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ON CONVEX LINEARLY ORDERED 
SUBGROUPS OF AN W-GROUP 

J Á N J A K U B Í K * — ŠTEFAN Č E R N A K * * 

(Communicated by Tibor Katriňák ) 

A B S T R A C T . Giraude t and Lucas proved t h a t if the increasing par t G"\ of a 
half lattice ordered group is linearly ordered, then it is abelian. We present a 
generalization of this result. 

1. Introduction 

The notion of a half lattice ordered group was introduced and studied in [3]; 
cf. also [1], [2], [4], [5], [6], [7]. 

For a half lattice ordered group (briefly: hi-group) we apply the same nota­
tion as in [3]; some definitions are recalled in Sections 2 and 3 below. In par­
ticular, the set of all increasing elements of an /i£-group G is denoted by G t ; 
then G t is a lattice ordered group. 

The system of all convex linearly ordered subgroups of an hi -group G is 
denoted by C(G); next, Cm(G) is the set of all maximal elements of C(G). 

For any group G we put E(G) = {x G G : x ^ x2 = e} , where e is the 
neutral element of G. 

We denote by 

C — the class of all lattice ordered groups; 
% — the class of all hi -groups ; 
Ux = U\C\ 
C1 — the class of all H G C such that there exists G G /H1 with G t = H. 

The following result has been proven in [3]: 

(A) Let G G K1 such that the set G t is linearly ordered. Then the group 
G t is abelian. 

1991 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F15 . 
K e y w o r d s : half lattice ordered group, convex linearly ordered subgroup. 
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We remark that if G satisfies the assumption of (A), then G t G Cm(G) and 
G t is a normal subgroup of G. 

In the present paper we prove the following generalization of (A): 

(A^ Let G G ?t\ and let X G Cm(G). Suppose that X is normal in G. Then 
X is abelian. 

In fact, (Ax) is a particular case of: 

( B J Let G e 7i1 and let X G Cm(G). Suppose that there exists a G E(G) 
such that aX — Xa. Then K G £x and X is abelian. 

Further, we prove: 

(B2) Let G Eli1 and let X G Cm(G). Suppose that X is not abelian. Then 
for each a G E(G) the relation aX ^ Xa is valid. Moreover, if a G 
P?(G), then Y = a l a belongs to Cm(G) and the following conditions 
are satisfied: 

(i) XY — X x Y is a convex ^-subgroup of G t belonging to £ x ; 
(ii) X and Y are isomorphic as lattices; 

(iii) X and Y are isomorphic as groups. 

2. Preliminaries 

Let G be a group and suppose that G is, at the same time, a partially ordered 
set. 

We denote by G t (and Gl) the set of all x G G such that, whenever y,z G G 
and y ^ z, then xy ^ xz (or xy ^ xz) respectively). 

1.1. DEFINITION, (cf. [3]) G is called a half lattice ordered group if the fol­
lowing conditions are satisfied: 

1) the partial order on G is non-trivial; 
2) if x, y, z G G and y ^ z, then yx _ zx; 
3) G = G tUG| ; 
4) G t is a lattice. 

The neutral element of G is denoted by e. In view of 1), G ^ {e}. 

1.2. PROPOSITION, (cf. [3]) Let G G r i r T/ien 

(i) G t 25 a subgroup of G having the index 2; 
(ii) the partially ordered sets G t and G | are isomorphic; 

(iii) if x G G t tt^cl H G G^. t/ien lTie elements x and y are incomparable. 

Let G G Tt̂  . We denote by C(G) the system of all subsets X of G such that 

(i) X is linearly ordered; 
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(ii) X is a convex subset of G\ 
(iii) X is a subgroup of G. 

The system C(G) is partially ordered by set-theoretical inclusion. 
If X G C(G), then in view of (iii) we have e G X ; thus according to (i) and 

1.2 we have I C L 7 | . 

