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QUADRATIC CONVERGENCE
OF MONOTONE ITERATIONS
OF DIFFERENTIAL-ALGEBRAIC EQUATIONS

ANITA DABROWICZ-TLALKA — TADEUSZ JANKOWSKI
(Communicated by Milan Medved')

ABSTRACT. The general quasilinearization method is applied to differential-
algebraic equations with initial conditions showing that corresponding linear
monotone iterations converge to a unique solution.

1.

Consider the following differential-algebraic equations of the form
20 = (te®,00), te=[0Y, 2(0)=z, "
0=g(t,.’l:(t),y(t)) ) ted,
where f,g € C(J x R x R,R) and z, € R are given. By a solution of (1) we
mean a pair (z,y) € C1(J,R) x C(J,R) for which equations (1) are satisfied.
To find a solution of (1) we can construct some iterations showing that under
some assumptions they are convergent to this solution (see, for example [1], [4],
[7)). In [6], approximate solution for (1) is constructed by corresponding numer-
ical procedures while in [5] the existence of extremal solutions is proved for a
special case of (1). Method based on lower and upper solutions combined with
monotone iterations is very useful too (for details, see [8], [9]). In [3] such ap-
proach is given for problem (1) and it is proved that the corresponding monotone
sequences converge quadratically to the unique solution of problem (1) if among
other things we assume that f and g are Q2-convex functions. The purpose of
this paper is to continue this topic, that is, we show that when we split f and
g into the sum of two {2-convex or 2-concave functions we can obtain a result
for (1) with the same conclusion as in [3]. An example is given at the end of this
paper.

2000 Mathematics Subject Classification: Primary 34A45.
Keywords: quasilinearization method, differential-algebraic equations, lower and upper so-
lutions, quadratic convergence.
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2.

Let us introduce the following definition:

DEFINITION 1. A pair (y,%,) € C}(J,R) x C(J,R) is said to be a lower
solution of (1) if

y:)(t) < f(tvyo(t)auo(t)) ) telJ, yo(o) <z,

0 S g(ta yo(t)’uo(t)) ’ te Ja (2)

and a pair (zy,w,) is an upper solution of (1) if the above inequalities are
reversed.

Put
Q={(t,u,v): Yo(t) Su < zh(t), uy(t) <v<wy(t), tEJ}

and assume that {2 is not empty.

The notation f € C%*%(Q,R) means that f, Jor Fys Fazo Foyr Fyer Fyy €
C(O,R).

We say that a function o € C%22(Q,R) is Q-conver if o, (t,z,y) > 0,
a,,(tz,y) >0, ayy(t,x,y) > 0 for (t,z,y) € 2, and it is Q-concave if the
above inequalities are reversed.

In this paper we shall discuss problem (1) when f and g can be split as the
sum of two functions, namely f = F + P, g = G + @ assuming that F' and G
are 2-convex while P and @ are Q-concave.

For given functions F', G, P and Q let us define some functions by the
following relations for convenience,

Vit y, 2, u,w) = F,(t,y,u) + Pyt 2,w),
Vo(ty, z,u,w) = F,(ty,u )+P(tzw),
Wit y, z,u,w) = G, (t,y,u) + Q,(t, z,w),
W,(ty, z,u,w) =G JGy, ) +Qy (t,z,w).

Now, we can formulate the following lemma:

LEMMA 1. Let f = F+ P and F,P € C%?%(Q,
Y-convez and P is (2-concave. Then, for y,(t) < 7 <
o < w < wy(t), we have

R). Assume that F is
Z < zy(t) and uy(t) <

ft,g,9)-f(t,z,w) < =V, (t,9,2,4,0)[z2—§] - V,(t, 2, 2,4, 0) [w—1] ted.
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Proof. Using a mean value theorem and assumptions, we obtain
ft,g,a) = f(t,2,)

=f(t,9,2) — f(t,2,%) + f(t, 2,0) - f(t, Z,0)

- ft &) (Z-9) - £, 2 5)( )

