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WILSON’S THEOREM
IN ALGEBRAIC NUMBER FIELDS

MIROSLAV LASSAK

(Communicated by Stanislav Jakubec )

ABSTRACT. In this paper a generalization of Wilson’s theorem
(p—-1)!=-1(mod p), p a prime,

in algebraic number fields is proved. Gauss [DICKSON, L. E.: History of the
Theory of Numbers, Vol. I, Carnegie Institute, Washington, 1919] generalized
this proving that the product of positive integers less than n and prime to n is
congruent modulo n to —1 if n = 4,p™,2p™, where p is an odd prime, and
to +1 if n is not of one of these three forms. Further extensions of this result to

products
e e
a€EP(e) a€G(e)

where P(e), G(e) are respectively a maximal semigroup and a maximal group in
Z,, belonging to the idempotent e, are given in [SCHWARZ, S.: The role of semi-
groups in the elementary theory of numbers, Math. Slovaca 31 (1981), 369-395].
Extending this method based on investigation of idempotents and the structure of
the maximal (semi)groups, we prove analogous theorems for the residue class ring
S/3J of the ring of integers of an algebraic number field and give specialization to
some special cases of algebraic number fields.

1. Primitive idempotents

Let R be a finite commutative ring with unit element 1 and let £ be the
set of its idempotents. The set E is non empty (0,1 € E) and finite. Endowed
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MIROSLAV LASSAK

with operations A, V, ' defined by

rTAy=uzy,
tVy=r+y—uzy,
r=1-zx,
E forms a Boolean algebra. Atoms of (E, A, V) are called primitive idempotents.
Let €,,...,¢, be all the primitive idempotents of the ring R. Then ¢,,...,¢,

are pairwise orthogonal, i.e.

e£; =0 for i#3j.

The equation
e t+--+e. =1 (1.1)
gives the Peirce decomposition of the ring R
R=¢R®---®¢e.R.
For 0#n€eFE
{ g if g, <n,

ne; = .
* 0 otherwise

and multiplying (1.1) by n we get

r
n= Z £;-
i=1

nei=e;

Schwarz [Sch1981] pointed out the role of idempotents in the multiplicative
structure of Z, to some classical congruential results of number theory. His
analysis was extended to more general rings in [LaP1996]. We refer the reader
to both papers for more details. To make the reading of this paper selfcontained
we summarize some results which we shall use in the rest of this paper.

Denote by PF(¢) the mazimal semigroup belonging to an idempotent € € E .
i.e. the maximal subsemigroup of the multiplicative part of the ring R containing
only the idempotent . Similarly, denote G (&) the mazimal group belonging to
the idempotent ¢, i.e. the maximal subsemigroup of R, which is group with unit
element €. Let N(R) denote nil-radical of the ring R.

PROPOSITION 1.1. Let €,...,¢, be all the primitive idempotents of the
ring IR, and let n € E. Then

PRy = @ Ge)e @ N(R)=GRm) e N((1-n)R).

ey i 42
GR) = @ G"(). (1.3)
el
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WILSON’S THEOREM IN ALGEBRAIC NUMBER FIELDS
PROPOSITION 1.2. Let € be a primitive idempotent of the ring R. Then
eR =GR(e)UN(eR)

and this union is disjoint.

2. Algebraic number fields

Let L = Q(a) be an algebraic number field of degree n and let S = 59
be the ring of algebraic integers of L. Let J be a non-zero ideal of S. Since S
is a Dedekind ring, J has the unique factorization (up to order)

3=‘B;”"' gr,

where B,,...,B, are distinct prime ideals of S and u; >0,i=1,...,7.

It is known that the residue class ring S/J is finite. We shall denote it by S
and its elements by [z] = [z]; = +J for z € S. The norm N(J) of an ideal J
is defined as the cardinality of the ring 5.

Let the prime ideal %3; contain the ideal (p;) with rational prime p; and let
f; be the residual degree of P3; over Q, and e; be the ramification index of B,

over (pi)7 i1=1,...,r. Then N(‘I}z) :p{i and
N@)=NEB)™ - N(B,) =piToppr

Denote by ¢(J) the order of the group of units G57([1],) of the ring 5.
Then

r

p(3) = p(PP) - (Prr) =N (D) - [JA-NBYT).