1.3. LEMMA. Let X, Y G C(G) be suc/i *Aa* Xf! y 7̂  {e} . Then either X CY 
orY CX. 

P r o o f . Put XDY = Z. Assume that Y is not a subset of X. Hence there 
exists y G Y \ X. Without loss of generality we can suppose that y > e. We 
have to prove that the relation X C Y is valid; by way of contradiction, assume 
that this relation fails to hold. Hence there exists x G X\Y] again, it suffices to 
consider the case x > e. Both x and y belong to Gf, hence there exists x Ay 
in G j \ Put x A y = z. We have z G Z. 

Since Z 7̂  {e} there exists zx G Z with z1 ^ e. From the fact that Z is 
a subgroup of G we infer that without loss of generality we can assume that 
21 > e. Thus for each e < x1 £ X \ Z and each e < y1 £ Y \ Z we must have 
x1 > zx and y1 > zx. Hence xxf\yx _ zx. 

In view of the convexity of X and Y we have x(xA?/) - 1 G X and y(xAy)~1 

G y . If x(xAy)~l G -Z, then x G Z , which is impossible. Hence e < x(xAy)~l G 
X \ Z. Similarly, e < y(x A y)~l eY\Z. Then 

(x(x A y)~l) A (y(x A y)~x) = (x A y)(x A y)~l = e . 

On the other hand, if we put xx = x(x A y)~l, y1 = y(x A y)~l, then we get 
xi A y1 ^ zx. Thus e ^ ^ , which is a contradiction. • 

Let Cm(G) be as in the Introduction. 

1.4. LEMMA. Le£ X G C(G). X 7̂  {e}. Then there exists an element X° of 
Cm(G) such that X° D X . 

P r o o f . Put A = {Y eC(G) : Y D X}. U Yl,Y2 € .A, then in view of 1.3 
we have either Yx C y2 or Y2~Yl. Put 

Then X° G C(G) and X° G A. It is clear that X° is a maximal element of C(G) 
and that X° D X . • 

1.5. LEMMA. Let X,Y e Cm(G), X ^ Y. Then X n y = {e} . 

P r o o f . By way of contradiction, assume that I n K = Z / {e}. Then in 
view of 1.3, X and Y are comparable. This is impossible, since both X and Y 
are maximal. • 
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1.6. LEMMA. Let X and Y be as in 1.5. Then 

(i) xy = yx for each x £ X and each y EY; 
(ii) XY = X xY. 

P r o o f . From 1.5 and from the convexity of X and Y we conclude that 
x A y = e whenever x G X + and y G F + ; hence xy = x\J y = yx. Thus (i) 
holds. Then by a simple calculation we obtain that (ii) is valid. • 

1.7. LEMMA. Let X and Y be as in 1.5. Then XY is a convex £-subgroup 

ofGt. 

P r o o f . Let u,v G XY, z G G t , u = z = v. Then 

e = zu~l ^ vu~l 

and in view of 1.6, vu~l G XY. Thus there are x G X + , y G F + , with 
Tm-1 = xy. According to Riesz theorem there are x1,y1 G G t with e =^xl = x, 
e = V\ = yi zu~1 — x\y\ - We have x1 G X , yx G F , whence x1y1 G X Y and 
so z G X Y . D 

2. Proofs of (Bx) and (B2) 

Let H be a lattice ordered group with the neutral element e , / Y / {e}. We 
denote by 1(H) the system of all mappings F: H -» H such that 

(i) F is a group automorphism of the group (IF, •); 
(ii) F is a dual automorphism of the lattice (H; ^ ) ; 

(iii) F(F(x)) = x for each x G II. 

2 .1 . LEMMA, (cf. [3; III.3]) For eac/i F G I(H) ttere exz5^5 G = G H F G 7IX 

such that 

(i) ot = tf; 
(ii) there is a € E(G) with F(x) = axa for each x G II; 

(iii) G zs uniquely determined up to II -isomorphism. 

