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(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. In the present paper we prove a theorem of Cantor-Bernste in type 
for a class of archimedean MV-algebras. 

A theorem of Cantor-Bernstein type for complete MV-algebras has been 
presented in [12]. Another form of a theorem of Cantor Bernstein type was 
proven in [18] for a -complete MV-algebras. The authors of [18] remark that 
their result and the mentioned result from [12] are incomparable. 

In the present paper we prove a theorem of Cantor-Bernstein type for a class 
of archimedean MV-algebras. This generalizes the main result of [12] concerning 
complete MV-algebras. 

For related results dealing with Boolean algebras and lattice ordered groups, 
see [16], [17], [19], [7], [9], [13]. 

1. Preliminaries 

For MV-algebras we apply the terminology and notation as in [6]. In this 
setting, an MV-algebra is an algebraic system 

^ = (.A; e , * , i , 0 , l ) , 

where A is a nonempty set, © and * are binary operations, -> is a unary 
operation and 0, 1 are miliary operations on the set A such that the identities 
( m l ) - ( m 8 ) from [6] are satisfied. 

In [2], a different (but equivalent) system of axioms for defining the notion of 
AfV-algebrahas been applied; archimedean MV-algebras are called semi-simple 
AfV-algebras in [2]. 
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Let x,y e A. We put ([1]) 

xVy = (x* -*y) © T/ , x Ay = ->(-># V -iy). 

Then (cf. M u n d i c i [14]) (A, V, A, 0,1) is a distributive lattice with the least 
element 0 and the greatest element 1. We denote this lattice by £(A)\ the 
corresponding partial order is denoted by _ . 

For the lattice ordered groups we use the notation as in Conrad [3]. 
If G is an abelian lattice ordered group with a strong unit u, then the 

notation A0(G,u) is applied in the same sense as in [12], Thus A0(G,u) is an 
MV-algebra with 1 = u. For each MV-algebra A there exists an abelian lattice 
ordered group G with a strong unit u such that A = A0(G, u) (cf. M u n d i c i 
[14], where the notation T(G,u) has been used). 

Archimedean MF-algebras were dealt with, e.g., in [10]. We denote by D(A) 
the maximal completion of the M"V-algebra A (in the sense of [11]). 

An element x G A is called singular if the interval [0, x] of £(A) is a Boolean 
algebra. 

Consider the following condition for an MV-algebra A: 

(a) The set of all singular elements of A has a greatest element which pos­
sesses a complement in the lattice £(A). 

An injective morphism tp of a lattice Lx into a lattice L2 is called convex if 
<p(Lx) is a convex sublattice of L2. 

In this paper we prove the following theorem: 

(Ax) Let Ax and A2 be archimedean MV-algebras satisfying condition (a). 
Suppose that 

(i) there exists a convex injective morphism of the lattice £(AX) into 
e(A2); 

(ii) there exists a convex injective morphism of the lattice £(A2) into 

' M i ) -
Then the MV-algebras D(AX) and D(A2) are isomorphic. 

This generalizes Theorem (A) of [12]. 
Let us conclude this section by some remarks concerning the notion of singular 

element. 
It is clear that the element 0 is singular in each M"V-algebra. Further, it 

is well known that for each Boolean algebra B there exists an archimedean 
MV-algebra A such that £(A) = B. Then each element of the underlying set of 
A is singular and A satisfies condition (a). For an MV-algebra Ax the following 
conditions are equivalent: 

(i) Ax has at least two singular elements; 
(ii) there exists 0 < ax G Ax such that the interval [0, ax] of £(AX) is a 

Boolean algebra. 
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Let C be the class of all MV-algebras satisfying condition (i) and let V be a 
variety of MV-algebras. If C C V, then V is the class of all MV-algebras. In 
fact, assume that C C V. Let A be an arbitrary M"V-algebra and let A0 be 
an MF-algebra belonging to C. Then the direct product A x A0 = A' belongs 
to C, whence A' £ V. Further, A is isomorphic to a homomorphic image of 
A' and thus A belongs to V. Therefore the class C cannot be characterized by 
identities. 

