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CERTAIN POLYNOMIAL IDENTITIES
AND COMMUTATIVITY OF RINGS
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(Communicated by Stanislav Jakubec )

ABSTRACT. Let m > 1, k>0, s >0, n >0, t>0 be non-negative integers
and R be an associative ring (may be without unity 1). In the present paper it
is shown that R is commutative if and only if it satisfies the property [z,y] =
y®[z™,y™]*yt, for all z,y € R. Commutativity of ring with unity 1 has also been
obtained if it satisfies some related polynomial identities. Finally, the result for
rings with unity is extended to one sided s-unital rings.

A well-known theorem of Jacobson [4] states that if every element z of
a ring R satisfies the relation z"(*) = z, where n(x) > 1 is a positive integer,
then R is commutative. This result at the same time generalizes the theorem of
Wedderburn that every finite division ring is commutative and also the result
that any Boolean ring is commutative. Further, Herstein [3; Theorem 2]
generalized Jacobson’s result as follows (signified as Theorem H in sequel): if R
is aring in which for every z,y € R there exists a positive integer n = n(z,y) > 1
such that [z,y] = [z",y], then R is commutative.

Inspired by these works we consider the following ring properties:

(P) For all z,y € R, [r,y] = v*[z",y™]*yt, where m > 1, k> 0, r > 0,
$>0,n>0,t>0 are fixed non-negative integers.

(Py) Forall z,y € R, z"[z,y] = v*[z",y™]*y, where m > 1, k>0, r > 0,
$>0,n2>0,t>0 are fixed non-negative integers.

(Py) For all z,y € R, [z,y]z" = y*[z",y™]*yt, where m > 1, k>0, r >0,
$>0,n>0,t>0 are fixed non-negative integers.

We begin with a commutativity theorem for rings with a polynomial identity
hypothesis:
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THEOREM 1. Let R be a ring with unity 1. Then the following statements are
equivalent:

(i) R is commutative.
(ii) R satisfies (P,).
(iii) R satisfies (P,).

For the ring R, the symbol Z(R), N(R) and C(R) will denote respectively
the centre, the set of nilpotent elements and the commutator ideal. For any
z,y € R, as usual [z,y] = zy —yzx.

In order to facilitate our discussion we state the following well-known lemmas,
which are essentially proved in [6; p. 221], [9], [7] respectively.

LEMMA 1. Let z,y € R such that [z,[z,y]] = 0. Then [z¥,y] = ka*~[z,y]
for all positive integer k.

LEMMA 2. Let R be a ring with unity 1 and f: R = R be a function such
that f(z + 1) = f(z) holds for all x € R. If there ezists a positive integer k
such that either z*f(z) =0 or f(z)z* =0 for all z € R, then f(z) =0 for all
T €ER.

LEMMA 3. Let f be a polynomial in n non-commuting indeterminates z,, z,,
..., x, with coprime integral coefficients. Then the following are equivalent:
(i) For any ring satisfying f =0, C(R) is a nill ideal.
(ii) For any prime p, (GF(p))2 fails to satisfy f =0.
(iii) Every semi-prime ring satisfying f = 0 is commutative.

Now we prove the following:

LEMMA 4. Let R be a ring satisfying either of the properties (P;) or (P,).
Then C(R) C N(R).

Proof. Let R satisfy the polynomial identity (P,). We see that z =
ey + ey, Y = e, fail to satisfy this equality in (GF(p)),, p a prime. Hence
by Lemma 3, we get the required result. On the other hand if R satisfies (P,),
then use similar arguments with the choice of © = e, + €55, ¥ = €, to get the
required result. O

It is easy to see that every commutative ring R satisfies the properties (P,)
and (P,). Conversely, if a semi-prime ring I? satisfies either of the properties
(P,) or (P,), then the above lemma together with the Lemma 3, yield that IR
is commutative. This proves the following:
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THEOREM 2. Let R be a semi-prime ring. Then the following statements are
equivalent:

(i) R is commutative.

(ii) R satisfies (P;).

(i) R satisfies (P,).
LEMMA 5. Let R be a ring with unity 1 satisfying either of the properties (P,)
or (P,). Then N(R) C Z(R).

