' ь log-V(Ь) ' tfь = S ^ - (з-i) 

Hb is greater than 1 for all bases b. 

R e m a r k 3.1. Of course it is possible to calculate pb(X) explicitly from Tb. For 

bases of the shape b = — A ± i \[D we have 

Pb(\) = A3 - (2A - 1)A2 - (N(b) - 2A)X - N(b). (3.2) 
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For the case b = \(—B ±'\D~) we obtain 

ph(\) = A3 - (B - 1)A2 - (N(b) -B)\- N(b). (3.3) 

P r o o f of t h e t h e o r e m . As mentioned above, pb(\) has a positive 
dominant eigenvalue \ b > y/N(b). From this it follows that Hb > 1. Now we 
have to prove that Hb is the fractal dimension of the boundary B of a piece of 
our tiling. The ^dimensional measure is a constant times lim \bN(b)~~~ . It 

k—too 

follows that if \bN(b)~~ > 1 this measure will be infinite, while for \bN(b)~~ 
< 1 it will be zero. So the fractal dimension of B is given by a quantity d with 

J V ( 6 ) - = A 6 . 

Solving this equation for d we get d — Hb and the theorem is proved. D 
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