=1

We say that [z] € S, belongs to a divisor T of J if and only if T = ((z), 3),
i.e. T is equal to the greatest common divisor of the principal ideal (z) and the
ideal J. It is well defined because the ideal ((z),J) does not depend on the choice
of the representative of the class [z]. Every idempotent of S belongs to a unitary
divisor of J (a divisor ¥ is unitary if and only if (T,2) = (1)) and to every
unitary divisor % is assigned a unique idempotent. We thus have a one-to-one
correspondence between idempotents of S; and unitary divisors of J and hence
there are 2" idempotents. Moreover, there are exactly r primitive idemgpotents
£y,-..,€, with g, belonging to the unitary divisor =%+ (see [LaP1996] for more

B
details).

305



MIROSLAV LASSAK
PROPOSITION 2.1. Let 1 be the idempotent of Sy belonging to the unitary
divisor . Then the mapping lIln: T+ mx is a ring isomorphism Sy — 1S,
s T
and a group isomorphism G~ % (1]2) = G"®*(n) . Specially, for every primitive

3

T

: . . . _ Sous
idempotent €;, i = 1,...,r, there is an isomorphism ¥_: G ®; ([1]q31_w) -

G5 (g,).
We prove the following theorem.

THEOREM 2.2. Let n be the idempotent of S; belonging to the unitary divi-
sor ¥, then

G5 m =16 () =+ (3) . (2.1)

N
IN(([s = m)S3)] = IN(5)| = ﬁg@—) ©2)
P ()] = 2O T (v, - 1). 2.3)

il;ll N(;’Bz) Bil 2

Proof. (2.1) follows from Proposition 2.1. Let us prove (2.2). Since
N(([1l; - m)S;) = D N(e;Sy), €Sy = Sgu

BilT
we have
|N(([1]:J - ”)SJ)I = H N(qu;‘f)l .
PBilT
Furthermore, according to Proposition 1.2,
Sis = G ([t ) UN (Se)

and because the union is disjoint

IN (Syee)] = s ] = 1675 (W) |
= N(B) — o(B)
= N(PP) = NBF) (L= N(B,) 1) = N(BF)/N(B)
= N(‘Biy‘i_l-
And finally we obtain
¥ (s =55 = TN = g

i

A
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WILSON’S THEOREM IN ALGEBRAIC NUMBER FIELDS
Using (1.2) of Proposition 1.1 and (2.1), (2.2) of this theorem we obtain (2.3).
This completes the proof. O

As a special case of (2.2) or (2.3) for the idempotent 7 = [0]; belonging to
the unitary divisor ¥ = J we the obtain cardinality of the nil-radical of S,

N(3)

IN(S3)| = =
'I=]1N(*13)

3. Wilson’s theorem

Wilson’s theorem states
(p—1)!'= -1 (mod p)
for prime p, and rewritten in terms of the maximal group its form is
H a=[-1]
a€G?r([1])

We can consider more generally G57(n) and P57(n) instead of GZ»([1]), where
n is an idempotent of S, and investigate the products

Mo II=

a€PS3(n) a€GS3(n)

The case n = [0] = [0], is very simple. Because [0] € P57 ([0]) and [0] €

G52 ([0]), we get
H a= H a=| (3.1)
a€P3([0])  a€GF3([0])

Thus we can assume in what follows that n # [0].
For every = € G57(n) and y € N(([1]-7)S5), (1.2) of Proposition 1.1 yields
that (z +y)n = z and consequently

Ha: H(an)= H H(37+y)77

a€PS3(n) aePS3(n) zeGSa(n) vEN(([1]-n)S7)
k
- 01 qme-( m-).
YyEN(([1]-n)S3) zeGS3(n) zeG53(n)

where k = IN((U] - TI)SJ)I'
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From (1.3) of Proposition 1.1 we get

Qo= Teo= I (X )= ( Me)

a€G3(n)  a€G3(n) a€GS3(n) " NEi=E nei=ei " a€GII(e;

where [, = Hg:% . These results together with Theorem 2.2 give the following
theorem.

THEOREM 3.1. Let n be the idempotent of S belonging to the unitary divi-

sor . Then .
e=( II<)- (32

a€PS3(n) a€G53(n)

where k = N(%)/ TI N(B,), and

BilT
Me=>( Me) 539

a€GS3(n) MEi=Ei " a€GI(e;)
—, 3
where 1, = ¢(‘13}""I) .
To find the values
[[ao Il
a€PS3(n) a€GS3(n)
it is sufficient to find the value [l a for primitive idempotents <., i =
a€GTI(e;)
S Uy
1,...,7. According to Proposition 2.1 the groups G°7(¢;) and G *: ([1]‘391')
are isomorphic and the structure of the second group is known from [Nak1979].
We have the theorem:

THEOREM 3.2. Let ¢ be a primitive idempotent of Sy belonging to the unitary
divisor =2 with P a prime ideal containing the ideal (p), where p is a rational
prime. Let e be the ramification indezx of P over (p), and let f be the residual
degree of P over Q. Then