2.2. PROPOSITION, (cf. [3; 1.3.1]) If G eUx, then E(G) ± 0. 

2 .3 . LEMMA. Let G e /H1, a G -B(G). P ^ F(x) = axa for each x G Gt-
T/ien F G / ( G t ) • 

P r o o f . This is an immediate consequence of the definition of E(G). • 

In what follows we suppose that G is an element of %1, H = Gt- Let 
X G Cm(G). Further let a and F be as in 2.3. 
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Put F(X) = Y. Then Y is an element of Cm(G). We distinguish two cases: 

(a) F = X ; 
(b) Y^X. 

First suppose that (a) is valid. Put T = X U aX. 

2.4. LEMMA. T is a subgroup of the group G. 

P r o o f . If xx , x2 G X , then clearly xxx2 GT. Further, let x G X, y G a X . 
Hence y = axx for some xx G X . Also, x = -F(x') for some x' G X . Then 

xy = ax*aaxx = ax'xx G aX , 

since x'xx G X . Further 

yx = axxx G a X . 

If yx is another element of a X , i.e., Hx = ax2 for some x2 G X , then 

2/^ = ax 1ax 2 = x '^2 G I , 

where x[ = F(xx). 
Thus the set T is closed under the group operation. 
Let t G T. If t G X , then t - 1 G X . Suppose that t E a l , thus t = ax 

for some x G X . Hence t _ 1 = x _ 1 a _ 1 = x _ 1 a . From (a) we conclude that 
Xa = a X , therefore t~l G a X . D 

2.5. LEMMA. T is a half lattice ordered group; moreover, T eH1. 

P r o o f . We have X C H = G t and aX C G+. This yields that X = T | 
and aX = T^. Then in view of 1.1 we infer that T is a half lattice ordered 
group. Further, since aX / 0, we get T G H1. D 

2.6. PROPOSITION, / / ( a ) is valid, then the group X is abelian. 

P r o o f . This is a consequence of (A) and 2.5. D 

Now, (Bx) is a corollary of 2.3 and 2.6. Also, (Ax) follows immediately 
from (Bx) . 

Suppose that the condition (b) holds. Put 

Z = XY , T1 = Z\JaZ. 

According to the results of Section 1, Z is a convex ^-subgroup of G t and 
Z = X xY. 
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2.7. LEMMA. TX is a subgroup of G. 

P r o o f . From the definition of Y we obtain 

aX = Ya , Xa = aY , aZ = Za. 

Let £1? t2 G Tx . We have to show that tx t2 belongs to Tx. 
If tx,t2 G Z , then ^ t 2 G Z C T r Suppose that tx E Z, t2 £ aZ. Hence 

there exist x{, yi (i = 1,2) such that ^ G X , y{ £Y and 

^1 = *^l2/ l ' ^2 ~ aX2y2 ' 

Thus 
61c2 = xlylax2y2 = ax^y^x2y2 

for some x'x G X , H^ G 7 . Hence txt2 G Tx . Similarly, t2t1 G Tx . Next, let 
t2 G a Z , t2 — ax0y0. Then 

c2t2 = ax2y2ax0y0 = aax2y2x0y0 = x2y2x0y0 

for some x2 G X and y2 € Y. Hence £2£2 G Tx . Therefore Tx is closed under 
the group operation. If z G Z , then z""1 G Z . Next, {az)~l — z~la~l = z _ 1 a G 
Za = a Z , which completes the proof. • 

The proof of the following lemma is analogous to that of 2.5. 

2.8. LEMMA. TX is a half lattice ordered group; moreover, T1£%1. 

P r o o f of (B2) . Let the assumptions of (B2) be valid. Hence, in particular, 
X is not abelian. Then in view of 2.6, for each a G E{G) the relation aX ^ Xa 
is valid. Now it suffices to apply 2.8, 1.6, 1.7 and the properties of the mappings 
F G 1(H). • 
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