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WILSON'S THEOREM 

IN ALGEBRAIC NUMBER FIELDS 

MlROSLAV LASSAK 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. In this paper a generalization of Wilson's theorem 

(p — 1)! = — 1 (mod p), pa prime, 

in algebraic number fields is proved. Gauss [DICKSON, L. E.: History of the 
Theory of Numbers, Vol. I, Carnegie Institute, Washington, 1919] generalized 
this proving that the product of positive integers less than n and prime to n is 
congruent modulo n to — 1 if n = 4 ,pm ,2pm , where p is an odd prime, and 
to -f 1 if n is not of one of these three forms. Further extensions of this result to 
products 

n>> ria> 
aeP(e) a£G(e) 

where P(e), G(e) are respectively a maximal semigroup and a maximal group in 
Z n belonging to the idempotent e, are given in [SCHWARZ, S.: The role of semi­
groups in the elementary theory of numbers, Math. Slovaca 31 (1981), 369-395]. 
Extending this method based on investigation of idempotents and the structure of 
the maximal (semi)groups, we prove analogous theorems for the residue class ring 
S/3 of the ring of integers of an algebraic number field and give specialization to 
some special cases of algebraic number fields. 

1. P r imit ive idempotents 

Let R be a finite commutative ring with unit element 1 and let E be the 
set of its idempotents. The set E is non empty (0,1 G E) and finite. Endowed 
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MIROSLAV LASSAK 

with operations A, V, ' defined by 

x A y = xy, 

xV y = x + y — xy, 

x' = 1 — x, 

E forms a Boolean algebra. Atoms of (F/, A, V) are called primitive idempotents. 
Let ^ l r . . , £ r be all the primitive idempotents of the ring R. Then ex,..., er 

are pairwise orthogonal, i.e. 

eiej = 0 for i^j. 

The equation 
e1 + -~ + er = l (1.1) 

gives the Peirce decomposition of the ring R 

R = £-#©• -@erR. 

For 0 / rj e E 

Ve. = l £ i ^ ' - ^ 1 \ 0 otherwise 
and multiplying (1.1) by rj we get 

V= J2 ЄІ-
i=l 

ГJЄІ=ЄІ 

Schwarz [Schl981] pointed out the role of idempotents in the multiplicative 
structure of Zn to some classical congruential results of number theory. His 
analysis was extended to more general rings in [LaP1996]. We refer the reader 
to both papers for more details. To make the reading of this paper selfcontained 
we summarize some results which we shall use in the rest of this paper. 

Denote by PR(s) the maximal semigroup belonging to an idempotent e G E, 
i.e. the maximal subsemigroup of the multiplicative part of the ring R containing 
only the idempotent e. Similarly, denote GR(s) the maximal group belonging to 
the idempotent £, i.e. the maximal subsemigroup of i?, which is group with unit 
element e. Let N(R) denote nil-radical of the ring R. 

PROPOSITION 1.1. Let £ 1 ? . . . ,£ r be all the primitive idempotents of the 
ring R, and let rj G E. Then 

PR(V)= © GR(st)@ © N(eiR) = GR(V)®N((l-r])R). 
z=l,...,r i= l , . . . ,r (1-2) 
riei=£t 77£i=0 

GRtn)= © GR(Si). (1.3) 
i = l , . . . , r 
T)£i=i£i 
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PROPOSITION 1.2. Let e be a primitive idempotent of the ring R. Then 

eR = GR(e)UN(eR) 

and this union is disjoint. 

2. Algebraic number fields 

Let L = Q(a) be an algebraic number field of degree n and let S = S^a 

be the ring of algebraic integers of L. Let 3 be a non-zero ideal of S. Since S 
is a Dedekind ring, 3 has the unique factorization (up to order) 

where ^ 3 1 , . . . , ^3 r are distinct prime ideals of S and t ^ > 0 , z = l , . . . , r . 

It is known that the residue class ring S/3 is finite. We shall denote it by S3 

and its elements by [x] = [x]3 = x + 3 for x G S. The norm AT(3) of an ideal 3 
is defined as the cardinality of the ring S3. 