— [F(t,&,0) + P,(t,&,0)] (2 — §) — [F,(t, 2,6) + P,(t,2,6)] (@ — @)
[F (t,g,u) + P,(t, z, u)](z - ~) [Fy(t,i,ﬂ) +Py(t, Z,ﬂ))](

where § < € < z and @ < § < w. Hence we have the assertion. It ends the
proof. a

Remark 1. Similarly if ¢ = G+ Q, G,Q € C%??(Q,R) and G is 2-convex
while @ is Q-concave, then

Il

- ),

I/\

g(t,ﬂ,ﬂ) - g(t: 2,'&)) _<. —Wl(t,ﬂ,f, ﬂ7ﬁ)[2 - g] - W2(t72’ z117/’11_))[11—) - ’U,]
for yo(t) S § <2< 2(¢), up(t) Sa<w < wy(t), € J.

The next lemma is useful to get some relations between elements of monotone
sequences.

LEMMA 2. Assume that K, € C(J,R), K,,L € C(J,R, ) with R =[0,+00).
If (p,q) € CY(J,R) x C(J,R) satisfy the inequalities

p'(t) < K (t)p(t) + K,(t)q(t), teJ, p(0)<0
q(t) < L(t)p(t), teld,
then p(t) <0 and q(t) <0 on J.

Proof. Put K(t) = K,(t) + K,(t)L(t), t € J. Under our assumptions we
sec that p'(t) < K(¢t)p(t), t € J. This yields the inequality

tK('r) dr
p(t) < p(O)e"f , ted.

Since p(0) < 0, it proves that p(t) < 0 and ¢(t) < 0 on J. It ends the proof.
O

The next theorem gives some sufficient conditions for the uniqueness of the
solution of (1) but it does not guarantee the existence of the solution.
THEOREM 1. Assume that f,g, f,, fy,gx,gy € C(J xRxR,R) and that there
ezist nonnegative constants K, L, k, I, where I > 0 such that the conditions

(1) |f(tvx7y) - f(t,.’f,'l—)l S!(lib - IL'I +L|y— yl;

(i) g(¢,z,9) - 9(t,2,9)| < k|z - ],

(iii) |g(t,2,y) — 9(t, Z,9)| = lly — 7l
are satisfied for t € J, z,y,%,§ € R. Then problem (1) has at most one solution.
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Proof. Assume that (1) has two distinct solutions (z,y) and (Z,7). Put
P=|z —z|, ¢= |y — §|. Indeed p(0) = 0. Then, by assumptions, we obtain
Uy(8) - g()] < |g(t,2(2),5(8)) — g(t,2(t), y(2))]
= |9 (t,z(8), 5®) - 9(t,2(2), 5(%)) |
< klz@t) -z(t)|, telJ,
and hence

p(t) < [ |£(s,2(5),9(s) = f(5,2(5),5(s))| ds

< [ [Kp(s) + Lq(s)] ds

/
/

¢
S(I~{+£Z~E>/p(s)ds, teJ.
0

By Gronwall’s inequality, p(t) = 0, t € J, and then ¢(t) = 0, t € J, showing
that x = 7, y = ¢. It ends the proof. u

Remark 2. Note that problem (1) has at most one solution in A if assumptions
(i)-(iii) of Theorem 1 are satisfied in the set 2 instead of J x R x R. Here

A={(z,y) € C'(J,R) x C(J,R) : y,(t) < z(t) < 2,(2),
uy(t) <y(t) <wy(t), t€ J}

assuming that it is not empty.

3.

Now we can formulate the main results of this paper.

THEOREM 2. Assume that F,G,P,Q € C*?2(Q,R), f=F+P, 9=G+Q,
and:

(i) (Ypup) € CH(J,R)xC(J,R) and (2zy,w,) € C*(J,R)x C(J,R) are lower
and upper solutions of problem (1), respectively such that Yo(t) < %(t),
uy(t) < wy(t), t€J,

(ii)) F, G are Q-conver, and P, Q are Q-concave,

(iii) W, (t,y,2z,u,w) >0 and Vy(t,y,z,u,w) > 0 for (t,y,u), (t, 2, w) € Q,
(iv) g,(t,u,v) <0 for (t,u,v) € Q.
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Then there exist monotone sequences {y,,u,}, {z,,w,} which converge uni-

formly and monotonically on J to the unique solution in A of problem (1), and
this convergence is quadratic.

