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ABSTRACT. Giraudet and Lucas proved that if the increasing part Gt of a
half lattice ordered group is linearly ordered, then it is abelian. We present a
generalization of this result.

1. Introduction

The notion of a half lattice ordered group was introduced and studied in [3];
cf. also [1], [2], [4], [5], [6], [7]-

For a half lattice ordered group (briefly: hf-group) we apply the same nota-
tion as in [3]; some definitions are recalled in Sections 2 and 3 below. In par-
ticular, the set of all increasing elements of an hé-group G is denoted by G7;
then G7 is a lattice ordered group.

The system of all convex linearly ordered subgroups of an hf-group G is
denoted by C(G); next, C, (G) is the set of all maximal elements of C(G).

For any group G we put E(G) = {z € G : = # z? = e}, where e is the
neutral element of G.

We denote by

L — the class of all lattice ordered groups;
‘H — the class of all hé-groups ;
", = H\L;

L, — the class of all H € £ such that there exists G € H, with G1 = H.
The following result has been proven in [3]:

(A) Let G € H, such that the set G is linearly ordered. Then the group
G1 is abelian.
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We remark that if G satisfies the assumption of (A), then Gt € C,,(G) and
G1 is a normal subgroup of G.

In the present paper we prove the following generalization of (A):
(A;) Let G € H, and let X € C, (G). Suppose that X is normal in G. Then
X is abelian.
In fact, (A,) is a particular case of:
(By) Let G € H, and let X € C, (G). Suppose that there exists a € E(G)
such that aX = Xa. Then X € £, and X is abelian.
Further, we prove:
(B,) Let G € H, and let X € C, (G). Suppose that X is not abelian. Then
for each a € E(G) the relation aX # Xa is valid. Moreover, if a €

E(G), then Y = aXa belongs to C, (G) and the following conditions
are satisfied:

(i) XY =X xY is a convex £-subgroup of G1 belonging to L ;
(ii) X and Y are isomorphic as lattices;
(ili) X and Y are isomorphic as groups.

2. Preliminaries

Let G be a group and suppose that G is, at the same time, a partially ordered
set.

We denote by Gt (and G|) the set of all x € G such that, whenever y,2z € G
and y £ z, then zy < zz (or xy 2 xz, respectively).
1.1. DEFINITION. (cf. [3]) G is called a half lattice ordered group if the fol-
lowing conditions are satisfied:

1) the partial order on G is non-trivial;
2) if z,y,2 € G and y £ z, then yz £ zzx;
3) G=GtUG;

4) G171 is a lattice.

The neutral element of G is denoted by e. In view of 1), G # {e}.

1.2. PROPOSITION. (cf. [3]) Let G € H;. Then

(i) GTA is a subgroup of G having the index 2;
(ii) the partially ordered sets Gt and G| are isomorphic;
(iii) if ¢ € Gt and y € G, then the elements © and y are incomparable.

Let G € H,. We denote by C(G) the system of all subsets X of G such that
(i) X is linearly ordered;
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(ii) X is a convex subset of G;

(iii) X 1is a subgroup of G.
The system C(G) is partially ordered by set-theoretical inclusion.

If X € C(G), then in view of (iii) we have e € X; thus according to (i) and
1.2 we have X C G71.

1.3. LEMMA. Let X,Y € C(G) be such that XN'Y # {e}. Then either X C Y
orY CX.

Proof. Put XNY = Z. Assume that Y is not a subset of X . Hence there
exists y € Y \ X. Without loss of generality we can suppose that y > e. We
have to prove that the relation X C Y is valid; by way of contradiction, assume
that this relation fails to hold. Hence there exists z € X \Y'; again, it suffices to
consider the case z > e. Both = and y belong to G7, hence there exists z Ay
in Gt. Put tAy==2. We have z € Z.

Since Z # {e} there exists z, € Z with z; # e. From the fact that Z is
a subgroup of G we infer that without loss of generality we can assume that
zy > e. Thus for each e <z, € X\ Z and each e <y, € Y \ Z we must have
xr, >z and y; > z,. Hence z, Ay, 2 2.

