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ON BICRITICAL SNARKS
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(Communicated by Martin Skoviera )

ABSTRACT. Bicritical snarks are the irreducible ones with respect to the re-
ductions considered by Nedela and Skoviera in [NEDELA, R.——SKOVIERA, M.:
Decompositions and reductions of snarks, J. Graph Theory 22 (1996), 253-279].
We show that for some n > 10 and for each even n > 92 there is a hypohamil-
tonian and henceforth bicritical snark of order n. This solves a problem stated
in [NEDELA, R.—SKOVIERA, M.: Decompositions and reductions of snarks,
J. Graph Theory 22 (1996), 253-279).

1. Introduction

We are using standard graph theoretical terminology and notation in this
paper. We define a snark to be a cubic graph with chromatic index x' = 4. Note
that multiple edges and loops are allowed.

There are two main questions which lead to the study of reduction of snarks.
The first one is the question about the intrinsic properties of cubic graphs which
force them being a snark. The hope is that these properties can be detected in
the irreducible snarks, and, since every snark is reducible to an irreducible one,
every snark should have this property, too.

The second one is the question about a method to construct all snarks re-
cursively starting from the irreducible snarks. Here the hope is that the reverse
operation (of a reduction) can be described without reflecting on the reduction
process and hence it would yield such a method.

There are many papers dealing with this topic, cf. [1], [2], [4], [5], [6], [8], [9],
and we refer the reader to one of these papers for a more extensive introduction.

In this paper we consider the approach of Nedela and Skoviera [6]. We
will give their definitions. A multipole M = (V(M), E(M)) consists of a vertex
set V(M), and an edge set E(M). Every edge of E(M) has two ends and every
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end may or may not be incident to a vertex of V(M). An cnd of an edge not
incident to a vertex is called a semiedge.

Let M and N be multipoles with semiedges e,,...,e, and f,...,f;
(k > 0), respectively. The k-junction M % N is obtained from M and N
by identifying f; and e;, for i =1,...,k. Clearly, M x N is a multipole, and if
it has no semiedges, we say it is a graph.

Let G = (V(G), E(G)) be a snark which is the k-junction of two multipoles
M and N. If the chromatic index of one of the multipoles is 4, say x'(M) = 4,
then M can be extended to a snark M* = (V(M*), E(M*)) with |V(M*)| <
|[V(G)|, and M* is called a k-reduction of G. If |V(M*)| < |V(G)|, then M*
is called a proper k-reduction of G.

A snark is called k-irreducible if it has no proper m-reduction for each
m < k, and it is called irreducible if it is k-irreducible for each k£ > 1.

A snark G is called bicritical if x'(G — {v,w}) = 3 for any two vertices
v,w € V(G).

THEOREM 1.1. ([6]) A snark is irreducible if and only if it 1s bicritical.

It is proved in [6] that the flower snark J,, , is irreducible, for each
k > 2, where the flower snark J,,,, is the graph with vertex set V(J,, ;) =
{a;,b;,c;,d; : i=0,1,...,2k} and edge set E(J,, ,) = {b;a;,b;c;,b,d;;a,a,,4;

¢;d;i13dic; o i =0,1,...,2k}. In the definition of E(Jy4,) the addition
in the indices is taken modulo (2k + 1). The graphs J; and J; are shown in

Figure 1.

FIGURE 1.

Thus there are irreducible snarks of order 8k + 4, for each k£ > 2. In [6] it
is also stated that there are no irreducible snarks of orders 12, 14, 16 and 24,
but there are irreducible snarks of orders 10, 18, and 22. In [1] these results are
obtained independently, in fact, it is shown that there are exactly 2 irreducible
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snarks of order 18, 1 of order 20, 2 of order 22, 111 of order 26 and that there
are 33 irreducible snarks of order 28.

Nedela and Skoviera asked the following questions:

PROBLEM 1.2. ([6]) For which even number n > 10 does there exist an irre-
ducible snark of order n? In particular, does there exist an irreducible snark of
each sufficiently large order?

We will give a partial solution of the first and a positive answer to the second
question.