Proof. Using assumption (ii), we see that

V,-(t,y,Z,U,U_)) SV;-(t,gj,z,ﬂ,w), = 1721 (3)
Wi(t,y,i,u,u")) SWi(t,y,z,ﬁ,w), 1=1,2
if (t,y,u),(t,g,ﬂ),(t,z,w),(t,f,'u')) €N, y<g,ulu, 25z, ww.

For n=0,1,...,t€ J and y,,,(0) =z, 2,,,(0) = z,, let us consider the
systems

Ynt1() = F(t, 9, (), u, (@) + Vi (t,n) [y 11 () — 4, (2)]
+ Vot n) [ug g, (8) — u, (B)]
0= 9g(t,y,(8), u, (1)) + Wy (t,n) [y 11 (t) — ¥, ()]
+ W,(t,n) [un+1(t) - un(t)]
and

21 (1) = F(t,2,(8), w, (1) + V3 (t,m) 2,41 (8) — 2, (B)]

+ V2 (t) n) [wn+1(t) - wn(t)] ’
0= g(t’ zn(t)’ wn(t)) + Wl (t: ’I'L) [Zn+1 (t) - Zn(t)]

+ Wy (t,n) [w, 4 () —w, )],
where, for i = 1,2,

V;(ta n) = V; (ta yn(t)’ Zn(t)’ un(t)i wn(t)) ,
W(t,n) = W;(t,4,(2), 2, (1), 1, (t), w, (1)) -
Note that the pair (y,,,,,u,,,) is a solution of the linear system
y;+1(t) =V, n)yn+1(t) + V5(t, n)un+1(t) +A(t,n), yn+1(0) =Tg, 4)
0 =W, (t,n)y,,, () + Wy(t,n)u, ., (t) +T(t,n),
t € J, with
A(t,n) = f(ty,(8), u, (8) = Vi(8,n)y, () = Va(t, n)u,(2)
L(t,n) = g(t ¥, (t), u, (8)) = Wit n)y,, () — Wyt n)u,(t).
In view of assumption (iv) and (3), we see that for n =0
W,(t,0) = W, (t,yo(t),zo(t),uo(t),wo(t))
< Wz (t> Zo(t)r &) (1), Wy (1), wo(t))

=g, (t, 2(t), wy(t)) <0, ted,
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SO
-0 58
y; (t) = V(t)?h (t) + W(t) 3 Y (0) =Ty
with
V(t) = V,(,0) - V2, 0) ;‘égg; ,
W(t) = At, 0) — Vi (t, O)ng% .

It proves that system (4) has a unique solution for n = 0. It means that y,, u,
are well defined. By the same way we can show that z,, w, are well defined,

too.
By assumption (i), we have yy(t) < 2,(t) and u(t) < w,y(t) for t € J. Now,
we need to show that

Yo(t) <y, (1) < 2, (8) < 2(2),
wlt) <1y Sy <wp(®), 7 (5)

To doit let p =y, —y,, 4 = Uy — Uy, SO p(0) < 0. Then, knowing that

(Y Up) is a lower solution of (1), we see that

p'(t) < f(t, yo(t),uo(t)) - f(t>yo(t)>u0(t)) -V (t,0) [yl (t) - yo(t)]
—Vo(2,0)[uy () — uy ()]

=V, (t,0)p(t) + V3 (£ 0)a(?)

and

0< g(t, yo(1), uy(2)) — 9 Uo(8), ue(t)) = Wy (t,0) [y, (2) — o (2)]
=W, (t,0)[u, () — uy(t)]

= W, (¢, 0)p(t) + W (t: 0)a(t) -
Since W, (t,0) <0, t € J, by (iii) and Lemma 2, we obtain p(t) < 0, ¢(t) <0

on J, and as a result we get Yo(t) <y, (t) and uy(t) < wuy(t), t € J. Similarly,
we can show that 2, (t) < z,(t) and w, (t) < wy(t) on J, too.
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Now, we put p =y, — 2, ¢ = u; — w,, so p(0) = 0. Then, by Lemma 1,
Remark 1 and (3), we have

