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AN ABSTRACT UNIFORM BOUNDEDNESS RESULT 

C H A R L E S SWARTZ 

(Communicated by Miloslav Duchoň) 

A B S T R A C T . We prove a uniform boundedness result for spaces which have a 
family of projection operators satisfying certain properties. T h e result is used to 
show t h a t the space of Pett is integrable functions is barrelled. 

In [DFP1] D r e w n o w s k i , F l o r e n c i o and P a u l established an abstract 
uniform boundedness result and used the result to establish the fact that the 
space of Pettis integrable functions with respect to a finite measure is a barrelled 
space. They later extended their result to an arbitrary measure in [DFP2]. Their 
proof is based on the fact that the space of Pettis integrable functions has a 
family of "good projections". The projections in this case, as well as other typical 
applications to function spaces, are multiplications by characteristic functions. 
In this section we establish a result similar to the ones in [DFP1] and [DFP2] and 
also use the result to establish the barrelledness of the space of Pettis integrable 
functions. 

Throughout this section let E be a Hausdorff locally convex TVS and let A 
be an algebra of subsets of S. We assume that there exists a map P: A —> L(E), 
the space of continuous linear operators on E. We denote the value of P at 
A G A by PA\ if y' G E', x G E, let y'Px be the set function A h-> (y', PAx) 
from A into R and let v(y'Px) denote the variation of y'Px. We assume that 
P satisfies the following additivity properties: 

(i) P+ = 0,Ps = I, 
(ii) P is finitely additive. 

We consider the following additional properties for P: 

(D) For every y' G E', x G E, the finitely additive set function y'Px satisfies 
the decomposition property: 
for every e > 0 there exists a partition {B1,..., Bk} of S with Bi G A 
such that v(y'PB.x) < e for i = 1 , . . . , k ( R a o and R a o refer to the 
decomposition property (D) as "strongly continuous" ([RR])). 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): 46A99. 
K e y w o r d s : projection, Banach-Mackey space, Pett is integral. 
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Remark 1. 
(a) If y'Px is bounded and non-atomic for every y' G E', x G E and A is a 

o--algebra, then (D) is satisfied ([RR; 5.1.6]). 
(b) If A is a a -algebra and ji is a cr-finite, non-atomic measure on A such 

that y'Px is /i-continuous (i.e., lim y'PAx = 0), then (a) (and, therefore 
p(A)-j>0 

(D)) holds; in particular, if the F?-valued set function P%x is //-continuous for 
every x G £ , then (a) holds. 

We further consider a gliding hump property for P: 

(GHP) If {A •} is a pairwise disjoint sequence from A, {x-} is a null sequence 
from E and H is a countable a(E\E) bounded subset from E', then 

oo 

there is an increasing sequence {n-} such that the series ]T ^>Arx
xn ls 

o(E,H) convergent to some x G E. 3~ 

Further, we say that P satisfies the strong (GHP) property if the series 
above converges in the original topology of E. 

Remark 2. For example, let E be a complete metrizable space whose topology 
is generated by a quasi-norm | |, and suppose that {PA.} is equicontinuous for 
every pairwise disjoint sequence {A-} C A. If {x-} is a null sequence in E, 
then PA. x-; -> 0 in E so there is a subsequence such that £] PAn xn. converges 

in E. Hence, strong (GHP) is satisfied. 
For an example where (GHP) is satisfied but strong (GHP) is not, let £°° 

be equipped with o(£°°,ba). Let A be the power set of N and for A £ A 
define PA: £°° -r £°° by PAx = CAx for x G £°° where CA is the char­
acteristic function of A and CAx is the coordinatewise product of CA and 
x. Then (i) and (ii) are satisfied. Then e-7 —> 0 in o(£°°,ba) but no sub-
series YleUj is v(Z°° ,ba) convergent so strong (GHP) is not satisfied. How­
ever, let xk —> 0 in o-(£°°,ba), let {Ak} C A be pairwise disjoint and let 
{v} C ba. By D r e w n o w s k i ' s Lemma ([D], [DU; 1.6]) there is a subse­
quence {-4n} such that each v{ is countably additive on the a-algebra S gen­
erated by {An}. Since xk -> 0 in o(£°°,ba), there exists M > 0 such that 

oo 

Halloo — M. Let x be the coordinatewise sum of ^ CAn xnk. We claim that 
ak 

k=i 
oo 

x = XI CA £nA; in the topology o-(^°°, {^}) • This follows since for every j , 
k=i 