Let the prime ideal ^ contain the ideal (p{) with rational prime pi and let 
f{ be the residual degree of ^ over Q, and ei be the ramification index of y${ 

over (p.), i = 1 , . . . , r . Then M(^{) = p{{ and 

M(3) = N(Vl)Ul ' ' '^(Vr)Ur = Pr^ • • 'PrrU • 

Denote by ^(3) the order of the group of units Gs°([i]3) of the ring Sj. 
Then 

v p ) = ^ D • • • ̂ (^ )=w) n(i - ^(^)-1). 
i = l 

We say that [re] E 5 a belongs to a divisor 1 of 3 if and only if T = ((#), 3 ) , 
i.e. T is equal to the greatest common divisor of the principal ideal (x) and the 
ideal 3. It is well defined because the ideal ((#), 3) does not depend on the choice 
of the representative of the class [x]. Every idempotent of S3 belongs to a unitary 
divisor of 3 (a divisor 1 is unitary if and only if (X, ~) = (1)) and to every 
unitary divisor T is assigned a unique idempotent. We thus have a one-to-one 
correspondence between idempotents of S3 and unitary divisors of 3 and hence 
there are 2 r idempotents. Moreover, there are exactly r primitive idempotents 
sl,..., er with e{ belonging to the unitary divisor ^ - - (see [LaP1996] for more 
details). 
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PROPOSITION 2.1. Let rj be the idempotent of Sd belonging to the unitary 
divisor I . Then the mapping \_~ : x i-> rjx is a ring isomorphism So. -» r]S3 

and a group isomorphism G ^ ([1] 3.) -> G7 7 5^?]). Specially, for every primitive 
c 

idempotent ei, i — l , . . . , r ; there is an isomorphism * . . : G *-* ([l]<p^) -> 

We prove the following theorem. 

THEOREM 2.2. Let rj be the idempotent of S3 belonging to the unitary divi­
sor %, then 

| G S ^ ) | = | G 5 * ( [ % ) | = ^ ( § ) , (2.1) 

|-V(([1]~ - l)S,)\ = W{S%)\ = ^ m . (-•-) 

?Pi|X 

\PS"{r})\ = / ^ I I (-V(^) - 1) • (2-3) 

nN"cPi)*M* 

, = i 

P r o o f . (2.1) follows from Proposition 2.1. Let us prove (2.2). Since 

* ( ( M D - ~ ^ 3 ) = © * M J ) , e ^ __ S<^ , 

we have 
\N(([lh-r})S3)\=U\N(S^)\. 

Furthermore, according to Proposition 1.2, 

Sv:i=GS^([l}v:i)uN(SvV) 

and because the union is disjoint 

| i V ( 5 ^ ) l = - | ^ | - | G ^ ( [ l ] ^ ) l 

=N(vr)-vwr) 
=my?) - Nop?')(i - N(^)-1) = N^n/Nm,) 
-Nx^r-1. 

And finally we obtain 

l-v((w- - *.)*,) I = II w . r " = - I ^ J • 
*<!* ъ\ҡ 
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Using (1.2) of Proposition 1.1 and (2.1), (2.2) of this theorem we obtain (2.3). 
This completes the proof. • 

As a special case of (2.2) or (2.3) for the idempotent 77 = [0]3 belonging to 
the unitary divisor T = 3 we the obtain cardinality of the nil-radical of S3 

Ws,)\=^eu 
n AW 

i=l 

3. Wilson's theorem 

Wilson's theorem states 

(p- 1)! = - 1 (mod p) 

for prime p, and rewritten in terms of the maximal group its form is 

II « = [--]• 
a€Gz»([l]) 

We can consider more generally <?5D(??) and PS:i(ri) instead of GZP([1]) , where 
T) is an idempotent of S^, and investigate the products 

aePso(rj) aeGs3(rf) 

The case 77 = [0] = [0]3 is very simple. Because [0] G PS3 ([0]) and [0] G 
Gs* ([0]), we get 

n a = n a = [ o ] - (3-i} 
a(=Pso([0]) aEGso([0]) 

