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CERTAIN POLYNOMIAL IDENTITIES 
AND COMMUTATIVITY OF RINGS 
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(Communicated by Stanislav Jakubec) 

ABSTRACT. L e t m > l , k > 0 , s > 0 , n > 0 , t > 0 b e non-negative integers 
and R be an associative ring (may be without unity 1). In the present paper it 
is shown tha t R is commutat ive if and only if it satisfies the property [x,y] = 
ys[xn,ym]kyt, for all x,y £ R. Commutat ivi ty of ring with unity 1 has also been 
obtained if it satisfies some related polynomial identities . Finally, the result for 
rings with unity is extended to one sided s-unital rings. 

A well-known theorem of J a c o b s o n [4] states that if every element x of 
a ring R satisfies the relation xn(x) = x, where n(x) > 1 is a positive integer, 
then R is commutative. This result at the same time generalizes the theorem of 
Wedderburn that every finite division ring is commutative and also the result 
that any Boolean ring is commutative. Further, H e r s t e i n [3; Theorem 2] 
generalized Jacobson's result as follows (signified as Theorem H in sequel): if R 
is a ring in which for every x, y G R there exists a positive integer n = n(x, y) > 1 
such that [x,y] = [xn,7/], then R is commutative. 

Inspired by these works we consider the following ring properties: 

(P) For all x,y G i t , [x,y] = y 5 [ x n , y m ] V , where m > 1, fc > 0, r > 0, 
5 > 0 , n > 0, t>0 are fixed non-negative integers. 

(Pi) For all x,y G i t , xr[x,y] = ys[xn.y^fy1, where m > 1, k > 0, r > 0, 
s > 0 , n > 0 , t > 0 are fixed non-negative integers. 

(P2) For all x,y G i t , [x,y]xr = ys[xn,yrn]hyt, where ra>l,k>0,r>0, 
5 > 0 , n > 0 , t > 0 are fixed non-negative integers. 

We begin with a commutativity theorem for rings with a polynomial identity 
hypothesis: 

1991 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 16U80. 
K e y w o r d s : nilpotent element, center, associative ring, s-unital ring. 

Supported by a grant from U . G . C , India, under DSA programme to the depar tment (Grant 
No. F. 510 /2 /DSA/90 (SR-I-RBA-I)). 
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THEOREM 1. Let R be a ring with unity 1. Then the following statements are 
equivalent: 

(i) It is commutative. 
(ii) It satisfies (P-_). 

(iii) It satisfies (P 2 ) . 

For the ring It, the symbol Z(R), N(R) and C(R) will denote respectively 
the centre, the set of nilpotent elements and the commutator ideal. For any 
x,y E It, as usual [x,H] — xy — yx. 

In order to facilitate our discussion we state the following well-known lemmas, 
which are essentially proved in [6; p. 221], [9], [7] respectively. 

LEMMA 1. Let x,y e R such that [x,[x,y]] = 0. Then [xk,y] = kxk~l[x,y] 
for all positive integer k. 

LEMMA 2. Let R be a ring with unity 1 and f: R -» R be a function such 
that f(x + 1) = f(x) holds for all x E It. If there exists a positive integer k 
such that either xkf(x) = 0 or f(x)xk = 0 for all x E It. then f(x) = 0 for all 
x E R. 

LEMMA 3. Let f be a polynomial in n non-commuting indeterminates xx,x2, 
. . . , xn with coprime integral coefficients. Then the following are equivalent: 

(i) For any ring satisfying f = 0, C(R) is a nill ideal. 
(ii) For any prime p, (GF(p))2 fails to satisfy f = 0. 

(iii) Every semi-prime ring satisfying f = 0 is commutative. 

Now we prove the following: 

LEMMA 4. Let R be a ring satisfying either of the properties (Pj) or (P 2 ) . 
Then C(R) C N(R). 

P r o o f . Let It satisfy the polynomial identity ( P J . We see that x = 
e n + e i 2 ' V ~ ei2 fa^ t ° satisfy this equality in (GF(p))2, p a prime. Hence 
by Lemma 3, we get the required result. On the other hand if It satisfies (P 2 ) , 
then use similar arguments with the choice of x = e12 + e2 2 , y = e12 to get the 
required result. • 

It is easy to see that every commutative ring I? satisfies the properties (Px) 
and (P 2 ) . Conversely, if a semi-prime ring It satisfies either of the properties 
(P-_) or (P 2 ) , then the above lemma together with the Lemma 3, yield that It 
is commutative. This proves the following: 
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THEOREM 2. Let R be a semi-prime ring. Then the following statements are 
equivalent: 

(i) I? is commutative. 
(ii) It satisfies (P x ) . 

(iii) It satisfies (P 2 ) . 