2. Condition (*) 

In [12], the following condition for an MV-algebra A was investigated: 

(*) Each singular element of A has a complement in t(A). 

2 .1 . LEMMA. Let A be an MV-algebra. Then (a) => (*). 

P r o o f . Let (a) be valid. Thus there exists a greatest singular element 5° 
in t(A) and 5° has a complement s1 in the lattice t(A). For each element x of 
A we put 

xx = x A s° , x2 = x A s1 . 

Consider the mapping 

ip(x) = (x1,x2) 

of t(A) into the direct product 

Mxf.O.s1] (1) 
of intervals [0,5°] and [0,-s1] of the lattice t(A). Since t(A) is distributive, the 
mapping y> is an isomorphism of t(A) onto the direct product (1). 

Let 5 b e a singular element of A. Then 5 G [0,5°]. Therefore there exists 
s' in [0,5°] such that s A s' = 0 and s V s' = s°. Denote s* = s' V s1. The 
distributivity of t(A) and the isomorphism cp yield 

s As* = 0 , 5 V 5* = 1. 

Hence condition (*) holds. D 

An M17-algebra is called complete if the lattice t(A) is complete. 

2.2. LEMMA. Let A be a complete MV-algebra. Then (*) = > (a) . 

P r o o f . Let (*) be satisfied. We denote by S the set of all singular elements 
of A. The set S is nonempty, since 0 belongs to S. There exists x° G A such 
that x° = sup S is valid in t(A). According to [12; Lemmas 2.8, 2.9], the element 
x° is singular. Hence x° is the greatest singular element in A. Moreover, in view 
of (*), x° has a complement in t(A). Hence condition (a) holds. • 

From 2.1 and 2.2 we infer: 
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2.3. COROLLARY. Let A be a complete MV-algebra. Then (*) <=> (a). 

We recall the following result which will be applied below. 

2.4. THEOREM. ([12; Theorem (A)]) Let Ax and A2 be complete MV-algebras 
satisfying condition (*). Further, suppose that conditions (i) and (ii) from (Ax) 
hold. Then, the MV -algebras Ax and A2 are isomorphic. 

For each complete MF-algebra we have D(A) = A. Thus, from 2.3, we 
conclude that 2.4 is a consequence of (Ax). 

3. Archimedean property and maximal completion 

Assume that G and A are as in Section 1. Then the group operation + on 
G can be considered as a partial binary operation on A. Namely, for ax, o2 G A 
we consider ax + o2 to be defined in A if ax + o2 belongs to A; otherwise ax + o2 

is said to be non-defined in A. 
The set of all positive integers will be denoted by N. Let a £ A. We put 

l - o = o. If o + o is defined in A, then we set 2 • o = o + o; otherwise, 2 • o is 
not defined. By induction we define the meaning of the symbol n • o. 

3 .1 . DEFINITION. ([10]) An MF-algebra A is said to be archimedean if, 
whenever o, b are elements of A such that for each n G N, n • o is defined and 
n • a — b, then o = 0. 

3.2. LEMMA. ([10]) The following conditions are equivalent: 

(i) A is archimedean. 
(ii) G is archimedean. 

From the relations between A and G we immediately infer that for o, b G A 
we have o + b G A if and only i f o + b = o 0 b . Also, o — o © b and b 5̂  o © b. 
This yields that the following conditions are equivalent: 

(i) o + b is defined in A. 
(ii) (o©b ) - o = b. 

If p, q G 4̂ and p _ o, then the element g — p of G belongs to >i and it can 
be expressed by the operations of A as follows: 

q-p = - (p©-«g) 

(cf. [8; Lemma 1.10]). 

For each x,y E A we denote 

f(x,y) = - ( x e - i y ) . 

Hence we have: 
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3.3. LEMMA. Let a, b G A. Then the following conditions are equivalent: 

(i) a + b is defined in A. 
(ii) f(a,a^b) = b. 