I % \ OO / OO v 

" i - ' - E V " = / E CA x"-^ <M|̂ .|( U -^J-^Oas 
x A : = l fc ; N / c = i + l XA;=2-|-1 7 

i -> co by the countable additivity of i/. on E . Hence, (GHP) is satisfied. 
We give further examples of spaces, including the space of Pettis integrable 

functions, satisfying (GHP) later. 
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THEOREM 3. Assume that P satisfies (D) and (GHP). If B C E' is a(E',E) 
bounded, then B is (3(E',E) (strongly) bounded, i.e., E is a Banach-Mackey 
space ([Wi; 10.4]). 

P r o o f . Suppose the conclusion fails. Then there exists a null sequence {x } 
in E such that 

s u p { | ( y ' , ^ ) | : y' EB, j G N } = oo. 

Pick y[ G B, nx such that \(y[,xni)\ = l y i - ^ n j > 2- F r o m (D)> t h e r e i s a 

partition {Blt...,Bk} of S such that v(y[PBi
x
ni) < 1 for i = 1 , . . . , k. From 

(ii) and the a(E',E) boundedness of B, we may assume that 

sup{ |y / P B i x j | : y'eB, j > n j = oo. 

Set A : = S\B1 and note from (ii) that lyi-P^ x | > 1. 
Now if we treat Bx as S was treated above there exist a partition (A2,B2) 

oi Bl, y2 € B and n2 > nx such that sup^y'P-^a; -| : y' e B, j > n 2 } = oo 
and |y2P^ xn\ > 2. Continuing this construction produces a pairwise dis­
joint sequence {A-} from A, {y'A C B and a subsequence {# n . } such that 
WJPA^U^ > 3 for every j . 

Now consider the matrix M = [m-] = [fy^-P^.^n.] • The columns of M 
converge to 0 by the a(E': E) boundedness of B. Given any increasing sequence 

oo 

{r •} by (GHP) there is a subsequence {s •} such that the series Yl ^ A S
 xns 

j - l S3 SJ 

oo 

is a(E,{y'i}) convergent to some x G E. Hence, Y, mis ~ {\v'vx) ~^ 0 and 
3 = 1 

M is a K-matrix ([AS; §2]). By the Antosik-Mikusinski Theorem ([AS; 2.2]) the 
diagonal of M converges to 0 contradicting the construction above. • 

We now give two examples which point out the importance of conditions (D) 
and (GHP). 

E X A M P L E 4. Let E be an arbitrary Hausdorff locally convex TVS. Let V be 
the power set of N and define P: V -» L(E) by PA = I if 1 G A and PA = 0 
if 1 ^ A (P is an operator version of the Dirac measure at 1). Then y'Px is 
a "Dirac measure" with mass (y',x) at 1. So property (D) clearly fails to hold. 
Note, however, that conditions (i), (ii) and (GHP) do hold. Thus, if we take E 
to be any space which is not a Banach-Mackey space, Theorem 3 will fail. 

E X A M P L E 5. Let B be the Borel sets in [0,1], and let E be the space of all 
B-simple functions equipped with the L2-norm with respect to Lebesgue mea­
sure. For A G B let PA be the projection defined by PAf = CAf. Since fPg 
is non-atomic for every / , g G L2[0,1], condition (D) is satisfied (as well as (i) 
and (ii)). However, condition (GHP) fails (take any pairwise disjoint sequence 
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of Borel sets {A-} with positive measure and set / . = \CA.). Clearly E is not 
a Banach-Mackey space. 