Proof. Let R satisfy the property (P,), and let a € N(R). Then there
exists an integer ¢ > 1 such that

ot € Z(R) for all ¢ > ¢, ¢ minimal. (1)
If ¢ = 1, then for each such a, the result is obvious. Therefore, assume that
g > 1. Now replace y by a?~! in (P,), to get
" [2,a971] = ala= Vs [z gla=Dm] ¥ gla-1)t

Now in view of (1) and the fact that (¢ — 1)m > ¢ for m > 1, we obtain that
2"[z,a?"'] = 0 for all z € R. Using Lemma 2, we find that [z,a97!] =0, i.e
a? ' € Z(R). This contradicts the minimality of ¢ in (1). Thus, ¢ = 1 and
a € Z(R). Using similar arguments we can prove the result if R satisfies the
property (P,). O

Proof of Theorem 1. Obviously (i) implies (ii) and (iii). Now we show
that (ii) implies (i).

If R satisfies the property (P,), then using Lemmas 4 and 5, we have

C(R)C N(R)C Z(R). (2)
Suppose that k& > 1. In view of (2), (P,) can be written as
[z, y] = [a", y™Fy T (3)

Now using (2) and (3), we find that for any positive integer 3
xr+knr+k2n2r+...+k5-lnﬂ ‘r[ ]

: 2,2 B—1, 61
:xknr+k nr+4---+k n T[:Z‘

n m]k s+t

77,7‘

z ‘rnaJm]) y

(
$k27127‘+"'+kﬁ_1nﬁ_lr( Ic m(s+t)) y s+t

xk2712r+-~~+kﬁ”1n@‘lr[xn ] a+t)+mk(s+t)

— xk2n2r+--~+kﬁ_lnﬁAlr

:xk3nar+~-+kﬁ"‘ln’3_1r :L,n ] s+t)+km(s+t)+k2m (s+t)

= [m”ﬁ’ymg]"‘ay(3+t)+km(8+t)+k2m2(s+t)+-~'-Hcﬁ_1mﬁ—1(s+t) )
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Thus in view of (2) and Lemma 1 the above yields that

r+knr+4. kP~ 1pf1
T "z, ]

= (nPmBa’ =1y 1) ¥ [ ] O Rm (st btk mE T k)

But since commutators are nilpotent, hence we find that
xr+knr+---+kﬂ_lmﬁ_lr[x y] =0
) b

and by Lemma 2, R is commutative. Henceforth, we shall consider the remaining
possibility that £ = 1, which gives
e[z, y] = y°[z" y™y"  forall z,ye€R. (4)

Now choose positive integer a = 2™+ttt — 2 > 0 such that az"[r,y] =
(2y)* [z", (2y)™] (2y)! — z"[z,2y] = 0. Application of Lemma 2, yields that
a[z,y] = 0. Now in view of (2) and Lemma 1, we see that [z%,y] = az®~![z,y]
=0forall z € R,ie.

z* € Z(R), forall z€R (a=2m"1_2). (5)
Now application of Lemma 1, (2) and (4) several times, yields that

(1 _ y(m—l)(s+t+m—-1))[m’ ym]mr
— .’Dr[.’l,', ym] _ y(m—l)(s+t+m—1)mym—1[l.’ y]xr

(m—1)2 m—ly(m-—l)(3+t) s

=z"[z,y™] - my y Yl y" Ny
— .’IJT[JI, ym] _ mym(m—l)ymS[l,n’ ym]ymt

=o"[z,y™) -y "y Ty

=0.

Apply Lemma 2, to get (1—y(m~D{s+tdm=1))(3 y™] = 0. Now replacing z by z"
in the last equation we have (1—y(m=D(s+t+m=1))[zn ym] = 0 which yields that
(1 _ y(m—l)(s+t+m-—1))[zn,ym]ys+t =0, ie. (1 _ y(m-l)(s+t+m—l))[x’ y]xr =0.
Again by Lemma 2, we find that (1 — y(m=D(++m=)(z o] = 0. This implies
that (1—y(m=D(s+t+m=1))[z 4] = 0 (« being as in (5)). In view of (5) the last
identity can be rewritten as [r,y — y*(m=Dls+t+m=1+1] = 0 for all z,y € R.
Hence by Theorem H, R is commutative.

Using similar arguments, it can be easily shown that (iii) implies (i). a
Remark 1. The existence of non-commutative ring R with R? being central
rules out the possible generalization of the above theorem for arbitrary rings.