2. Families of bicritical snarks

We show that there are irreducible snarks of order n for some n > 10 and
for each even n > 92. Indeed, we will show the somewhat stronger result, that
for some n > 10 and that for each even n > 92 there is a hypohamiltonian
snark. For the proof we use some results of [3] and [8]. Fiorini proved in [3] a
sufficient condition under which the dot product preserves the property of being
hypohamiltonian. To state Fiorini’s results we give the definitions.

A graph G is hypohamiltonian if it is not hamiltonian, but G — v is hamil-
tonian for every vertex v of G.

Let G, and G, be snarks. The dot product G, - G, is a snark (see [5]) and
it is defined as follows:

1. take G} = G, —{ab, cd}, where ab, cd are two nonadjacent edges of G, ;

2. take G, = G, — {z,y}, where z, y are adjacent vertices in G,;

3. let w, z and u, v be the other neighbors of x and y in G,, respectively.
Then G, - G, is the graph G = (V,E) with V =VG{UVG, and E = EG{ U
EG, U {aw, bz, cu, dv}.

Let G = (V, E) be a graph. A pair of vertices (v, w) is good in G if there is
a hamiltonian path with terminal vertices v, w.

Two pairs of vertices ((v,w), (z,y)) are good in G if there are two disjoint
paths in G forming a spanning subgraph of G, with terminal ends v, w and z,
y, respectively.

THEOREM 2.1. ([3]) Let G be a hypohamiltonian snark having two indepen-
dent edges e = uv, f = xy for which
1. each of (u,x), (v,y), (v,z), (v,y), ((u,v),(z,y)) is good in G
and
2. for each vertez w, one of (u,v), (z,y) is good in G — w,
and let H be a hypohamiltonian snark. Then G- H is a hypohamiltonian snark.
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THEOREM 2.2. ([3]) The flower snark Jy, ., is hypohamiltonian for each
k>2.

Fiorini mentioned without proof that the two BlanuSa snarks and the
double-star snark D (cf. [9]) are hypohamiltonian, and that J, satisfies the
conditions of Theorem 2.1. The following lemma verifies and extends the latter
result. The proof is given in the appendix.

LEMMA 2.3. The flower snarks Jy, J,, and J,; satisfy the conditions of
Theorem 2.1.

The proof of Theorem 2.5 uses the following result of the author.
THEOREM 2.4. ([8]) Each hypohamiltonian snark is bicritical.

The converse is not true. The Goldberg snarks [4] on 22 vertices are
bicritical and they are not hypohamiltonian, cf. [3].

THEOREM 2.5. There is a hypohamiltonian snark of order n
(1) for each n € {m: m > 64 and m =0 mod 8},
(2) for each n € {10,18}U {m: m > 98 and m = 2 mod 8},
(3) for each n€ {m: m > 20 and m =4 mod 8},
(4) for each n € {30}U{m: m > 54 and m = 6 mod 8},
(5) for each even n > 92.

Proof. The flower snark J,,,, is hypohamiltonian for k > 2. Thus there
are hypohamiltonian snarks of orders 8k + 4 for all k£ > 2, and hence (3).

Graph J, satisfies the conditions of Theorem 2.1. Applying Theorem 2.1
m times we get that the iterated dot product Jy - (-+- (Jg - (Jg - Jory1))) is @
hypohamiltonian snark of order n =8k + 4+ 34m, k> 2 and m > 0.

For m = 1, we obtain numbers 8n' + 6 for all n’ > 6, and the double-star
snark D of order 30 is hypohamiltonian. Thus (4) holds true.

For m = 2, we obtain numbers 8n’ for all n’ > 11. By Theorem 2.1 and
Lemma 2.3 the graphs J,- D, J;;-D and J;5-D are hypohamiltonian and they
have orders 64, 72, and 80, respectively. Hence (1) holds true.

For m = 3, we obtain numbers 8n'+2 for all n’ > 15. Again by Theorem 2.1
and Lemma 2.3 the graphs Jy - (Jy - D), Jy - (Jy; - D) and Jy, - (Jy; - D),
are hypohamiltonian and they have orders 98, 106, and 114, respectively. The
Petersen graph and the two BlanuSa snarks are hypohamiltonian, see (3], and
henceforth (2) holds true.