P'(t) = £ (8, 90(8), uo(t)) — £ (2, 20 (2), wy (2))
+ V;(t,0) [yl (1) = yo(t) — 2, (8) + Zo(t)]
+ V,(t,0) [uy (8) — ug(t) — wy (t) + wo ()]
< = Vi (b yo(2), 2o (), g (2), UO(t)) [Zo(t) = 'yo(t)]
= Vy(t, 29(t), 29 (2), g (), o (2)) [wo (t) — uo(t)]
+ V38,0 [p(t) + z0(8) — 3o(®)] + Valt, 0)[a(t) +wo(8) — ug()]
<V, 0)p(t) + Vo (t,0)g(t)

and

0 =g(t, yo(t), 4o (1)) — g(t, 20(t), w, (¢))
+ W, (8,0) [y (8) — yp(t) — 2, (2) + 2(t)]
+ W, (t,0) [ul (t) = up(t) —wy (t) + wo(t)]
<-W (t’ Yo(t), 2(8), o (2), “o(t)) [zo(t) - yo(t)]
— W, (8, 29(t), 25 (), o (1), wo(t)) [wo(t) = “o(t)]
+ W, (¢,0) [p(t) + 2o (t) — 5, (2)] + W, (2, 0) [a(t) +wy(t) - u,(t)]
< Wi (8, 0)p(t) + Wy(t,0)q(t) -

By Lemma 2, we have y, (t) < z,(t) and uy(t) < w,(t), t € J. This shows
that (5) is satisfied.

In the next step we have to show that (¥;,%;) and (2, w,) are lower and
upper solutions of problem (1), respectively. Using (ii), (3) and Lemma 1, we
obtain

Y1 (1) = £ (6, 90(8), uo(®)) — £ (6,918 ur(B)) + £ (2,9, (), u, (2))
+ V3 (¢,0) [y, (8) — o (8)] + Va(,0) [u, (¢) — u,(t)]
< = Vi(t5p(8), 1, (8), (), 20 () [y, () — wo(8)]
=V, (b, 91 (), 13 (), ug(8), w1 (D) [, (2) — ug(2)]
+ Vi (t,0) [51(8) = yo ()] + Va(t,0) [, (2) — uy ()]
+ £ty (), (1) < F(t (@) v @),
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=g(t, yo(1), 4o (1)) — g(t, y, (8),uy () + g(t, v, (t), u, ()

+ W, (t,0) [y, (t) — yo(t)] + Wy(t, 0)[u, (t) — uy(t)]

L ARNONACENOENONIAGEEN0]

— Wy (9, (8), 4, (8), 10 (8), wy (£)) [y (£) = ug(1)]

+ W, (¢,0 [y (t) - yo(t)] + W, (t, )[ul(t) - uo(t)] + g(t,yl(t),ul(t))
g(t,y, (1), w4, (1))

-

and

Z{(t) = (t 2y (1), wo(t)) (t 2 (), wy (¢ )) +f(t Z1(t)aw1(t))
+ Vi (t, 0)[z1 (t) — zo(t)] + V. (t,O)[ () — wo(t)]
>V, (8, 2,(t), 2 (1), wy (£), wy (2)) [2,(2) —21 t)]
+ V. (t 2o(t), 25(t), wy (t), w (t))[ ]
+ V3 (t,0) [z, (1) — 20(0)] + (t,O)[ ( ) - (t)] + £ (t 2 (), w, (1))
> f(tazl( ), w1(t))

0 = g(t, z,(t), wo(t)) — g(t, 2, (), w, (t)) + g(t, 2, (£), wy (¢))
+ W, (t,0) [2,(t) = 25 ()] + Wy (t,0) [w, (1) = wy(t))]
> W, (8, 2, (8), 2(t), wy (8), w, (8)) [2(2) —zl(t)]
+ Wy (8, 20 (1), 2o (£), w, (£), w (£)) [wy (1) — w, (2)]
+ W, (t,0) [z, () — 2,(t)] + W,(t,0) [w, (¢ ) wo(t)] + g(t, 2, (t), w, (1))
> g(t, 2, (8), w, (1))

for t € J. This shows that (y,,u,), (2, w;) are lower and upper solutions of (1),
respectively.
Assume that for some k > 1,

Yo(t) gy (8) <+ S gp(t) < () < - < 7(8) < 2(1),
ug(t) Suy(t) < S (t) Sw(t) < - Swy(t) < wy(t),

t € J, and let (y,,u.), (2,,w,) be lower and upper solutions of problem (1),
respectively.