Remark 2. In the proof of Theorem 1, (ii) implies (i) could have been ob-
tained by [8; Theorem]. But, we preferred to provide a direct proof with a view
to preparing some ground work for the following theorem, which establishes
commutativity of arbitrary rings.

62
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THEOREM 3. A ring R (may be without unity 1) is commutative if and only
if R satisfies the property (P).

Proof. Obviously, every commutative ring satisfies (P).

Conversely, assume that R satisfies the property (P). A careful scrutiny of
the proofs of Lemmas 4 and 5 shows that they are still valid in the present
situation, and hence we have

C(R) € N(R) C Z(R). (6)

If k> 1, then for an arbitrary integer 3, using similar techniques as used in the
proof of Theorem 1 we have

(z,y] = [:Enﬂ ymﬁ]k’ay(s+t)+km(s+t)+~~+k5_1mﬁ“1(s+t) .
Now application of Lemma 1, yields that
_ 8.0 nﬁ__1 mP-1\k” KB (s4t)+km(s+t)+-+kPImP =Y (s+1)
[z,y] = (W"mPz™y™ )" [2,y]" y :

But, since commutators are nilpotent, the above yields the required result. On
the other hand if £ = 1, then (P) can be written as
[z,9] = ¥*[z", y™)y" forall z,y€R. (7)
Now, apply similar techniques as used to get (5), we have
z* € Z(R) forall z€ R (a=2m""_2). (8)
Now using Lemma 1 and (7) repeatedly, we have

[.7,‘, ym] _ y(m—l)(s+t+m—1)[m, ym] — [m,ym] _ y(m—l)(s+t+m—1)mym—1[x’ y]

— [x,ym] _ mym(m~1)y7ns[xn’ ym]ymt
— [x’ym] _ yms[‘rn, ymz]ymt
=0.
This yiclds that y*{[z,y™] — y(mﬂl)(””m_l)[x,y’"]}yt = 0, and in view
of (7), we find that [z,y] = ym~DE+HtEm=1[z o1 This implies that [z,y] =
yelm=D(stt+m=1[g 41 (o being as in (8)). Now application of (8) gives that
[z,y — yon—D(s+trm=D+] = 0, and hence R is commutative by Theorem H.
O

Remark 3. Particularly, for s = 0, ¢ = 0, the above theorem reduces to
Theorem 2 of [2].

In view of Remark 1, Theorem 1 cannot be extended to arbitrary rings.
However, we extend Theorem 1 to a wider class of rings called s-unital. A ring
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R is called left (resp. right) s-unital if * € Rx (resp. € zR) for all x € R.
A ring R is called s-unital if and only if v € ReNzR for all z € R. If R is
s-unital (resp. left or right s-unital), then for any finite subset ' of R there
exists an element e € R such that ex = ze = x (resp. ex = z or xe = x) for
all z € F'. Such an element e is called a pseudo-identity of F'. Our next result
states as follows.

THEOREM 4. A left (resp. right) s-unital ring R is commutative if and only
if R satisfies the property (P,) (resp. (P,)).

Proof. Every commutative left (resp. right) s-unital ring satisfies the
property (P;) (resp. (P,)).

Conversely, let R be a left (resp. right) s-unital ring satisfying (P) (resp.
(P,)), and y be arbitrary element of 2. Choose an element e € R such that
ey =y (resp. ye = y). Replace = by e, to get

m]k t k

ele,y] = y*le™, y™ "y (resp. [e,yle” = y°[e",y™)"y") .

If k=1 this yields that y = y(e + ys+tHm=1 —ystm=lenyt) € yR (resp.

= (e —yerymtt=t 4 ystttm=ly € Ry), since m > 1. On the other hand if
k> 1, then we find that e"[e,y] =0 (resp. [e,yle” =0),i.c. y yc € yR (resp
y = ey € Ry) for all y € R. Therefore, R is right (re p lcft) ¢ unital. Thu ,
R is s-unital, and by Proposition 1 of [4], we can assume tlat R ha umty 1.
Hence, R is commutative by Thcorem 1.

Remark 4. Notice that in the above theorems, the exyp rent 1 t1 w1 1

conditions arc assumed to be ‘global’. It would be nter tu t fu tb 1«

alize these results for the case when they are as umed to b ‘Ic 17 cne 1.(
they depend o1, the pair of clements x, y for their values
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