Combining (1), (2), (3) and (4) we have that there exists a hypohamiltonian
snark G, of order 92 + 2¢ for each 0 < ¢ < 16. Thus, for each even n > 126,
there is 0 < ¢ < 16 such that the iterated dot product Jy - (- (Jgy - (Jg - G,)))
yields a hypohamiltonian snark of order n. Hence there is a bicritical snark of
order n, for each even n > 92. O
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COROLLARY 2.6. There is an irreducible snark of order n

(1) for each n € {m: m > 64 and m =0 mod 8},

(2) for each n € {10,18,26}U {m: m > 98 and m = 2 mod 8},
(3) for each n€ {m: m>20 and m =4 mod 8},

(4) for each n € {22,30}U{m: m > 54 and m = 6 mod 8},
(5) for each even n > 92.

Proof. Theorem 1.1 allows to consider bicritical snarks instead of irre-
ducible ones.

We already mentioned in the introduction that there are bicritical graphs of
orders 22 and 26. Thus the statement follows from Theorems 2.4 and 2.5. O

Martin Skoviera [7] told me that he can solve Problem 1.2 completely
by a different method.

Appendix

Proof of Lemma 2.3.
Let the vertices and edges be denoted as in the definition of Jy 41, k > 2.

We show that edges byc, and b,c, satisfy the conditions of Theorem 2.1 in each of Jy,
Ji; and Jy;.

CLAIM 1. Vertices (cg,cq) are good in Jg, Jy; and Jy3.

Proof. The Hamilton-paths are for

JQI Co» d87 Cr, b7, ar, ag, b8’ Cg, d7, Ce d5’ bs, Cs, d6’ bsy Qg A5, Ay, b4, d41 C3,
by, a3, a,, by, dy, c1, dy, by, ag, ay, by, dy, ¢y, dg, C4-

Ji1t €os digy Cg» by, A9, @y, bigs €105 dgy Cgy dy, by, ag, ag» by, dg, C7, dg, 55 b,
ds: Ce s b6) ag, As, a4, b4v d47 C3, b3a asz, Ay, an d2’ C1» dO’ bO’ Qg, Ay, bl’ dl’
Cy, dg, Cy4.

Ji3t s dizs €115 b11y @11, A1, brg, €12, digs €10, do, by, G0 @100 Br05 dros Cos s
¢y, by, ag, ag, bg, cg, dq, cg, ds, bs, 5, dg, bg, ag, G5) C4r by, dy, c3, b3, a3,
ay, by, dy, cp, dy, by, ag, ay, by, dy, cg, d3, c4.

[m]

CLAIM 2. Vertices (cg,by) are good in Jg, Jy; and Jy;.

Proof. The Hamilton-paths are for
Jg: cg, dg, bg, cg, dy, by, c7, dg, bg, g, ds, €4, dg, by, €30 dg 55 b5, a5, ag, a7,
ags ag, by, dg, €y, dy, by, g, dy, by, g, ay, a3, ay, ba-

Ji1t o dyg, big, €10, dg, by, g, dg, by, Cgy 7, by, 7, dg, P61 C6» 955 Ca» A3 b3, C3,
dq, €5, b5, a5, ag, ar, ag, ag, ajq, ag, by, dy, ¢;, dy, b2> €2 dy, by, 6y, g, a3,
ay, by.
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Cos @125 b1y €125 dyy, bryy €11y dyg, byg, C1g, dg, by, o, dg, bg, cg, d7, by,
dg, b, Cgs ds,y €45 d3, b3, C3, dy, c5, bs, a5, ag, a7, ag, ag, A1g, Gy, Ayg, Qg
by, dg, ¢y, dg, by, ¢y, dy, by, ag, ay, a3, a4, by.

O

CLAIM 3. Vertices (by,c,) are good in Jy, J;; and J,5.