D r e w n o w s k i , F l o r e n c i o and P a u l proved results analogous to The­
orem 3 in [DFP1] and [DFP2]. They assume that A is a a-algebra and the 
map P: A -> L(E) is projection-valued. The conditions imposed on the map P 
are quite different from those in (D) and (GHP) . In particular, in [DFP2] they 
assume that P(A) is equicontinuous. On the other hand, they do not require 
any condition analogous to condition (D). Condition (D) effectively limits the 
applications of Theorem 3 to non-atomic measures. Condition (GHP) can be 
viewed as a continuous version of a gliding hump property for sequence spaces, 
called the zero gliding hump property (see [LS]). 

We now give an application of Theorem 3 to the space of Pettis integrable 
functions. Let X be a Banach space, let E be a cr-algebra of subsets of S with 
fi a measure on E . A function / : S -> X is said to be weakly measurable if 
x' f is measurable for every x' G X' and is said to be weakly //-integrable if x' f 
is //-integrable for every x' G I ' . If / is weakly //-integrable, then for every 
A G E, x' H-> / x'f dji defines a continuous linear functional x"A G X" (apply the 

A 

Closed Graph Theorem to show the linear map F: X' —> L1(fi), F(x') = x'f, is 
continuous and then observe that x"A = F'(CA)). The element x"A is sometimes 
called the Gelfand or Dunford integral of / over A and is denoted by J f dfi. 

A 
Let G1(fi,X) be the space of all Gelfand integrable functions; equip ^1(/i,A^) 

with the semi-norm \\f\\x = sup«| / \x'f\ d// : \\x'\\ < 1 J- (this quantity is finite 
l S J 

by the continuity of the map F defined above). A function / is said to be Pettis 
integrable if / is Gelfand integrable and / / d/z G X for every .4 G E. Let 

A 

V1 (//, X) be the space of all Pettis integrable functions equipped with the semi-
norm || | |x. (See [DU] or [HP] for discussions of these integrals.) It is known that, 
in general, V1(fi,X) is not complete ([Pe; 9.4]). However, using Theorem 3 we 
show that Vl(n,X) is barrelled if // is cr-finite and non-atomic. 

For A G E define a projection PA on V1(fi,X) by PAf = CAf. The map P 
obviously satisfies conditions (i) and (ii) above. We first show that P satisfies 
the strong (GHP) condition. 

THEOREM 6. Vl(^i,X) satisfies the strong (GHP) property. 

P r o o f . Let {A-} be a pairwise disjoint sequence from E and let {/ } 

converge to 0 in Vl(n,X). Pick a subsequence {n-} satisfying H/^. Hx < 1/2K 
oo 

Let / be the pointwise sum of the series Yl CAn fn.\ f is obviously weakly 
j=\ nJ 

//-measurable. 
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°° oo 
If x'eX', then x'f = £ CAnx'fnj and \x'f\ = £ C ^ | * 7 n . | pointwise, 

j=i J j=i J 3 

oo oo 

and / | x 7 | dfi = 2 / | x7 | dL* < Har'H £ | | / J^ < oo implies that / is 
S 3=1 An. j=l 

weakly /x-integrable. 
°° 

We next claim that / / dfi e X for A e S. Since J2 / / d/i 
A j=i An,nA nj 

oo 

_C II/n 111 < °°> *^e s e r i e s zC f fn ^ converges to some xA e X by 
J=I 3 j=iAn.nA 3 

oo 

the completeness of X. Therefore, (x'jX^) = £ / x 7 n . dfi. Since | x7 | > 
j=iAnj.nA nj 

n 

Y, CAn x'fn. for every n, the Dominated Convergence Theorem implies that 
j = l ni 

oo 
f x'f dfi = J2 f x'fn ^- Hence, / / d/i = xA e X as desired, and / is 
A j=iAnj.nA J A 