LEMMA 5. Let R be a ring with unity 1 satisfying either of the properties (Px) 
or (P 2 ) . Then N(R) C Z( I t ) . 

P r o o f . Let It satisfy the property ( P J , and let a G N(R). Then there 
exists an integer q > 1 such that 

a£ G zT(It) for all £ > g, g minimal. (1) 

If g = 1, then for each such a, the result is obvious. Therefore, assume that 
g > 1. Now replace y by aq~1 in (P x ) , to get 

xr [x, a**-1] = a{q~^s [xn, a{q~1)m]ka{q~1^. 

Now in view of (1) and the fact that (q — l)ra > q for m > 1, we obtain that 
xr[x,aq~1] = 0 for all x G It. Using Lemma 2, we find that [x,aq~1] = 0, i.e. 
ag : G Z(R). This contradicts the minimality of g in (1). Thus, g = 1 and 
a G Z(I t) . Using similar arguments we can prove the result if R satisfies the 
property (P 2 ) . • 

P r o o f of T h e o r e m l . Obviously (i) implies (ii) and (iii). Now we show 
that (ii) implies (i). 

If It satisfies the property (P x ) , then using Lemmas 4 and 5, we have 

C(R) C TV(It) c Z(R). (2) 

Suppose that k > 1. In view of (2), (Px) can be written as 

xr[x,y] = [xn,y™]k
y
s+t. (3) 

Now using (2) and (3), we find that for any positive integer j3 

xr+knr+k2n2r+... + k(3-1n(3~1rT i 

__ xknr+k2n2r+-..+k(3-1np-1rrxn mik s+t 

= xk
2n2r+... + k^n^r^nr[xn^ym]^ys + t 

_xk
2n2r+...+kp-1np-1r^xn

2^ym
2
]kym{s+t)^ys + t 

_ ^ n ' r - f - i ^ - ^ ^ V r ^ n 2
 m

2ik2 (s+t)+mk{s+t) 

_ xk
3n3r+-..+kf3-1np-1rrxn

3 m3ik3 {s+t) + km{s+t) + k2m2{s + t) 

= Txn
0 ^ym0^ y{s+t) + km{s + t) + k2m2{s+t) + ... + k(3-1m(3-1{s + t) 

бi 



MOHAMMAD ASHRAF 

Thus in view of (2) and Lemma 1 the above yields that 

a ,r+Anr+..4fc /S- ln / s-1r[ I jj /] 

- (^/v^-1^-1)^ . 
But since commutators are nilpotent, hence we find that 

xr+knr+-+k*-lm"-lr[x,y] = 0, 

and by Lemma 2, R is commutative. Henceforth, we shall consider the remaining 
possibility that k = 1, which gives 

xr[x,y] = ys[xn,ym]yt for all x,yeR. (4) 

Now choose positive integer a = 2 m + 5 + t — 2 > 0 such that axr[x,y] = 
(2y)s[xn,(2y)m](2y)t - xr[x,2y] = 0. Application of Lemma 2, yields that 
a[x,y] = 0. Now in view of (2) and Lemma 1, we see that [xa,H] = axa~l[x,y] 
= 0 for all x e R, i.e. 

xa e Z{R), for all xeR ( a = 2 m + 5 + * - 2 ) . (5) 

Now application of Lemma 1, (2) and (4) several times, yields that 
( l _ y ( m - l ) ( 5 + t + m - l ) x ^ y m ^ r 

= xr[x, ym] - y^-^+^-Vmy"1-1^, y]xr 

= xr[x, ym] - my{m-1)2ym-ly{m-l){sJrt)ys[xn, y^y1 

= xr[x, ym] - mym{m-l)yms[xn, ym]ymt 

= xr[x,ym]-yms[xn,ym2]ymt 

= 0. 

Apply Lemma 2, to get ( l-yf™-1)^***™-1))^,^"1] = 0. Now replacing x by xn 

in the last equation we have ( l -y ( m - 1 ) ( s +^+ m - 1 ) ) [x n , y m ] = 0, which yields that 
(1 _ y(m-l)(s+t+m-l)^xn^ym]ys+t _ rĵ  i.e. (l __ y(m-l)(s+t+m-l) ) r^ y^r _ Q 

Again by Lemma 2, we find that ( l - y^m-l)<<sJrt+m-l))[x,y] = 0. This implies 
that (1 -y«(m-i)(s+t+m-i)^x^ y] = o (a being as in (5)). In view of (5) the last 
identity can be rewritten as [x,y - y<*(m-i)(a+t+m-i)+i^ = 0, for all x,y G i t . 
Hence by Theorem H, R is commutative. 