Proof. The Hamilton-paths are for

Jg:

Jip:

Ji3:

bos @ a1, by, dy, o, dg, by, g, aq, by, o7, dg, bg, ag, a5, ag, by, dy, 5, bg,
ds, cg, dq, ag, dg, ¢, dy, C3, b3, a3, ay, by, ¢y, d3, 4.

by @y, @y, by, dy, ¢, dig, bigy Gy, a9, ag, a7, by, c7, dg, b, a6, as, ay, by,
dy, cs5, by, ds, g, dy, cg, by, dg, g, by, dg, ¢1q, dg, €1, dy, €3, b3, a3, ay, by,
Cy,y dg, Cy4.

bos ag, ay, by, dy, ¢, dig, bygy @15, ayy, yg, g, ag, a7, by, o7, dg, bg, ag, ag,
ay, by, dy, cs5, by, ds, cg, dq, Cgy by, dg, g, by, dg, c1g, bigs digs €115 b115 diy,
c1a5 dg, €1, dy, C3, b3, a3, a,, by, Ccy, dg, 4.

O

CLAIM 4. Vertices (by,by) are good in Jg, Jy; and Jy5.

Proof. The Hamilton-paths are for

Jy:

Jip:

Ji3:

boa doa Cg, bs: ds’ Co» d17 Co, by, as, agz, b3a d3, ¢y, ds, Cq, d77 b7: Cr, dey bg
ag, Ay, ag, Gy, @1, by, ¢, dy, C3, dy, c5, b, ag, ay, by.

by, dg, €10+ @10+ @105 o d1, C25 by, ag, a3, b3, d3, ¢4, dy, cg, d7, by, ag, ag,
bg, dg, c7, dg, cg, by, dg, cg, bgs ag, aq, a1g, ag, ay, by, ¢y, dy, c3, dy, c5, bs,
as, ay, by.

by, dy, €124 @12, dyg, €y, dp, €25 by, ag, ag, by, d3, ¢4, ds, cg, d7, by, c7, dg,
be, ag, a7, g, g, by, Cg, dg, g, cg, dg, c1g, diy, byy, €115 digs big, G105 gy,
ayo, G, a1, by, 1, dy, c3, dy, Cs5, b5, a5, a4, by.

O

CLAIM 5. The two pairs of vertices ((bg: o), (by,c4)) are good in Jy, Jy; and Jy;.

Proof. The cycles are for

Jg:

146

Coy dyy by, @y, Gy, by, cy, dy, bs, ag, a4, ag, bs, c5, dg, bg, ag, a7, by, c7, dg,
bg, ag, ag, by

and

¢y, ds, cg, dy, cg, dy, ¢, dy, €3> dg, by.

) dl’ bl’ ap, az, b2! Ca) d37 b3’ ag, @4, A5, b57 Cs, dﬁa b67 Qg, Q7, Qg, Qg, bgy
Cy, d1gs b1g» @105 a9, by

and

¢y, dgy gy dp, by, 7, dg, bg, 8> dg, 1o, do, €1, dy, C3, dy; by

co» d1, bys ay, ag, by, ¢y, d3, U35 ag, ay, as, by, c5, dg, b, ag, a7, ag, ag, ago,
@135 0115 €115 i, big, 812, @90 %

and
C4,d5,06,d7yb7,07,d3,bg,CS’dgymeg:d10vb10vclovd117012’dOvC17d2v
Ca, dy, by.
3y Q45 Dy

O
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CLAIM 6. For each v € VJy one of (by,c), (bg,cy) is good in Jg —v.

Proof. A Hamilton-cycle H in Jy — a is:
¢, dg, €7, by, ag, ag, by, cg, d7, Cg, ds, bs, a5, ag, bg, dg, C5, dy, 3, b3, ag,
ay, by, ¢4, d3, ¢y, dy, by, ay, ay, by, dy, ¢, dy, by.

This cycle contains edges b;c; for i € {0, 3,4,7,8}. Thus shifting the indices of the vertices
of the cycle from i to i+ j yields that (by,co) is good in Jy —a; for all j € {0,1,2,5,6}, and
that (by,c4) is good in Jy — ay.