Note that, by (ii), (iv) and (3), we have
Wy(t, k) < Wy (t, 2,(1), 2, (8), w, (1), w0, (1)) = g, (t, 2,.(1), w, (1)) <O, teJ

Morcover, W,(t,k) > 0 and V,(t,k) > 0 by as umption (iii). It proves that
system (4) for n — k has a unique olution, o the clements ;. u;, are v«
defined. By similar argument, we ce that | | w,,,; are vdl defined. too.
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We shall prove that
U() S Y1 (®) < 2y () < 2z(8), () Sy () S wep g (8) S wi(2) (6)
for t € J. Let p =19, — Yppq, 9= U — Upyq» SO p(0) = 0. Thus we have
pl(t) < f(t:yk(t)auk(t)) - f(t7 yk(t)’uk(t))
V(6 B) [y () = U O)] = Valts ) [0 (8) — 1, (8)]
=V, (¢, k)p(t) + V2(t, k)a(®) ,

0< g(ta yk(t),uk(t)) - g(t, yk(t):uk(t))
= Wyt k) [ 1 (&) = 9k (O] = Wt K) [y 41 () =, (8)]
= W, (¢, k)p(t) + Wy(t, k)g(?) -
This and Lemma 2 yield %;(t) < y;,,(t) and u,(t) < u, ,(t), t € J.

Similarly, we can prove that z.4;(t) < 2,(t), wy1(t) S wi(t), t€ J.
If weput p=y,,, — 2,1, 9= Ugpy — Wryy, then p(0) =0, and

() = £ty (1), uy (2)) — £ (2 2, (8), w (1))
+ Vi(t, k) [yk+1(t) -y (t) - zk+1(t) + zk(t)]
+ Vi (8, k) [ug 1 () = U (t) = wpyy (8) + w0, (2)]
<-7 (t, i (1), zk(t)’uk(t)) “k(t)) [Zk(t) - yk(t)]
— Vy(t, 2, (£), 2, (8), we (1), i (2)) [wy, (8) — wy (2))
+ V(8 ) [p(2) + 2(8) — 5 (O] + Vit ) [a(t) + w, (8) — uy(2)]
SVi(t k)p(t) + Vy(t, B)a(2)

0= g(t, (1), ux () — 9(b 2,(8), w, (£)

+ Wi (1t ) [Yp1 () — Y () — 241 () + 7 (1)]
+ Wy(t, k) [uk+1(t) —u(t) - wk+1(t) + Wy, (t)]

< = Wy (94, (8), 2, (1), wi, (1), w4, (8)) [, (2) — 9 (2)]
— Wy (t, 2, (1), 2, (£), g (8), wy (2)) [wy (2) — uy (2)]
+ W, (8, k) [p(t) + 2 (8) — 5 (D] + Wy (t, k) [a(2) + w, (2) — ux(®)]

S Wi (L, k)p(t) + W, (8, k)q(t)

by assumption (ii), Lemma 1 and Remark 1. Now Lemma 2 yields Yr1 (1) <

2z 1(t) and u, () < wk+1(t), t € J, showing that (6) holds. Hencé, by the
method of mathematical induction, we have

yo(t) < y1(t) <--- < yn(t) < zn(t) <0< Zl(t) < Zo(t) ,
ug(t) < uy(t) < Luy(t) Sw,(t) < S wy(t) < wy(t)
foralln and teJ.
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This and Dini’s theorem yields that the sequences {y,,,v,}, {z,,w,} converge
uniformly and monotonically to the corresponding solutions of problem (1). Since
gy(t, u,v) <0 on Q, all assumptions of Theorem 1 hold with

( - t’ ) ) L - t’ ) )

