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GALOIS TRIANGLE THEORY 
FOR CERTAIN FREE MODULES 

MAREK JUKL 

(Communicated by Tibor Katrindk) 

ABSTRACT. The aim of this paper is to generalize the Galois triangle theory 
for free modules over local rings of a special type. 

I. Introduction 

Let a local ring A be given and let M be a free A-module. The purpose of 
this paper is to find 1 — 1 correspondences between the ordered set of submodules 
of M and the set of left (right) anihilators of the ring of endomorphisms of M. 

The solution of this problem is well known for example when M is a vector 
spaces ([1]) of a totally reducible module ([6]). 

In this paper we will consider a linear algebra A which as a vector space over 
a field T has a basis 

{ l , ^ 2 , . . . , ^ " 1 } with f = 0 . (1) 

(A is isomorphic to the factor ring of polynomials T[x]/(xm)). 
Evidently, A is a local ring with the maximal ideal r]A. The all ideals of A 

are just r/J'A, 1 < j < m. 

II. A-spaces and their endomorphisms 

Let M be a free finite dimensional module over A . It is well known that all 
bases of M have the same number of elements (called the A-dimension of M) 
and from every system of generators of M we may select a basis of M (see [2]). 

Moreover in our case the module M has the following qualities (proved in [4]): 
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1 . Any linearly independent system can be completed to a basis of M . 
2 . A submodule of M is a free module if and only if it is a direct summand 

of M . 

R e m a r k . Free finitely dimensional modules over local ring R are called 
R -spaces (see e.g. [2]) and their direct summands ~l-subspaces. 

We get that in our case A-subspaces of the A-space M are just the free 
submodules of M . 

In what follows, let M denote an arbitrary but fixed n-dimensional A-space. 
Let us define an endomorphism 77 on an A-space M by the relation: 

(VxeM)(77(x) = 77.x) . (1) 

3 . PROPOSITION. If S is a nontrivial submodule of M , then there exists a 
system BQ1..., Br of subsets of M such that 

(a) B0 U • • • U Bv_x U Br is a basis of the A -space M . 
(b) r]m~rB0 U r]m~r+1B1 U ••• U r]m-1Br_1 is a set of generators of the 

A-module S, 
(c) 5 C K e r 7 7 r A S ^ K e r ^ " 1 . 

P r o o f . Let us define 1? G E n d M by d = i]\g. As S is 77-invariant, 
7? 6 E n d S . 

Using [5] ( M is a free A-module) we get T / J M = KerT^771--7, which implies 
that 

S H r]jM = Ker7 / m - j , 1 < j < m - 1. (2) 

As T C A it is clear that M (as well as every submodule of M ) is a vector 
space over T . 

The operator 77 is a nilpotent endomorphism on the vector space M . It is 
well known (see [3]) that the following kernels form a chain of inclusions 

{0} = Ker 770 C Ker 77 C • • • C Ker 77r_1 C Ker rf C • • • C Ker 77m-1 C Ker 77m 

= M . 

For any nontrivial submodule S of M there is a uniquely determined inte­
ger r , 1 < r < ra, such that S C Ker77r A S (jL Ker77 r_1 . 

Thus we have the following chain for the endomorphism d — 77 |g on S: 

{0} = Keri?° c K e r t f C ••• C K e n T - 1 C Kertfr = S. 

Viewing these submodules as well as factor modules S/Ker7/r_1, 
Ker i? r _ 1 /Ker79 r ~ 2 , . . . ,Kevd/Kexd® as vector spaces over T we have guar­
anteed the existence of elements 
W l - - - W

5 0 ' W
5 0 + l ' " - ' W

5 l ' W
5 l + l ' - " ' W

5 2 ' - - - ' W
5 . - 2 + l ' - " ' W

5 . - l 0 f S S U C h 
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that w 1 ? . . . , w s is a T-basis (i.e. a basis of this module considered as a vector 
space over T ) of S relatively ( = modulo) to K e r i / r - 1 , 
ri~/1, ..., 7Iws , w s + 1 , . . . , w s is a T-basis of Ker i? r _ 1 relatively to Ker t / r ~ 2 , 

r r ^ w , , . . . , 77r-*wSo, r l ^ " 1
 W S Q + 1 , . . . , rf'*-1 w S i , . . . , w J p _ f c _ i + 1 J . . . , wSr_fc 

is a T-basis of Kexdk relatively to K e r i / ^ - 1 , 1 < k < r — 1, 

r1w1,-.,r1wvr\+1,..,r\)..,wSr_2+lr.,w^ 
is a T-basis of Ker^ . 