The following cycle is a Hamilton-cycle in Jy — ag:

¢, dy, €, d3, by, 3, dg, b2, Gz, a3, ay, as, by, Cs5, dy, by, ¢4, ds, Cq, dy, by,
ar, ag, bg, dg, c7, dg, bg, Cg» dy, ¢, by, ay, ag, by-

This cycle contains edges bycy, bicy and bgcy. Shifting the indices of the vertices of this
cycle from i to i+ j yields that (bg,co) is good in Jy —a;, 4 for j € {0,4,8}.

The following cycle is a Hamilton-cycle in Jy — b, :

¢o, dy, 35 by, dy, €1, do, Cg) d7, by, aq, ag, by, dg, 7, dg, c5, by, a5, ag, bg,
C6» d57 Cq) d31 b3’ C3, d4’ b4’ @4, a3, ay, a, ay, bO'

This cycle contains edges b;c; for i € {0,2,3,5,6}. Thus shifting the indices of the vertices
of H from i to i +j yields that (by,Cg) is good in Jg —bj4, for j € {0,3,4,6,7}, and that
(bgycq) is good in Jg — b, for j € {1,2,8}.

The following cycle shows that (bg;¢4) is good in Jy — bg:

¢y, d3, b3, a3, a4, a5, ag, 87> by, c7, dg, c5, by, ds, cg, dq, cg, dg, by, ag, ag,
bg, dg, co, d1, ¢y, by, ag, 01, by, €1, dy, c3, dy, by.

The following cycle is a Hamilton-cycle in Jy — cq:

¢y, d3, Cg, dy, by, ¢y, dy, by, Gy, Gy, ag, by, dg, cg, dq, by, aq, ag, bg, dg, c7,
dg, c5, bs, ds, cg, bg, ag, @5, 04, ag, by, c3, dy, by.

This cycle contains edges b;c; for i €{1,3,4,5, 6, } . Thus shifting the indices of the vertices
of H from i to i+ j yields that (by,c4) is good in Jg — c; for j € {0,1,3,7,8}, and that
(bgs co) is good in Jg —¢; for j € {4,5,6}.

The following cycle shows that (bg,¢,4) is good in Jy — ¢, :

¢y, d3, b3, agz, a4, as, ag, bg, dg, C5, by, ds, cg, dr, cg, bg, ag, aq, by, ¢z, dg,
o» 415 by, €15 dy, gy ag, 15 g, bgy dy, c3, dy, by.
The following cycle is a Hamilton-cycle in Jg — d:

co» dg, C7, by, dq, cg, bg, ag, a7, ag, ag, b, ds, cg, bg, dg, c5, dg, c3, b3, a3,

ay, by, ¢4, dg, ¢y, dy, by, €1, dy, by, a5, @y, ag, by.
This cycle contains edges b;c; for i € {0,1,3,4,6,7,8}. Thus shifting the indices of the
vertices of H from i to i+ j yields that (by,cp) is good in Jg — d; for j € {0,1,2,3,5,6,8},
and that (by,c4) is good in Jg — d; for j € {4,7}. O

CLAIM 7. For each v € VJ;; one of (by,¢o), (by,c,) is good in Jy; —v for all v.

Proof. A Hamilton-cycle H in J;; — ag is:

Co:dlo: Cg, by, dgyclo,blo,alof ag’asaa7:b7,c7, dB)b81681d7)66’ ds, bs,
a5, a6, bg, dg, Cs5, dy, c3, by, agy %4 by, ¢4, d3, Coy dy, by, @y, ay, by, dy,
do, bg-
0 Y0
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This cycle contains edges b;c; for i € {0,3,4,7,8,9,10}. Thus shifting the indices of
the vertices of the cycle from i to 4 + j yields that (bg,cy) is good in Jy; — a; for all
7 €{0,1,2,3,4,7,8}, and that (by,c,) is good in J;; — a; forall j € {5,6}.