K (t’n}g)x “z( u ‘U)I L (t,nffjl.)x Ify( u ’U)l

l:) = maXx g t,u v i_— min g t,u,'v .
(t,u,v)eﬂ | ( ’ )l ’ (t,u,:r)eﬂ I y( )l

Theorem 1 and Remark 2 say that problem (1) has at most one solution (z,y)
in A. Hence the sequences {y,,u,}, {2,,w,} converge to the unique solution

(z,y) of (1).
It remains to show quadratic convergence. To this end we let

pn+1(t) =z(t) — Ynt1 (t) >0, qn+1(t) = zn+1(t) —z(t) >0, ted,

pn+1(t) =y(t) - ”n+1(t) >0, ‘jn+1(t) = wn+1(t) -y(t) >0, teJ,
$0 P,11(0) = ¢,,,(0) = 0 for n > 0. Using assumptions and the mean value
theorem, we obtain

Pyt () = F(t,2(t),u(8) — f(t, v, (8),y(®) + £, v, (), y(t) — f(t,y,(2), u,(2))

+ V1 (ta n) [pn+1(t) - pn(t)] + Vz(tw n) [qn+1(t) - qn(t)]

= f5(t,&(8),y()Pa(t) + £, (t, yn (2), 0, (1)) B (t)
+ Vi (610 [P (8) = Pa®)] + Vo (t,1) (B (8) = 5 (8)]

< [F. (6. 20),3(8) - F, (£,4,(8), y(®) + F, (£, ,(8), y(®))
= F,(t,9,(8), 1 (8)) + P, (,3,(8), 9(®) = Py (£ 2, (1), u(1))
+ P, (£, 2,(8), y(1) — P, (t, 2,(t), w, (1) | P (1)
+ [Fy (69,0, 3(0) = F, (t,3,(8), u,(®)) + P, (8,5, (8), 1, (1))
— P, (t, 2, (8), un (8) + P, (£, 2, (t), u (1) = P, (t, 2, (1), wn(t))] 5. (t)
+ Wt n)pn+1 (t) + Va2, ”),ﬁ,ﬂ.l(t)

= {F. (6,6, 5(1)Pa(t) + Fry (9,0, 5,(8) 5, (1)
o Poy (1 65(8),y()) [90(0) = 2,(0] = Py (6, 2,(8), 5502, (1) }p, (1)
o { Fyy (4,9(8), 6, ()5 (1) + Py (1,€4(8), 4, () [, (8) = 2, (8)]
+ Py, (6200, 35(0) [un () = w, (0] }5,(®
+ Vi(t,n)p, 1 () + Vy(t,n)D,, 4 (2)

< M1Pn+1(t) + MQﬁn—H(t) + B1p121(t) + Bzﬁi(t) + B3q721(t) + Bﬂi(t)
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where y, () < §(1),&() < z(t), y,(0) < &(8),&() < z,(t), u,(t) <
0,(1),0,(t),0,(t) < wy(t), y(t) < 05(t) < w,(t), u,(t) < &(t) < w,(t) on J,

and
B, = Ay +Ag+ 5(4,+34,), By =Ag+ Ay + (4, +34,),
=§(A4+A5), B4=%(A5+A6)7
lf.tz,y)l <M, |f,Gzy)| <M, (tz,y)€Q,
FLto) <A, (B, Gay) <4y, 1Bty <4y, (Goy)eQ,

lez(t!‘T7y)| SA47 ley(t?x7y)| SA‘S) ley(t)x7y)l SAﬁy (t,l‘,/y) EQ

Moreover

0= (t z(t),y(t)) — g(t, v, (1), y(®) + 9(t,y,,(8),y(@)) — 9(t, v, (2), u, (t))
W, (t,0) [Py () = P ()] + Wa(t,n) [Py (8) = B (8)]
= gz(t,ﬁs( ), y()) P (1) + g, (£, (), 64(£)) D, ()
VV (t TL) [pn-i-l(t) _pn(t)] + W t,’I‘L [ n+1 t) pn t)]
s[zxt@wymwAw+Gw@%x) (8))Pa(8)
+ Qua (868, y®) (1, () = 2,) = @ (12, (), 8,() 3,(8)] (V)
+ Gy (81, (1), 85(0) 5, () a-caym(t,ss ), 1,(8)) (U (1) = 2,(1))
+ Qyy (b2 (8),10(1)) (1, (1) = w, (1) |5, (1)
+ W (t, )Py (8) + Wo(t, )P, (2)
S N1p11+1(t) - N2pn+l(t) + Dlprzz(t) + D2ﬁ121(t) + DSqu(t) + D4q721(t)
where y,(t) < &(t),& () < z(t), y,(t) < &(1),& () < z,(t), v, (t) <