Further, the union of the above set forms a T-basis of 5 . 
Since { w 1 ? . . . , w s J C Kerrf and Kerrf = r)m~rM (by (2)) we obtain the 

existence of elements u x , . . . , USQ of M such that 

w . = 7 ? ™ - r u . , l < z < 8 0 . (3) 

Similarly, having in mind that {w + 1 , . . . , w
5 r_ f c} __ Kerrjfc and Kerrlfc 

= r]m-kM we obtain the set of elements u S r _ f c l + 1 , . . . , uSr_fc of M satisfying 

w. =v
m-kui, sr_k_x + 1 < i < sr_k , for fc = l , . . . , r - l . (4) 

Now, put C0 = { u _ , . . . , u a o } and Cr_k = K r _ f c _ l + 1 , . . . , u S r _ f c } , k = 
r - l , . . . , l . 

We will prove that this system of sets has properties (a), (b) of the theorem. 
Firstly, let us prove the linear independence of the union CQ U • • • U Cr_1. 
Supposing 

£ ^ = 0, (5) 
l < i < 5 r _ i 

771 — 1 

where (by (1) in I) ^ = __ x^rf, 1 < i < sr_x and all x{j G T , we get that 
j=o 

__]vj J2x*JUi = °' (6) 

0 < J < r a - l l < i < s r - i 

Multiplying this equality by r]m~x we get 

o = £ vm~1+j £ x^i = nm~l £ w . 
0 < j < m - l l < i < 5 r _ i l < z < 5 r _ i 

This may be expressed as 

\ _ 2 r t 0 ( r r - 1 u t ) + £ x i 0 ( 7 , ' " - 1 u i ) + • • • • + £ xi0(V
m-1ui)=o, 

K » ' < « 0 S 0 < i < S l S , _ 2 < i < S r - l 
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which (according to (3), (4)) gives 

E xio(vr-1*i)+ E xio(r}r-2^i) + ---+ E x* 
l<i<So So<i<Si 5 r _ 2 < i < 5 i — 1 

Since it is a linear combination of elements of the T-basis of S (the coeffi­
cients of which belong to T ) we obtain that xi0 = 0 for i = 1, . . . , sr_1. 

This implies that (6) may be written as 

Y_ vj Y,xijui = °-
l<j<m-l l<i<sr-i 

Now, multiplying this equality by rym~2 and using (3), (4) we have 

o = n
m-» E ^ « i 

l < t < 5 r _ l 

= E a;ii(7!r_lw»)+ E *.iW~2w.)+--- + E xnw»' 
l<i<so so<i<si sr-2<i<sr-i 

which (as in the previous step) yields xn = 0 for i = l , . . . , « s r _ 1 . Thus (6) 
becomes 

2 < j < m - l l < z < 5 r _ i 

If we multiply (6) by r /m _ 3 , . . . ,77, successively, then in the same way we 
may deduce that all coefficients x{- are zero and £x = £2 = • • • = €Sr_1 — 0? 
consequently. The linear independence of the union C0 U • • • U Cr_1 is proved. 

By Proposition 1 we may complete this set to an A-basis of an A-space M 
by a subset Cr. 

Secondly, we will prove that 77m~rC0 U rfn-r+-C1 U • • • U ri
m-xCr_1 is a set of 

generators (over A ) of the A-module 5 . 