Pettis /i-integrable. 
oo 

Last, we claim that the series J2 ̂ An.fn- converges to / is the norm of 

Vl{ii, X). This follows from 

/-E^лl = s Ч / K £ cAnjЛ 
3 = 1 KJ

S

} Ч 3=n+l 7 

<sиp{ £ í\x'fПi\dџ: \\x'\\ 
l j = n + l / 

d/x : ||x'|| < 1 

< 1 
" ' "-3 — 

j=n+lA 

OO 

< E ll/nJl->0. 
j=n+l 

The proof of Theorem 6 also establishes: 

D 

COROLLARY 7. The subspace ofVx{ii,X) consisting of the strongly fi -measur­
able {countably valued) functions satisfies the strong (GHP) property. 

We next consider property (D). 

PROPOSITION 8. If \i is a-finite and non-atomic, then Vx{\x,X) satis­
fies (D). 
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P r o o f . Fix / G Vx(\i,X). The indefinite Pettis integral of / is //-continu-

II f II í I f 
lim / / d/x = lim sup< / x'f d/x 

MA)-+o || J | p(A)-M) \\J 
A K A 

([Pe], [HP]) so by [DS; IIL1.5 and IIL2.15], 

\x'\\ < l \ = 0 

lim sup{ \x'f\dfx: \\x'\\ < 1 = lim \\CAfl = 0 . 
p(A)->0 ^ J J p(A)->0 

The result now follows from Remark 1(b). • 

From Proposition 8, Corollary 7 and Theorem 3, we obtain: 

COROLLARY 9. If ji is a a-finite, non-atomic measure, then Vx(ti,X) and 
the subspace of strongly measurable (countably valued) functions is barrelled. 

D r e w n o w s k i , F l o r e n c i o and P a u l generalize Corollary 9 to arbi­
trary (a-finite) measures by decomposing the measure into its non-atomic and 
purely atomic parts (see [DFP1] or [DFP2]). 

We can also use Theorem 3 to establish an interesting barrelledness result 
for the space of Bochner integrable functions. We refer the reader to [DU], [HP] 
for the basic properties of the Bochner integrable which we employ. Let Y be a 
subspace of X and let /^(/x, X) be the space of X-valued Bochner //-integrable 
functions equipped with the norm | | / | | = / | | / ( - ) l l d/x. Let L1(/J1Y) be the 

s 
subspace of L1(fji,X) consisting of the Y-valued functions. For A G S let PA 

be the projection on L1 (/i, X) defined by PAf = CAf. The function P obviously 
satisfies conditions (i) and (ii). We consider conditions (D) and (GHP). 

PROPOSITION 10. L^F) satisfies the strong (GHP) property. 

P r o o f . Let {fk} be a null sequence in L1 (/x, Y) and let {Ak} be a pairwise 
disjoint sequence from S . Pick a subsequence {nk} such that | | / n j | < 1/2* . Let 

OO 

/ be the pointwise limit of the series ^ CAn fnk. Then / is clearly strongly 
k=i nk 

CO OO 

measurable, ^-valued, and since / | | / ( . ) | | d/x = £ / ||/nfc(-)ll
 d ^ < E l /2 f c , 

S k = 1Ank k = l 

the series converges to / in L1(fi,Y). • 
PROPOSITION 1 1 . If /j, is a-finite and non-atomic, then L1(/JL^Y) satis­
fies (D). 

P r o o f . For / G L1 (/x, Y), the map A^t CAf is /^-continuous so the result 
follows from Remark 1(b). • 

We thus have 
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COROLLARY 12. If n is a-finite and non-atomic, then Ll(ii,Y) is barrelled. 

This is an interesting result in the sense that even though Y may not be bar­
relled the space L1(JJL,Y) is barrelled. More general results are given in [DFP1] 
and [DFP2]. 
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