85(1),05(),04(t) < y(t), y(t) < (1) < w,(t), u,(t) < d,,(t) < w,(t) on
J, and

D, =C,+Cy+5(C,+3C,), D, =Cy+Cy+5(C,+3C),
Dy = 2(C,+Cy), D, = 2(Cs +Cy),

lo, Gz, <Ny, g, (tz,y) <-N, <0,  (t,z,y) €Q,

Gtz y) <Oy |G Lz y)| <Cy, |GG zy) <C, (Gz,y) €9,
Q,, (x| < Cy, QL <C5, 1Q,tzy)<Cs,  (Lzy) €.
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Hence
Prpa(t) S Mip, (8) + Myp,,  (8) + Ly (2),
Prsa(t) < - NPy () + L8]
where
Ly (t) = Byp,(t) + Byl (t) + Byay (t) + By (1),
Ly(t) = D,p2(t) + Dy (2) + Dyqi (t) + D, (8) -
Thus
Py (t) < Mp,, () + %Lz(t) +L,(t) with M=M + M]f/]:‘ .

Now, the differential inequality implies

i
Y M.
090 < [ [J200)+ 14(9)| -0 ds < Smax| 22,060+ 1,)]
2 seJ N2
0

and hence
_ _ 2 _ 2
max [2(t) — Y41 (V)] < 0y max|z(t) -y, ()" + oy max|y(t) - u, (¢)]
_ 2 _ 2
+agmax|a(t) — 2, (1) + o max|y(t) — w, (t)]

and

_ _ 2 _ 2
max [y(t) — Uy 4, (B)] < by max |z(t) -y, (6)]" + by max|y(t) — u,,(¢)]

_ 2 _ 12
+ b, I&a}clx(t) z,(t)]* + b, r?eaJx ly(t) — w, ()

for

i[]\rla’i—*-‘Di]7 i=112)3747

2 —
a, _S[ND +B] b= 57

2

with S = 1\_{4— eMb

In a similar way, using assumptions and the mean value theorem, we can
obtain

Ghir () = F(t, 2, (1), w, (1) = f (¢t z(t), w, (t) + f(t, 2(t), w,(t))
—ﬂmdﬂwu»+%0nnmwdo—%uﬂ+vunH%H()—%@H
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£ (6 €8, 0, (5) 0,(8) + £, (£,2(1), 81, (1) 2, (1

= V(6 1), () + Vi (6 )0,41(8) = Vot )G, (8) + Vot (1)

< [Fra (6100, 0,(8) (20 (8) = (1))

o Fpy (1,9 (8), 8,2(8)) (0, (8) = 4, (8) = Poy (£ €43 (1), 0,(8) 0, () 0,8
[ By (69, 15(8)) (w0 () = 4, (1)) + oy (8,645 (8), w, (0, (1)

= Py (L6, (8),y() 0,8 - P, @,ﬁ>bm»@aﬂ@m

+ Vi(t,n)q, 1 (t) + V5(t,n)q, 4 (1)
< Mg, () + My, (t) + B p2(t) + Eyp2(t) + Eyqi(t) + E,qa(t),

where

E1=%(A1+A2), E2:%(A2+A),
E3:A2+A+ (3A + Ay), E,=A,+A;+ 5 (3A + A;),
and
yn(t) < Eu(t) < z(t), yn(t) < §1o(t) < Zn(t),
z(t) < &4(t),€,(1), &5(0) < 2,(D), for teJ
or .
Y(t) < 0,1(1),014(t) <w,(t),
u,, (t) < 6,5(t),0;5(t) <w,(t)
Moreover