Using the notation of the elements of basis of factormodules of the first part 
of this proof and having in mind (3), (4) we may write 
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x= E xn(rfy,i)+ E XІJ(ГЃWІ)+---
l<І<So So<І<Si 

0<j<r-l 0<j<r-2 

+ E ajü(,r<w^+ E xawi 
« r - 3 < » < ^ - 2 í r - 2 < І < « r - l 

0 < j < l 

= E xij(vj+m-r"i)+ Y,xij(rij+m-r+1*i) + 
l<г<so so<i<si 

0<j<r-l 0<j<r-2 

+ E xn(vi+n-\)+ E xiPm-l*i 
Sr-3<i<Sr-2 Sr_2<i<Sr-i 

0<j<l 

= E (xikrik)(r)m-r"i) + E (%^)Wn~r+lu») + -
1 < 2 < 5 O So<l<Si 

0<k<m-l 0<k<m-l 

•••+ E (xiunk)(nm-2*i) + E (x

ikv
k)(vm-\) 

Sr-3<i<Sr-2 S r -2<*-. S r- l 
0 < & < m - l 0<fe<m-l 

= E Ur)m-r"i)+ E Zi(r)m-r+\) + ---
1<1<5 0 5 O < 1 < « 1 

•••+ E ti(nm-\)+ E ti(nm-\)-
Sr-3<i<Sr-2 ft

r-2<i<Sr-l 

Obviously, this implies that an arbitrary element of M which may be ex­
pressed as a linear combination over T of elements of T-basis of 5 may also be 
written as a linear combination of elements of r/m~rC0Urym~r+1C1U- • •Urym~1Cr_1 

with coefficients from A and vice versa. 
Now, we may prove that the system of sets C 0 , . . . ,Cr__1,Cr has all the de­

manded properties. • 

4. THEOREM. Let S be a submodule of an A-space M . Then there exist 
endomorpisms f, g of M such that 

Ker/ = 5 , Im^ = 5'.1) 

P r o o f . Evidently, if S is trivial, then the theorem holds. 
Let S be nontrivial. Let us construct a system of subsets B0,... ,Br as in 

Proposition 3. 

*) Let us remark t h a t in general this theorem does not hold for modules over an arbitrary 
ring (for example the set of integers Z may be considered as a (free) module over Z. The 
submodule of even numbers is not kernel of any endomorphism of the module Z). 
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Denoting by M . the A-subspace with basis B- for all j , 0 < j < r , we get 
a system of A-subspaces of M with 

M 0 © M x e • • • 0 M r = M , (7) 

rjm-rM0 + i ^ - ^ M - . + • • • + rfn-r^Mj + • • • + f1
m'1Mr_1 = S. (8) 

Let us define the endomorphism / on M by 

/ IM. =^" j . 0<j<r.2> (9) 

Clearly, (8) implies that S C Ker / . 
r 

Let x G M , x = Yl x j > x j G M j • Supposing x G K e r / we get (by (9)) 
j=o 

o = f(x) = J2f(xj) = Yl(rir-Jxj)-
3=0 j=0 

Since ry7"-J'x. G M .̂ we obtain (by (7)) r]r~3yij = o, 0 < j < r . Having in 

mind that all M- are A-spaces we have (as in the proof of 3) Ker(ry|]y[ ) = 
3 3 

vm-kM^ 0 <k <m: 0 < j <r. This yields that x j G r]m-r+3Mj and thus 
(by (8)) x . G 5 , 0 < j < r . Consequently, x G 5 . 

The kernel of this endomorphism / is equal to S. 
Now define an endomorphism g on M by 

SIM, = *J m " r + J \ 0 < i < r . (10) 

Evidently, Imp C S (by (7) and (8)). 

If x G /?, then (by (8) and (10)) we may write 

r r 

x = £ *7ro-r+j'yj
 3) = E s(y*) = -»(y). 

3=0 3=0 

where 

r 

3=0 

which gives x G Im g. • 
2) By TJ we denote the endomorphism defined by (1) 
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III. Galois triangle theory for A-spaces 

Let M be an A-space as in the previous section. 

1. Notation. 

1.1. We will denote by P the ring of cndomorphisms of M, P = EndM, and 
we will define the composition of / , g G P by (fg)(x) = g(f(x)). 

1.2. Let J C P . Then we will denote by L(J) the left anihilator of J , i.e. 
L(J) = {/ G P : (Vg G J)(fg = o)} and by R(J) the right anihilator of J , 
i.e. R(J) = { / G P : (Vg G J)(gf = o)} . 