The following cycle is a Hamilton-cycle H in Jy; —ay,:

Co» Ay, €3, dg, b, 3, dy, by, ay, a3, ay, as, by, c5, dy, by, ¢4, ds, cg, d7, by,
¢z, dg, bg, ag, a7, ag, ag, by, dg, cg, by, dg, cg, dyg, big, €10, do, €1, by, ag,
ag, by-
This cycle contains edge b,c, . Shifting the indices of the vertices from ¢ to i 4 10 yields
that (by, cg) is good in J;; — ag.

The following cycle is a Hamilton-cycle in J;; — b;:

€os dys 35 byy dy, €1, dg, €1, dy, by, Cg, dig, 1o, 10, Gg, g, a7, b7, d7, cq,
bg, dg, c7, dg, C5, b5, a5, ag, bg, Cg, ds, ¢4, d3, b3, c3, dy, by, a4, a3, ay, ay,
ag, by-
This cycle contains edges b;c; for i € {0,2,3,5,6,8,9}. Thus shifting the indices of the
vertices of the cycle from i to ¢+ j yields that (bg,cq) is good in Jy; ~ b, for all j €
{0,2,3,5,6,8,9}, and that (b, c,) is good in J;; — i1 forall j € {1,4,6,7,10}.

The following cycle is a Hamilton-cycle in J;; — cg:

¢4y d3, €3, dy, by, €15 dy, by, Gy, @y, g, by, dy, C1g5 dgs by, ag, ayg, bigs dios
¢y, dg, c7, by, a7, ag, bg, cg, dy, cg, ds, b5, cs5, dg, bg, ag, a5, a5, a4, az, b3,
cg, dy, by.
This cycle contains edges b;c; for i € {0,1,3,4,5,7,8}. Thus shifting the indices of the
vertices of the cycle from ¢ to i 4 j yields that (by,c,) is good in Jy; — c; for all j €
{0,3,4,6,7,8,10}, and that (b, c4) is good in J;; —¢;.

The following cycle is a Hamilton-cycle in J;; —cy:
Cq> d3, b3, a3, a4, as, ag, bg, dg, cs5, bg, ds, cg, dr, Cg, bg, dg, ¢z, by, ay, ag,
ag, @19, big, €10y dg by, g5 dig, oy dy, by, €, dos boy gy a1, Ay, by, dy, cg,
dy, by

This cycle contains edges b,c,, and b,c,, shifting the indices of the vertices of the cycle

from i to i+ j yields that (by,cy) is good in Jy; —¢; 5 for all j € {0, 3}, and that (bg,cg)
is good J;; —cq.

The following cycle is a Hamilton-cycle in J;; —dg:

Cos d10s €9y by, g, @19, big, 105 dg, g5 d7, by, C7, dg, by, ag, a7, ag, ag, bs,
ds, cg, bg, dg, C5, dy, C3, b3, a3, a4, by, c4, d3, ¢y, dy, by, ¢y, dy, by, ay, ag,
ag, bg-
This cycle contains edges b;c; for i € {0,1,3,4,6,7,9,10}. Thus shifting the indices of
the vertices of the cycle from i to i + j yields that (by,cy) is good in J;; — d; for all

J
j €{0,1,2,4,5,7,8,10}, and that (by,c4) is good in J;; — d; forall j € {3,6,9}. ad

CLAIM 8. For each v € VJ;3 one of (by,cq), (by,cy) s good in Jy3 —v for all v.

Proof. A Hamilton-cycle H in J ;3 — a, is:

Cos di2y €115 b115 diys €15 bay G1a, G115 Gyg, Ao, bg, dgy 105 byg, digs Cos dg,
C7y b7’ a7, Qg, b8’ 087 d7y Ce, d5y bsv a’sa ag , b67 dﬁ) Cs, d47 037 b3» a3, G4, b47
¢y, d3, €y, dy,y by, ay, ay, by, dy, ¢, dg, by
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This cycle contains edges b;c; for i € {0,3,4,7,8,10,11,12}. Thus shifting the indices
of the vertices of the cycle from i to i+ j yields that (by,c,) is good in Jy3 — a; for all
j€{0,1,2,3,5,6,9,10}, and that (by,c,) is good in J,; — a; forall j € {4,7}.