In view of the convexity of X and Y we have z(zAy)~! € X and y(zAy)™?
eY.If z(xAy)~! € Z, then x € Z, which is impossible. Hence e < z(zAy)~! €
X\ Z. Similarly, e < y(x Ay)~' € Y\ Z. Then

(zzAy) ) A@EAy) ™) =@Ay)(eAy) =e.

On the other hand, if we put z, = z(z Ay)~™!, y;, = y(z Ay)~!, then we get
z, Ay, 2 z;. Thus e 2 z,, which is a contradiction. O

Let C,,(G) be as in the Introduction.

1.4. LEMMA. Let X € C(G), X # {e}. Then there exists an element X° of
C,.(G) such that X° D X .

Proof. Put A={Y €C(G): Y2 X}.If Y},Y, € A, then in view of 1.3
we have either ¥, C Y, or ¥, CY,. Put
xX'=Jv.
Y;eA

Then X° € C(G) and X° € A. It is clear that X° is a maximal element of C(G)
and that X° D X . m]

1.5. LEMMA. Let X,Y €C, (G), X #Y. Then XN Y = {e}.

Proof. By way of contradiction, assume that X NY = Z # {e}. Then in
view of 1.3, X and Y are comparable. This is impossible, since both X and Y
are maximal. O
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1.6. LEMMA. Let X and Y be as in 1.5. Then
(i) zy = yx for each z € X and each y €Y ;
(i) XY =X xV.

Proof. From 1.5 and from the convexity of X and Y we conclude that
z Ay = e whenever z € X and y € Y'; hence zy = = Vy = yz. Thus (i)
holds. Then by a simple calculation we obtain that (ii) is valid. O

1.7. LEMMA. Let X and Y be as in 1.5. Then XY 1is a convexr {-subgroup
of G7.

Proof. Let u,v € XY, 2€ G, u £ z2< v. Then
e<zu! Lot

and in view of 1.6, vu~! € XY . Thus there are ¢ € Xt , y € Y1 with
vu~! = zy. According to Riesz theorem there are z,,y; € Gt with e Sz, <z,
e<y Sy, zu"! =zy,. We have z; € X, y, € Y, whence z,;y, € XY and
so z € XY. O

2. Proofs of (B;) and (B,)

Let H be a lattice ordered group with the neutral element e, H # {e}. We
denote by I(H) the system of all mappings F: H — H such that

(i) F is a group automorphism of the group (H,");
(ii) F is a dual automorphism of the lattice (H;<);
(iii) F(F(z)) =z for each z € H.
2.1. LEMMA. (cf. [3; IIL.3]) For each F' € I(H) there exists G = Gy p € H,
such that
(i) Gt=H;
(ii) there is a € E(G) with F(z) = axa for each z € H;
(iii) G is uniquely determined up to H -isomorphism.

2.2. PROPOSITION. (cf. [3; 1.3.1]) If G € H,, then E(G) # 0.

2.3. LEMMA. Let G € H,, a € E(G). Put F(xz) = aza for each x € G7.
Then F € I(G?).

Proof. This is an immediate consequence of the definition of E(G). O

In what follows we suppose that G is an element of H,, H = G7. Let
X €C,,(G). Further let a and F be as in 2.3.
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Put F(X) =Y. Then Y is an element of C,,(G). We distinguish two cases:
(a) Y =X,
(b) YV #X.

First suppose that (a) is valid. Put T'= X UaX.
2.4. LEMMA. T is a subgroup of the group G.

Proof. If z;,z, € X, then clearly z,z, € T'. Further, let z € X, y € a X .
Hence y = az, for some z; € X . Also, z = F'(z') for some z’ € X. Then

_ ! _ !
Ty = ar' aar, = ar' T, € aX,

since z'z, € X. Further

YT = ar,T € aX .
If y, is another element of aX, i.e., y, = az, for some z, € X, then
Yy, = az,ar, = 1T, € X,
where | = F(z,).