( p>2,
or
—€ iff p=2, u=2, f=1, e=1,
or
Haz p=2,u=3, f=1, e=2,

€@ | (w4l i p=2, u=2, f=1, e>1. we P\,
W?4+1)e iff p=2, u=3, f=1, e>2, weP\P?,
L ¢ otherwise.
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WILSON'S THEOREM IN ALGEBRAIC NUMBER FIELDS
Proof. According to [Nak1979]

o

GS*+([1]) ~ Zops_y X HZpt X oo X L s (3.4)
=] Ne——
t=1 "

where the coefficients b,(t) are also determined in [Nak1979] (but we do not
need them).
Calculating the product of elements of the group (which is a direct product

of cyclic groups) gives
H a=1b

a€GP*((1])
with the property b2 = [1]. Here b = [1] if and only if there is no group or there
is more than one group of even order on the right hand side of (3.4). Otherwise
b # [1] (if there is just one group of even order). Note that the element b is
uniquely determined. Moreover in the last case b = [—1] if [1] # [-1], i.e. if
P12,
We have the following cases:
1. p>2.
In this case Z,;_, has even order and Z,. has odd one for all ¢ > 1. Therefore
we have [l a=[-1]and T[] a=—e¢.
a€G (1)) a€G®3(e)
2. p=2.
In case ) b,(t) = 1 the group G°%*([1]) is cyclic and according to [Nar1990;
t=1

Theorem 6.2] this is possible in our case if and only if u =2, f =1 or u = 3,
f=1,e>1.Inthecase u=2, f=1,e=1loru=3, f=1, e =2 we have
[I a=[-1] and ][] a= —¢, because P*12.
a€GSPB((1]) a€GS3 ()
In the the case u = 2, f =1, e > 1 we get b = [w+ 1] and thus
[l a=w+1and T[] a=(w+1)e.
a€G (1)) a€G3(e)
And finally, in the case u =3, f =1, e > 2 we get b = [w? + 1] and thus
[l a=[w*+1]and ] a= (w?+ 1)e. Note that in the last two cases
a€GIPBY((1]) a€GS3(e)
the result does not depend on the choice of element w.
In the remaining cases [I e=[1] and T[] a=e. O
aeGSF([1]) a€G%3(¢)
Let n be the idempotent of S, belonging to the unitary divisor T. Without
loss of generality we can suppose

~

S )

J
SR, 1<s<r
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Note that the case s =0, i.e. € =7, n = [0]; is solved by (3.1). Moreover, let
pp=-=p,=2,u <---<uy,and p;,>2fori=1t+1,...,5; t =0 means
that p, > 2 forall i = 1,...,s. The number of different prime ideals containing
the ideal (2) is not greater than degree n of the number field, therefore t < n.

THEOREM 3.3. Let n be the idempotent of Sy belonging to the unitary divi-
sor %. Then

( yy=--=u,_,=1, t=s5-1,
or
= =u,_, =1, u, =2, t=s
=1 iff =1, ¢,=1,
or
uy=--=u,_; =1, u, =3, t=s,
Ha= =1, e, =2,
a€G53(n) . U, =- =us_1=l, u, =2, t=s,
(w+1)n iff o1, e, > 1,
9 e Uy ==y, =1, u, =3, t=s,
w+1 1
(W +1)n iff f=1, e 52,
Ln otherwise,

where w € P, -~ P, \ B, - B,_, B2

Proof. From (3.3) of Theorem 3.1 it follows that

Me=>( Ie)"

a€G%3(n) =1 “a€eG53(e;)

J .
lz—(p(m), 1,—1,...,5.

First we observe the parity of the exponents [;,. It is odd if and only if for all
ji=1,...,s, j #1i, we have p;j=2,u;=1. Therefore, if s—t>2o0ort=s-1

and u,_; >lort=sand u,_; >1 (thenalsou, >1),thenall /;,,i=1,...,s,
are even and in this case

Hazzs:sizn.

a€GS3(n) =1
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There remain three cases: t=s—1, u; =---=u,_;=land t =35, u; =...
=u, ;=1l,u;,>landt=3s, uy =---=u,_, =u, = 1. In first two cases [,,
i=1,...,5s—1, are even and [, is odd. If [[ a=¢,, then I[I1 a=n.1f
a€G%3(es) a€GS3(n)

Il a=—¢,, then

a€GS(e,)
H a=¢ +-te,_ —E,=—€ —r—E,_, —€, =N,
a€G93(n)

because ¢, = —¢,, i =1,...,5— 1.