The following cycle is a Hamilton-cycle in J;3 — ag:

Co>» dl’ C2; b2‘ ag, @, bl’ €15 d2’ €3, d41 b4a Cyq, d3) b3y az, a4, A5, Gg, bsy Ce s
ds, bs, c5, dg, 7, dg, bg, Cg, d7, by, a7, ag, ag, ayg, bigy €10, dg, by, g, dig,
c11s A1z, bigs @12, g5 byys dygs 125 dos by
This cycle contains edges b,c;, byc, and bgcs. Thus shifting the indices of the vertices of
the cycle from ¢ to i +8, i+ 11 and i+ 12 yields that (by,cy) is good in Jy3 —ag, J;3 —aq;
and J,3 — a,,, respectively.

The following cycle is a Hamilton-cycle in J;3 — b, :

Cos @1y €, by, dyy €y, o, Crp, dyy,y brys @yq, Gy, by, dya, €1y, digs g,y by, dg,
10> b0y G105 A9, G, @7, b7, d7, cg, by, dg, ¢z, dg, c5, by, ag, ag, bg, cg, ds,
¢y, d3, by, c3, dy, by, a4, a3, ay, ay, ag, by.
This cycle contains edges b;c; for i € {0,2,3,5,6,8,9,10}. Thus shifting the indices of
the vertices of the cycle from 4 to ¢+ j yields that (by,cq) is good in J;5 — bjtq for all

j €{0,3,4,5,7,8,10,11}, and that (bs,c,4) is good in Jy3 — b, for all j € {1,2,9,12}.

The following Hamilton-cycle shows that (by,c,) is good in Jy; — b,:
by, a4, as, by, cs5, dy, c3, dy, by, ¢z, d3, by, a3, ay, ay, ag, by, dg, ¢;, by, dy,

Co» di2, €115 by1y @11y @q25 b1y €1, A1y, €195 dgs by, ag, a1g, byg, dig, Cg, dg,
¢z, dg, bg, ag, a7, ag, bg, g, d7, ¢, d5, ¢4

The following cycle is a Hamilton-cycle in Jy3 —¢;:

Cos dia; bigs 013, ag, Gy, by, dy, cy, dg, by, €35 dy, by, ay, ag, ay, ag, by, cs,
d41 b4a Cys ds, Ce s d7: b7, C7» dea be: Qg, Ay, Qg, Qg, bg, dga Cg b87 ds’ Cg, d1oa
€115 b11s @115 105 b1gy €100 411y €12, dgs b
This cycle contains edges b;c; for i € {0,3,4,5,7,8,10,11}. Thus shifting the indices of
the vertices of the cycle from 1 to i + j yields that (bg,¢p) is good in J;53 — ¢j4q for all
7 €{0,2,3,5,6,8,9,10}, and that (by,c4) is good in Jy3 —¢;4 for all j € {1,4,7,12}.

The following cycle shows that (bg,cp) is good in Jy3 — €13:

b07 dl, Cy, d3v b31 C3, d21 b2’ a21 A3z, Gy, A5, b57 C57 d4> b4y CyH ds) Ce d7: b7:
c7y dg, bg, ag, a7, ag, ag, by cg, dg, bg, cg, dos C1g, dyy, by, @11, @19, bio,
digs €115 di2s b1y G125 gy @15 by, €4, dg, bp-

The following cycle is a Hamilton-cycle in Jiz3 —dy:
¢o» dizy €115 by diq, €125 D12y a4, @14, @105 Bos by, g, dig, big, c1g, dy, Cg,
d;, b, ¢y, dg, bg, ag, ar, 8 g, by, ds, cq) be » dG’ cs, dy, 3, b3, az, a4, by,
cyy d3, C, dy, by, ¢y, dy, bys Gy, ay, ag, by
The cycle contains edges b;c; for i € {0,1,3,4,6,7,9,10,11,12} . Thus shifting the indices
of the vertices of the cycle from ¢ to @+ j yields that (bg»Cy) is good in Jiz — d; for all
j€{0,1,2,3,4,6,7,9,10,12}, and that (64,c4) is good in Jy3 — dj for all j € {5,8,11}. O
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