Thus the set T is closed under the group operation.

Let t € T.If t € X, then t~! € X. Suppose that ¢t € aX, thus t = ax

for some z € X. Hence t~! = z7'a™! = z7'a. From (a) we conclude that
Xa = aX, therefore t7! € aX. O

2.5. LEMMA. T is a half lattice ordered group; moreover, T € H, .

Proof. We have X C H = G1 and aX C G|. This yields that X = T%
and aX = TJ. Then in view of 1.1 we infer that T is a half lattice ordered
group. Further, since aX # 0, we get T € H, . O
2.6. PROPOSITION. If (a) is valid, then the group X is abelian.

Proof. This is a consequence of (A) and 2.5. O

Now, (B,) is a corollary of 2.3 and 2.6. Also, (A;) follows immediately
from (B,).

Suppose that the condition (b) holds. Put
Z=XY, T, =ZUaZ.

According to the results of Section 1, Z is a convex f-subgroup of G1 and
Z=XXxY.
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2.7. LEMMA. T, is a subgroup of G.
Proof. From the definition of Y we obtain
aX =Ya, Xa=dY, aZ = Za.

Let t,,t, € T} . We have to show that t,t, belongs to 7] .

If t,,t, € Z, then t;t, € Z C T). Suppose that t; € Z, t, € aZ. Hence
there exist z,, y; (i =1,2) such that z, € X, y, €Y and

ty =291 ty = azyy, -
Thus
tity = T,Y,0T,Y, = aThY)T,Y,

for some z} € X, y; € Y. Hence t;t, € T,. Similarly, t,t;, € T;. Next, let
t) €aZ, t) = az,y,. Then

0 _ _ 1o .
oty = aT,Y,0T0Yy = AATLY5ToYy = TrYsZ0Y,

for some z!, € X and y, € Y. Hence t,t9 € T,. Therefore T} is closed under
the group operation. If z € Z, then 27! € Z. Next, (az) ! =z27la" ' =z27la €
Za = aZ, which completes the proof. O

The proof of the following lemma is analogous to that of 2.5.
2.8. LEMMA. T is a half lattice ordered group; moreover, T} € H, .

Proof of (B,). Let the assumptions of (B,) be valid. Hence, in particular,
X is not abelian. Then in view of 2.6, for each a € E(G) the relation aX # Xa

is valid. Now it suffices to apply 2.8, 1.6, 1.7 and the properties of the mappings
Fel(H). O

REFERENCES

(1] CERNAK, S.: On the mazimal Dedekind completion of a half partially ordered group,
Math. Slovaca 47 (1996), 379-390.

[2] CERNAK, S.: Cantor extension of o half lattice ordered group, Math. Slovaca 48 (1998),
221-231.

[3] GIRAUDET, M..—LUCAS, F.: Groupes da moitié ordonnés, Fund. Math. 139 (1991),
75-89.

[4] GIRAUDET, M.*RACHIDJNEK, J.: Varieties of half lattice-ordered groups of monotonic
permutations in chains. Prepublication No 57, Université Paris 7, CNRS Logique, 1996.
[5) JAKUBIK, J.: On half lattice ordered groups, Czechoslovak Math. J. 46 (1996), 745-767.

[6] JAKUBIK, J.: Lezicographic products of half linearly ordered groups, Czechoslovak Math. J.
(To appear).

132



ON CONVEX LINEARLY ORDERED SUBGROUPS OF AN h¢-GROUP

[7] TON, DAO-RONG: Torsion classes and torsion prime selectors of hf-groups, Math. Slo-
vaca 50 (2000), 31-40.

Received March 9, 1998 * Matematicky tistav SAV
Revised June 26, 1998 Gre3dkova 6
SK-040 01 KoSsice
SLOVAKIA

** Department of Mathematics
Faculty of Civil Engineering
Technical University
Vysokoskolskd 4
SK-040 01 Kosice
SLOVAKIA

133



		webmaster@dml.cz
	2012-08-01T13:47:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