For a G A we put l a --- a, 2a = a © a and (n + l )a = na © a (see [1]). 
An element a G .A will be called regular if n • a is defined in A for each 

n G N. From 3.3 we infer that a is regular if and only if for each n G N the 
following relation is valid: 

f(na, (n + l)o) = a. (1) 

By applying 3.3 and (1) we obtain the following characterization of archime-
dean MV-algebras, which uses merely the operations of A: 

3.4. LEMMA. An MV-algebra A is archimedean if and only if whenever a is 
a regular element of A and b is an element of A such that na ^ b for each 
n G N, then a = 0. 

In the remaining part of this section we assume that the M17-algebra A is 
archimedean. Hence, in view of 3.2, G is archimedean as well. 

Let us briefly recall (mainly for fixing the notation) the basic steps in con­
structing the maximal completion D(A) of A and the Dedekind completion 
of G. The relations between these two types of completions were investigated in 
[11; Sect. 3] (without the assumption that G and A are archimedean). 

For a nonempty subset X of A we denote by Xu (or Xe) the set of all 
upper bounds (or the set of all lower bounds, respectively) of the set X in the 
lattice 1(A). Put X* = Xu£ and let d(A) be the system of all sets X* which 
can be constructed in this way. The system d(A) is partially ordered by the 
set-theoretical inclusion. Then d(A) is a complete lattice. 

If a G A, then the element a will be identified with the set {a}*; thus we 
can consider £(A) to be a sublattice of the lattice d(A). 

Similarly, for a nonempty upper bounded subset Y of G we denote by YUl 

(and Y£l) the set of all upper bounds (or the set of all lower bounds, respectively) 
of the set Y in G. Further we put Y*1 = YUlil. We define d(G) to be the system 
of all sets Y*1 , where Y runs over the system of all nonempty upper bounded 
subsets of G. Then d(G) is a conditionally complete lattice (under the partial 
order defined by the set-theoretical inclusion). 

Analogously as in the case of d(A), each g G G will be identified with the 
set {.g}*1 • Then the underlying lattice of G is a sublattice of d(G). 

If we put 

Zx+Z2 = {zx +z2: zx e Zx and z2 G Z2}*x (2) 

for each ZX,Z2 G d(G), then d(G) turns out to be a complete lattice ordered 
group such that G is an ^-subgroup of d(G). 
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The lattice ordered group d(G) is said to be the Dedekind completion of G. 
(For details, see e.g., D a r n e l [4].) 

Analogously as in (2), we put 

TX®T2 = {tx © t2 : txeTx and t2 e T2}* (3) 

for each TX,T2 ed(A). 
Further, for each Z e d(G) define <p: d(G) -> d(A) by 

ip(Z) = Zf l [0 , t i ] , 

where by [0,u] we mean the interval in G with the endpoints 0 and u. It is 
easy to verify that (f(Z) belongs to d(A). 

Consider the MV-algebra A1 = A0(d(G),u). Thus the underlying set Ax of 
A1 is the system of all elements Z of d(G) such that (under the identification 
defined above) the relation 

0 = Z = u 

is satisfied. 
Let us denote by ip0 the mapping cp reduced to the set Ax. 
The results of [11] yield: 

(i) There exists an M17-algebra B = (2?; ©, *, -•, 0,1) such that £(B) = d(A) 
and the operation 0 is as in (3). 

(ii) The mapping tp0 is an isomorphism of the MV-algebra A0(d(G))u) 
onto the MV-algebra B. 

We call B the maximal completion (or the Dedekind completion) of A and 
we write B = D(A). 

Let us here remark that in the non-archimedean case the above result fails to 
hold. Namely, if A is non-archimedean (and hence G is non-archimedean), then 
the underlying lattice of the Dedekind completion is a proper sublattice of the 
above constructed lattice d(G). Similarly, the underlying lattice of the maximal 
completion of A is a proper sublattice of the lattice d(A). 