1.3. We will denote by £(P) the set of the all left anihilators of the ring P , by 
7£(P) the set of the all right anihilators of P and by U(M) the set of the all 
submodules of the A-space M. 

1.4. For every submodule S G U(M) let us denote 

N(S) = {feP: (VxeS) ( / (x ) = o ) } , 

Q(S) = { / G P : ( V x G M ) ( / ( x ) G s ) } . 

(Equivalently, 

N(5) = {/ G P : SC Ker/} , Q(S) = {/ G P : I m / C S} .) 

1.5. For every subset J of P let us denote 

K(J) = { x G M : (V/G. / ) ( / (x) = o ) } , 

M(J) - {x € M : ( 3 / G J)(3y G M)(x = / (y))} . 

(In the same way as in 1.4, 

K(j)= f |Ker / , M(j) = [jlmf.) 
feJ fGJ 

2. Remark. It is easy to see that, for every J C P and every S G U(M), L( J) 
and Q(S) are left ideals of P and R(J) and N(5) are right ideals of P . 

It is also easy to derive that for every U, S G U(P), J, H C P , 

JCH = » K(J) DK(H), M(J )CM(/Y) , R( J) D R(H), L(J)DL(H), 
U C S ^ N(U) D N(5) , Q(U) C Q(5). 
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3. THEOREM. For every submodule V5 G U(M) we have: 

K ( N ( s ) ) = s , M(Q (5) ) = 5 . 

P r o o f . It follows from the definition of K and N , respectively M and 
Q , that 5 C K ( N ( 5 ) ) , respectively 5 D M ( Q ( 5 ) ) . Let us prove the reverse 
inclusions. According to Theorem 1.4 there exist endomorphisms / , g s.t. 5 = 
Ker / = Im g. 

a) Using the fact 5 = K e r / we have that / G N(5) (by 1.4). 
Let s be an arbitrary element of K ( N ( 5 ) ) . Then (by 1.5) 

(V/iGN(5))( / i (s) = o ) , 

which gives / ( s ) = o, of course. As 5 = K e r / , then s belongs to 5 . 

b) Since 5 = Img , we have (by 1.4) g G Q(5 ) . 

If s be an arbitrary element of 5 , then it may be written as s = g(x), 
x G M . This implies that s G M(Q(5 ) ) (by 1.5). • 

Using Definitions 1.4, 1.5 we may prove the following proposition as in the 
case when M is a vector space (see [1]). 

4 . PROPOSITION. For every subset J C P we have: 

N ( M ( J ) ) = R ( J ) , Q ( K ( J ) ) = L ( J ) . 

5. PROPOSITION. For every submodule 

(VSe U(M)) (N(S) = R(Q(5 ) ) k Q(5) = L ( N ( 5 ) ) ) . 

This proposition is a consequence of Propositions 3 and 4. 

6. R e m a r k . It follows from this proposition that N(5) is an element of TZ(P) 
and Q(5) is an element of £(P) for every 5 G U(M). 

Using the Propositions 3 and 4 we may prove the following proposition as in 
the case M is a vector space (see [1]). 

7. PROPOSITION. For every right anihilator H G 7£(P), N(K(H ) ) = H. for 
every left anihilator J G C(P). Q(M(J ) ) = J. 

Now, considering operators N , K , Q, M , L, R as mappings of corre­
sponding ordered sets we may formulate the fundamental theorem of the Galois 
triangle theory. 
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T H E O R E M . 

1. The operators N and K are mutually inverse antiisomorphisms of the 
ordered sets (l/(M),C) and (ft(P),C). 

2. The operators Q and M are mutually inverse isomorphisms of the or­
dered sets (£/(M), C) and (£(P), C). 

3. TAe operators L and R are mutually inverse antiisomorphisms of the 
ordered sets (ft(P), C) and (£(P), C) . 

4. Tfte following diagram is commutative. 

£(P) --- R(P) M L X 
W(M) 

P r o o f . This theorem follows from Propositions 3, 4, 5 and 7, and Re­
marks 2, 6 as in the case when M is a vector space. • 
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