Using similar arguments, it can be easily shown that (iii) implies (i). • 

R e m a r k 1. The existence of non-commutative ring R with It2 being central 
rules out the possible generalization of the above theorem for arbitrary rings. 

R e m a r k 2. In the proof of Theorem 1, (ii) implies (i) could have been ob­
tained by [8; Theorem]. But, we preferred to provide a direct proof with a view 
to preparing some ground work for the following theorem, which establishes 
commutativity of arbitrary rings. 
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THEOREM 3. A ring R (may be without unity 1) is commutative if and only 
if R satisfies the property (P). 

P r o o f . Obviously, every commutative ring satisfies (P). 
Conversely, assume that R satisfies the property (P). A careful scrutiny of 

the proofs of Lemmas 4 and 5 shows that they are still valid in the present 
situation, and hence we have 

C(R) C N(R) C Z(R). (6) 

If k > 1, then for an arbitrary integer (3, using similar techniques as used in the 
proof of Theorem 1 we have 

[X,y] = [xn\ym(3]kP
 y(s+t) + km(s+t) + -- + kP-1m(3-1(s+t) ^ 

Now application of Lemma 1, yields that 

[x,y] = {n0m0xn0'\m0~1)k0[x,y]k%^+t)+km^+t^---+k0~lm0~1^+^ . 

But, since commutators are nilpotent, the above yields the required result. On 
the other hand if k = 1, then (P) can be written as 

[x,y] = ys[xn,ym]yt for all x,yeR. (7) 

Now, apply similar techniques as used to get (5), we have 

xaEZ(R) for all x € R (a = 2m+s+t - 2). (8) 

Now using Lemma 1 and (7) repeatedly, we have 

[x,ym]-y(™-1)l*+t+m-1)[x,ym] = [x^ 

= [x,ym] - mym^m-l)yms[xn,ym]ymt 

= [x,ym]-yms[xn,ym2]ymt 

= 0. 

This yields that ys{[x,ym] - y(m-i){s+t+m-i)^x^ym^yt = ^ a n d i n v i e w 

of (7), we find that [x,y] = y(m-D(s+t+m-i)^x^ ^ T h i s i m p l i e s t h a t [ ^ = 

ya{m-i){s+t+m-i)[x^y] ( a being as in (8)). Now application of (8) gives that 
[x,y - y<*(rn-i){s+t+m-i)+i] = Q, and hence R is commutative by Theorem H. 

• 
R e m a r k 3 . Particularly, for s = 0, t = 0, the above theorem reduces to 
Theorem 2 of [2]. 

In view of Remark 1, Theorem 1 cannot be extended to arbitrary rings. 
Howe\er, WTJ extend Theorem 1 to a wider class of rings called s-unital. A ring 
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R is called left (resp. right) s-unital if x E Rx (resp. x E xi?) for all x G i?. 
A ring i? is called s-unital if and only if x E i?x n xi? for all x E i?. If i? is 
s-unital (resp. left or right s-unital), then for any finite subset F of R there 
exists an element e £ R such that ex — xe — x (resp. ex — x or xe — x) for 
all x E F. Such an element e is called a pseudo-identity of F. Our next result 
states as follows. 

THEOREM 4. A left (resp. right) s-unital ring R is commutative if and only 
if R satisfies the property (P1) (resp. (P 2 ) ) . 

P r o o f . Every commutative left (resp. right) s-unital ring satisfies the 
property ( P J (resp. (P2)) . 

Conversely, let i? be a left (resp. right) s-unital ring satisfying ( P J (resp. 
(P 2)) , and y be arbitrary element of R. Choose an element e £ R such that 
ey — y (resp. ye — y). Replace x by e, to get 

er[e,y] = y ' [ e n , 3 / m ]V (resp. [e,y]er = y* [en, ym]ky*) . 

If k = 1 this yields that y = y(e -f y*+*+™-i - 2 /
5+" l - 1

e
n / / t ) E yR (resp. 

7/ = (e — ys
e
ny7n+t~1 -f ^3+ t+m- i^ ^ i?H), since ?7i > 1. On the other hand if 

A* > 1, then we find that er[e,H] = 0 (resp. [e,?/]er — 0), i.e. y yc E Hi? (resp 
H — ey £ Ry) for all y e R. Therefore, i? is right (re p left) s unital. Tim , 
R is s-unital, and by Proposition 1 of [4], we can assume tt at i? ha unit\ 1. 
Hence, i? is commutative b> Theorem 1. 

R e m a r k 4. N )tice that in the abo\e theorems, the CXT rent n tl ui 1 I 
conditions are assumed to be 'g lobi t ' . It would be inter tir t In tl ( i ( 
ali/e these results for the case when they are as umed to b * ' k < I" ( ne i.( 
they depend or. the pair of elements x, y for their values 
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