4. P roo f of (Ax) 

For an archimedean M17-algebra A, let B be as in the preceeding section. 

4 . 1 . LEMMA. Let A be an archimedean MV-algebra. Suppose that x e A, 
h e d(A), x = h and that x is not singular in A. Then h is not singular in B. 

P r o o f . By way of contradiction, suppose that h is singular in B. Since x 
fails to be singular in A, there exists y e A such that 0 < y < x and y has no 
complement in the interval [0, x] of £(A). 
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From the assumption that h is singular in B and from the relation x ^ h we 
conclude that the element x is singular in B as well. Hence the interval [0,x] of 
£(B) is a Boolean algebra. From this we infer that there exists hx e 1(B) such 
that the relations 

y A A , = 0 , yVhx=x (1) 

are valid in £(B). Consider the lattice ordered group d(G). We have (cf. [3]) 

(yVhx) -y = h1-(yAh1), 

thus according to (1) we get 
x-y = hx. 

Since 0 ^ x — y ^ x, we obtain y — x £ A, whence hx € A, and then hx is a com­
plement of y in the interval [0, x] of ^(^4). Thus we arrived at a contradiction. 

• 

4.2. LEMMA. Let A and B be as in 4.1. Suppose that A satisfies condition (a). 
Then B satisfies condition (a) as well. 

P r o o f . 
a) Since (a) holds for A, there exists a greatest singular element x° in A. 

Let ft bea singular element of B. We denote by {xi}ieI the set of all elements 
of A which satisfy the relation x{ —^ h. In view of the construction of B, the 
relation 

sup { z j i 6 / = & 

is valid in £(B). According to 4.1, all xi are singular in A, thus x̂  - x° for 
each i e / , whence h ^ x°. 

(3) Let /&! e £(B), hx = x°. By [15] (see also [5; p. 436]), there exists a 
system {xk}keK of elements of A such that 

V xk = hi 
keK 

is valid in £(B). For each k £ K we have xk = x°, hence there exists x'k in 4̂ 
such that x'k is a relative complement of xk in the interval [0, x°] of £(/?). 

Since £(B) is complete, there exists h2 in ^(H) such that 

f\x'k=h2. 
keK 

For each k E K we have 0 ^ xkAh2 _ xkAxr
k = 0, thus xkAh2 =0. Similarly, 

for each keK, the relation hlVx,
k= x° is valid. 
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It is well known that each lattice ordered group is infinitely distributive. Thus, 
from the relation between MF-algebras and abelian lattice ordered groups we 
get that t(B) is infinitely distributive. Hence 

h\ A h2 = ( V xk ) A h2 = V (xk A h2) = ° ' 

hx V h2 = hx V I f\ A = f\ (hx V x'h) = x° . 
^keK ' ker< 

Thus, the interval [0, x°] of £(B) is a Boolean algebra. Therefore, x° is a singular 
element of B. Then, in view of a ) , x° is the greatest singular element of B. 

7) According to (a), there exists y° G A such that the relations 

x° A y° = 0 , x° V y° = u (2) 

are valid in £(A). Then, in view of the construction of d(A), relations (2) remain 
valid for 1(B) as well. Hence, condition (a) is satisfied for B. O 

4 ,3 . LEMMA. Let Ax and A2 be archimedean MV'-algebras. Further, let B1 

be the maximal completion of Ai (z = 1,2). Suppose that there exists a convex 
infective morphism of £(AX) into l(A2). Then there exists a convex infective 
morphism of £(BX) into £(B2). 

P r o o f . It suffices to apply a similar argument as in the proof of [13; 
Lemma 2.1]. D 

We are now able to prove (Ax) from Section 1. 

P r o o f . Let the assumptions of (Ax) be satisfied. In view of 4.2, both Bx = 
D(AX) and B2 = D(A2) fulfil condition (a). Also, both Bx and B2 are complete. 
Then, according to 4.3 and by 2.4, the MF-algebras Bx and B2 are isomorphic. 

D 
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