If [I a=(w+1)e, (where w € Py--- B, \ B, - B,_ B2 C B, \ B?),

a€G53(e,)

then

H a=61+"'+53_1+(w+1)£s
a€GS3(n)
=(w+eg +--+(w+1e,_; +(w+1e, = (w+1)n,

because we; = [0] forall i =1,...,s—1. And similarly,if J] a=(w?+1)e
a€G53(e;)

s’
then
[[e=e++e,+ @ +1),
a€G53(n)
=W+ e, +- + (W + e, _; + (wW? + e, = (W + 1),

because w?e; =[0] forall i =1,...,s - 1.
In the third case all [, ¢ = 1,...,s, are odd and II a = ¢, for all

a€GS3(e;)
i=1,...,s,hence [] a=n1.
a€G53(n)
Application of Theorem 3.2 to G°?(g,) completes the proof. |

THEOREM 3.4. Let n be the idempotent of Sy belonging to the unitary divi-

sor . Then
o= [

a€P%3(n) a€G53(n)

except in the case  [] a#n andp, =2, u,>1 forsomeie {s+1,...,7}.
a€G%3(n)
In this exceptional case

Ha:n.

a€P53(n)
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Proof. From (3.2) of Theorem 3.1 we have

Me=( M), *=Ive

a€P33(n) a€GS3(n) s+1

Thus we have [[ a=nfor kevenand [] a= |[] afor kodd. O
a€G%3(n) a€GS3(n)  a€GSI(n)

4. Special cases

In this section we will concretize the theorems proved in the previous section
for some algebraic number fields.

Ring Z,.
In this case S =7Z, J = (n), ie. Sy =17Z,.
Let n = [1]. From Theorem 3.3 we have

( n=4’
or
[-1] if n=p*, p>2, u>1,

Ha=< or

a€GZn([1]) n=2p*, p>2, u>1,

L [1]  otherwise,

which gives the Gauss result.
Let the idempotent 7 belong to the unitary divisor ¢ of n. Then

(

I
N

=p“, p>2, u>1,

II 2=

€GZn(n)
’ ! =2p", p>2, u>1,

|

i

=)
+|3Q |3 I3

\ 7 otherwise,

which is the result of S. Schwarz in [Sch1981].
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Gaussian integers.

Denote by G the ring of Gaussian integers and let o be a non-zero integer
of G. Then Wilson’s theorem for Gaussian integers has the form

( a=(1+i)?,
or
[-1] iff a=x%, T#E1I+d, u>1,
H a=4 or
= _ N _u . S
weGSe () a=(14+7r", 7#£1+i, u>1,
[7] iff a=Q0+ i)z,
\ [1]  otherwise,

where 7 is a prime. Note that in the case a = (1 +1)? we take w = 144 and
then [w+ 1] = [i].

Quadratic fields.

Let m be squarefree integer and J be a non-zero ideal of the ring of integers
S = §eV™) of quadratic field Q( vm ) . Wilson’s theorem for quadratic integers
takes the form

( J=%3, p, =2, m=1(mod 8),
or
3=‘J3113, p; =2, m=2,3 (mod 4),
or
3: ;“’ p1>2a u121=
[-1] iff or
J=P,P3, P, =py, =2, m=1(mod 8),
H a = < or
a€GS3([1)) 3=‘131 327 PL=2, pp>2, uy >1,
or
32%]%2‘3;37 Py =Py =2, p3>2, ug >1,
. p, =2, m=2,3 (mod 4),
w+1] iff J=32, 1
ol i we B \ B,
L [1] otherwise,

where P, , B,, P, are distinct prime ideals containing ideals (p,), (p,), (p;)
respectively, where p,, p,, p; are rational primes.
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Algebraic number fields.
Finally, we have Wilson’s theorem for § = S| the ring of integers of the
field Q(a) of degree n.

( 3=q31"‘mr_1‘pz, p1="'=pr:2$
fr=1, e.=1,
or
3
[_1] iff 3=q31"'q37-_1q3r7 plz---zpr=27
fr=1, e, =2,
or
3=, BB, pp==p,_, =2,
Ha=< p,>2, u. >1
a€G®3([1)) 9
i =y ... 2 by ="=pP.=2,
[w+1] iff 3—%31 "Br_.lmr7 frzla er>1,
2 ; = 3 pp=-=p. =2,
[Lu +1] iff J ‘;31 "Br_lmr’ fr=17 er>27
L [1] otherwise,
where w € P, -+ P, \ B, - PB,_, B2, P, are distinct prime ideals containing
ideals (p;) with residual degree f; and ramification index e, i =1,...,7.
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