Thus we can assume in what follows that rj ^[0]. 
For every x G GS3(rj) and y G N(([l]-rj)S3), (1.2) of Proposition 1.1 yields 

that («r + y)rj = # and consequently 

r j a = n («??) = n U^+y)ri 
aePsi(v) a€Psi(n) xeGso(n) y&N((W-ri)So) 

= n n*=( n* * 
y€N(([l]-v)So) xeGsJ(v) *eGs3W 

where A: = \N{([1] - 7?)sa)|. 
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From (1.3) of Proposition 1.1 we get 

n-= n<«-)= n ( £ « . ) = E n« 
aeGs?(r)) a£Gs3(r}) a£Gs3(r}) X V^i=Si ' V£i=£i X a G G s J f e ) 

where l{ = ' $3 ^ ';'' . These results together with Theorem 2.2 give the following 

theorem. 
\Gso(Si)\ 

THEOREM 3.1. Let rj be the idempotent of S3 belonging to the unitary divi­
sor T. Then 

aePs3(rj) XaeGsO{r,)/ 

where k = JV(T)/ n - W i ) , and 
3M* 

(3.2) 

П« = E П« 
aЄGsз(ri) VЄІ=ЄІ x

aЄGsз(єi) 

(3.3) 

w/iere l{ = V>(j^) • 

To find the values 
J J a , J ] a 

a€P53(r/) aGG53(7y) 

it is sufficient to find the value ]J a f°r primitive idempotents sj, i = 
aeGs?(ei) 

c 

l , . . . , r . According to Proposition 2.1 the groups GS3(ei) and G ^''([l]™?.) 
are isomorphic and the structure of the second group is known from [Nakl979]. 
We have the theorem: 
THEOREM 3.2. Let e be a primitive idempotent of S^ belonging to the unitary 
divisor ^ with *)3 a prime ideal containing the ideal (p), where p is a rational 
prime. Let e be the ramification index of *P over (p), and let f be the residual 
degree of 3̂ over Q. Then 

P>2, 

aeGs?(s) 

OГ 

-e iff p = 2, « = 2, / = 1, e = l , 
or 
p = 2, « = 3, / = 1, e = 2, 

(w + l)e iff p = 2, « = 2, / = 1, e > 1, ^ e <£ \ <}32 , 

(u2 + l)e iff p = 2, « = 3, / = 1, e > 2 , w € % \ <P2 , 

£ otherwise. 
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P r o o f . According to [Nakl979] 
oo 

Gs*u([l]) ~ 7Lp5_x x]JZptx...xZpt, (3.4) 
t = ly v ' 

bu(t) 

where the coefficients bu(t) are also determined in [Nakl979] (but we do not 
need them) . 

Calculating the product of elements of the group (which is a direct product 
of cyclic groups) gives 

n a=b 
aeGSVu([l]) 

with the property b2 = [1]. Here b = [1] if and only if there is no group or there 
is more than one group of even order on the right hand side of (3.4). Otherwise 
b ^ [1] (if there is just one group of even order). Note that the element b is 
uniquely determined. Moreover in the last case b = [—1] if [1] ^ [—1], i.e. if 
¥u\2. 

We have the following cases: 

1. p>2. 
In this case Z /_x has even order and Z t has odd one for all t > 1 . Therefore 

we have J~[ a = [—1] and J\ a = — e. 
aeGSVu([l]) a£Gs3(e) 

2. p = 2 . 
CO 

In case Yl bu(t) = 1 the group GSfvu([l]) is cyclic and according to [Narl990; 
<=i 

Theorem 6.2] this is possible in our case if and only ifiz = 2, / = l o r u = 3, 
/ = 1, e > 1 . In the case w = 2, / = 1, e = 1 or w = 3 , / = 1, e = 2 w e have 

J ] a = [-1] and ! !<* = - £ , because <J3U \ 2. 
a£GS¥u([l]) aeGs?(e) 

In the the case u = 2, / = 1, e > 1 we get b = [u + 1] and thus 
J ] a = [UJ + 1] and J ] a = (UJ + l)e. 

aeGS¥u([l]) a£Gsi(e) 