0=g(t 2,(t),w,(t) —g(t,z(t),w,(t) + g(t, z(t),w, ) — g(t, z(¢), y(t))
+ W (t Tl)[ n+l(t) n(t)] + W (t n)[ n+1(t) - wn(t)]
=9, (&), w, (1) 4, (1) + g, (¢, 2(1), 6,5(1)) T, (¢)
+ W, (t, n)q”Jrl — Wi (t,n)q,(t) + Wy(t, n)(jnH(t) — W,(t,n)q,(t)
S [Glr (t’glf)(t)’wn(t))( n(t) yn( ) + ny (t’yn(t)’ 516(t)) (wn(t) - un(t)>
= Q. (16161, 0, (1) 0, (D) 0,8
+ [Gym (t’ 617(t)’ u}n(t))pn(t) + G (t? yn(t)’ 517(t))(wn(t) - un(t))

= Q. (150, U(1) 4, () = @y (8 2,(1), 615(1) 7, ()| 7, (1
W, (1)1 () + Wi, 2)G, 4 (1)
< N1qn+1(t) zqn+1(t) + F1pn( ) + Fzﬁi(t) + F3q721(t) + F4(7121(t) )
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where
=2(C, +G,), F, = 3(C, +Cj),
Fy=C,+C, +3(3C, +C;),  Fy=C,+Co+1(3C,+Cy),
and
Y (t) <&, () <z(t), y,(t) <&,5(t) < z,(t),
-’E(t) < §14(t),£16(t), 513("‘) < Zn(t) ,
y(t) < 6,5(8),8,5(t) < w, (£),
u, (t) < d,6(t),0,,(t) <w,(t)

for teJ.

This implies
_ _ 2 _ 2
max [2(t) = 2,11 (0] <€ maxa(®) — y, (O + ¢ max y(®) - u, 1)

+ ¢; max lz(t) — z,(t)]° + ¢, max ly(t) — w,(?)]

and
_ _ 2 _ 2
max [y(t) — wyy, (1) < dy max |z(t) -y, () + dy max [y (t) — u, (t)]

_ 2 _ 2
+dy max|a(t) — 2, ()" + dy max |y(t) — w,,(1)]
with

1
¢ —S[ —2F, +E] d, = E[Nlci+Fi], i=1,23,4,
which yields the quadratlc convergence and the proof is therefore complete. O

Remark 3. Theorem 2 holds if f = F+ P, g = G + Q for some §2-convex
or 2-concave functions (assumption (ii)). Note that this representation holds

always.
For example, if

t y Ly =B1 i ta ) =-2
(”’y)enfm( T,y) = o min foy(t2,9) (t,g}ylyenfyy( z,y) c

for some constants A, B,C > 0, then it is enough to choose F' = f — P with
P(t,z,y) = —Cy?.

EXAMPLE. Let us consider the nonlinear differential-algebraic problem of the
form

Il
8

z'(t)
z(0)
0

2+ 2 [1 +siny(t) + 2] = f(¢,2,9), teJ=10,1],
) (7)
z(t) —y(t) —y*(t) = g(t,z,y), teJ.

Il

U= O
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Note that

< ftmy) <1+2%0),  tel.

This shows that (y,,u,), (24, w,) are lower and upper solutions of (7) with

Yo(t) = %t3, 2,(t) = tant,
uy(t) =0, wy(t) =t.

If we take

Ft,z,y) = f(tz,y) +y*,  Pltzy) =-y°,
G(t,2,9) = 33, Qt,z,y) = -y - o*,
then F', G are (Q-convex, P, ) are -concave, f = F + P, g = G + Q with
Q={(t,u,v): étsgugtant, 0<v<t, te[0,1]}.

Furthermore, for (t,z,y), (t,Z,7) € Q we have

W (t,2,8,5,9) =5 >0,  V,(t,,5,5,9) = 3 cosy >0,
gy(tal‘:y) =-1- 3y2 <0.
Note that all assumptions of Theorem 1 hold for (¢, z,y), (¢,Z,7) € Q with
1 7 1

K =2tanl, L=%, k=

3, '5—, 1:1

It proves that the assertion of Theorem 2 holds for problem (7).
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