And finally, in the case u = 3, / = 1, e > 2 we get b = [UJ2 + 1] and thus 
f ] a = [UJ2 + 1] and f] a = (UJ2 + l)e. Note that in the last two cases 

aeGSVu([l]) aeGs3(e) 

the result does not depend on the choice of element UJ . 
In the remaining cases [J a = [1] and f| a = e. D 

a£Gs¥u([l]) aeGs?(e) 

Let 7] be the idempotent of S^ belonging to the unitary divisor T . Without 
loss of generality we can suppose 

| = «P»i.. .?P«-, l < S < r . 
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Note that the case 5 = 0, i.e. T = 3 , 77 — [0]3 is solved by (3.1). Moreover, let 
px = • • • = pt = 2, ux < — - < ut and p{ > 2 for i = £ + 1 , . . . , 5; £ = 0 means 
that p{ > 2 for all i = 1 , . . . , s. The number of different prime ideals containing 
the ideal (2) is not greater than degree n of the number field, therefore £ < n . 

THEOREM 3.3 . Let rj be the idempotent of S3 belonging to the unitary divi­
sor T . Then 

-ГÌ iff 

a€Gsi(r)) • 
(^ + 1)Í? W 

(u2 + l)тi iff 

ux = • • • = us_г = 1, t = s - 1 , 

or 
ux = ••• = 11^ = 1, u . = 2 , ť = s , 

/ . = !> e. = l , 
ÖГ 

гcj = •.. = u,.-. = 1, i/6 = 3 , £ = s , 

Л = i . e* = 2> 

uг = --- = us_ľ = 1, гts = 2, £ = s , 

Л = l> e з > l ^ 

XІJ = . . . = u ^ = 1, гts = 3, £ = s , 

/ s = l , e a > 2 , 

^ rj otherwise, 

where ueVi'-Va\Vi'-Va^V2
a' 

P r o o f . From (3.3) of Theorem 3.1 it follows that 

h 

n-E( n-) 
aGGs3(77) ť=l X a e G s 3 ( e i ) / 

І = 1, . . . ,5. 

First we observe the parity of the exponents ^ . It is odd if and only if for all 
j = 1 , . . . , 5, j / i, we have p • = 2, u.• = 1. Therefore, if 5 — £ > 2 o r £ = s — 1 
and us_x > 1 or £ = 5 and u s _ 1 > 1 (then also us > 1), then all Ẑ , i = 1 , . . . , 5, 
are even and in this case 

n a=__]£i=ri-
a€Gs?(ri) i=1 
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There remain three cases: t = s — l , w 1 = --- = us_1 = 1 and t = s. ux = ... 
= us_1 = 1, us > 1 and t = s, u± = • • • = us_1 = us = 1. In first two cases li, 
i = 1,..., s — 1, are even and I _ is odd. If ~[ a = £5, then J | a = rj. If 

aGG53(£_) aeGso(rj) 
—[ a = —£5, then 

aGG53(e_) 

JJ a = e1 + + ss_x -es = -e1 es_x - es = -rj, 

aGG53(?7) 

because si = —ei, i = 1,..., s — 1. 
If n a = (UJ + 1)SS (where u € ̂  • • - ^ \ ^ • • - ? P , - i ^ C # a \~*2), 

a€G5n(_-_) 

then 

J J a - = e l + . . . - 4 r ^ _ l + (a; + i ) ^ 

aEG5^(77) 

= (u + l)£x + • • • + (OJ + l ) ^ + (OJ + l)s_ = (a; + l)r,, 

because o;_:i = [0] for all i = 1 , . . . , s — 1. And similarly, if JJ a = (UJ2 + l)es, 
a€Gs3(5s) 

then 

J~ a = e1 + --- + es_1 + (u;2 + l)es 

a£Gs3(ri) 

= (U2 + 1)6, + . - . + (_.- + 1 ) _ , _ . + (W
2 + 1)6s = (CO2 + 1)7? , 

because u2ei = [0] for all i = 1 , . . . , s — 1. 
In the third case all l{, i = l , . . . , s , are odd and J~J a = ei for all 

aEG5^(£i) 

i = 1,..., s, hence ~[ a = rj. 
aeGso(r)) 

Application of Theorem 3.2 to GS3(es) completes the proof. D 

THEOREM 3.4. Let rj be the idempotent of S3 belonging to the unitary divi­
sor X. Then 

~Ja = J~a 

a(_P5a(n) aeGs3(rj) 

except in the case ~[ a ̂  r) and p{ = 2, u{ > 1 for some i E {s + 1 , . . . , r} . 
aeGso(rj) 

In this exceptional case 

l[a = r,. 
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P r o o f . From (3.2) of Theorem 3.1 we have 

n»=( n*)*' ^ii^vr-1-
aePs?{v) \eGso(v)

/ *+l 

Thus we have Yl a — V for fc even and I I a ~ Yl a f ° r ^ °dd-
aeGsi{ri) aeGs3{r}) aeGs3{r)) 

D 

4, Special cases 

In this section we will concretize the theorems proved in the previous section 
for some algebraic number fields. 

Ring Z n . 

In this case S = Z , 3 = (n), i.e. S3 = Zn. 

Let rj = [1]. From Theorem 3.3 we have 

IЬ = 
aЄG-«([l]) 

n = 4, 
or 

[-1] iff n = p w , p>2, u > 1, 
or 
n = 2pu, p > 2, n > 1, 

I [1] otherwise, 

which gives the Gauss result. 

Let the idempotent rj belong to the unitary divisor t of n . Then 

?-«• 
OГ 

-7? iff = P* , P > 2, « > 1, 

aЄGZrг(r}) 
or 
n 

1 
2pu, p > 2 , n > 1 : 

t 77 otherwise, 

which is the result of S. S c h w a r z in [Schl981]. 
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Gaussian integers. 

Denote by G the ring of Gaussian integers and let a be a non-zero integer 

of G • Then Wilson's theorem for Gaussian integers has the form 

a = ( l + i ) 3 , 

or 

[-1] iff a = ?rn, T T ^ 1 + i , u > 1, 

or 

a = (1 + i)nu , 7r ^ 1 + i, u > 1, п « = < 
aЄG e «([l]) 

[i] iff a = ( l + i ) 2 , 

, [1] otherwise, 

where ir is a prime. Note that in the case a = (1 + i)2 we take CJ = 1 + i and 
then [u + 1] = [i]. 

Quadratic fields. 

Let m be squarefree integer and 3 be a non-zero ideal of the ring of integers 
S = S'Wv'ra) 0 f quadratic field Q( v ^ ) • Wilson's theorem for quadratic integers 
takes the form 

aЄG*~([l]) 

or 

-i] 

p1 = 2 , m = 1 (mod 8) , 

Pi = 2, m = 2,3 (mod 4 ) , 

P l > 2, ^ x > 1, 

pt = p2 = 2 , m = 1 (mod 8) , 

Pi = 2 , P2 > 2 , u 2 > 1, 

3 = V i 3 O T , P l = p 2 = 2, p 3 > 2 , t x 3 > l , 

[CJ + 1] iff 3 = <P?, 

, [1] otherwise, 

or 

з = ФГ. 

iff or 

or 2 ' 

or 

P І = 2 , m = 2,3 (mod 4), 

ыєУЛФÌ, 

wThere ^3X, *}32, ^33 are distinct prime ideals containing ideals (px), (P2), (P3) 
respectively, where p1, p2, p3 are rational primes. 
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Algebraic number fields. 
Finally, we have Wilson's theorem for S = S®^ . the ring of integers of the 

field Q(a) of degree n. 

TTa = 
a€G53([l j ) 

a = «P1---фr_1«Pr, Pl = ..- = pr = 2, 

/ r = l , e г = l , 

or 
[-11 iff 3 = Vi-~Уr-Ж> Pi = " - = P Г = 2, 
L J / r = l , e r = 2, 

or 

P r > 2 , _ r > l 

[w + i] iff :j = <p_---<pr_1<p., ^ ' i ^ ^ i 2 ; 

[ař̂  + l] iff 3 = íP1---.Pr_1.P?, VV'='^lr>l] 

\ [1] otherwise, 

where a; E ^ • • • ?Pr \ ^ • • • ^3r__^Pr, ^ are distinct prime ideals containing 
ideals (Pj) with residual degree fi and ramification index ei: i = 1,..., r. 
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