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ALGEBRAICALLY UNRELATED SEQUENCES 

JAROSLAV H A N C L 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. The paper deals with the so-called algebraically unrelated se­
quences. The criterion and some applications for infinite series of rational numbers 
are included. 

1. Introduction 

One approach to prove the algebraic independence of numbers is due to 
Mahler. For instance, B e c k e r in [1] proved the algebraic independence of the 
values of certain series or N i s h i o k a in [7] proved the algebraic independence 
of values of special functions. A nice survey of this kind of results can be found 
in the book of N i s h i o k a in [6]. 

Other methods are described in B u n d s c h u h [2], H a n c l [4] or 
Net t i e r [5]. 

The following is an immediate consequence of Bundschuh's Criterion for al­
gebraic independence in [3]. 

THEOREM 1.1. Let K be a positive integer. Assume that {a, n}n
<

=1 (j = 
1,2,..., K) are sequences of positive integers and {b- n}n

<L1 (j -= 1,2,..., K) 
are sequences of integers. Suppose that g: N —> R is the function such that 

lim g(n) = co 
n—>oo 

and for infinitely many positive integers n and for every k — 1,2,... ,K 

bk,i 
k — l oo j , ' ° ° b 

*(*)£ £ тř <\ £ 
з=i 

a., 
i=n+l 3,1 

i=n+l ^ M * — l П*õ« (1) 

{ П lcmKľ--->a;,Jľ 
Ч J = 1 ' 
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where l c m ( x 1 , . . . , xn) is the least common multiply of the numbers x 1 ? . . . , xn . 
0 0 b-Then the numbers Yl ~£LlIL (J = 1, 2 , . . . , Iff) are algebraically independent over 

n = l 
the rational numbers. 

2. Algebraically unrelated sequences 

DEFINITION 2.1 . Let {cLin}n

G

=ll (i = 1, . . . , # ) be sequences of positive 
real numbers. If for every sequence {cn}n

<

=1 of positive integers the numbers 
00 00 

V — - — , . . . , V" — - — are algebraically independent, then the sequences 
— ' &l,n.cn — ' Q>K,nCn n = l n = l 

{ain)n^=i (* = 1» • • • • -K") a r e algebraically unrelated. 

THEOREM 2.1 . Let K be a positive integer. Assume that e, e1, e2 and e3 

are positive real numbers such that 

(l-£1)e2(l + e)>l and e2<l<e3. (2) 

Let { t t i n } ^ = 1 and {&in}n
<L1 (i = 1, ...,-fO be sequences of positive integers 

with {ax n}n

<L1 is nondecreasing, such that 

lim sup - log log aln = 00 , (3) 
n->-oo n 

l i m ^ - ^ = 0 forall j,i € { 1 , . . . ,K} , i>j, (4) 
n-+oo 0- a • 

i,n j , n 

and for every sufficiently large positive integer n and for every i = 1, 2 , . . . , K 

nl+e <ahn, (5) 

6 . , n < < 1 „ . (6) 

<?„<«,,„ <atn- (7) 

Then the sequences {^lIL}n
<>

=1 (i = 1 , . . . ,K) are algebraically unrelated. 

EXAMPLE 2 .1. Let If be a positive integer. As an immediate consequence of 
Theorem 2.1 we obtain that the sequences 

2n'-+in2\°° 

»ť + - J„=i 
i = l,2,...,K, 

1" 1 )n=l 

are algebraically unrelated. 
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EXAMPLE 2.2. Let K be a positive integer. As an immediate consequence of 
Theorem 2.1 we obtain that the sequences 

fn"-+n"i+l)~ 
( -*-+. . - ; _ . • ,-1-2--K-

are algebraically unrelated. 

OPEN PROBLEM 2.1. Let K be a positive integer greater than one. Are the 
sequences 

i = l,2,...,K, 
f 2 " ! +m 2 \ ° " 

\ 2< + (-1)»/..=.! ' 
algebraically unrelated? 

3. Proofs 

LEMMA 3.1. Le£ e be a positive real number and e1 be a nonnegative real 
number satisfying 

( l - £ l ) ( l + e ) > l . (8) 

Assume that {^n}n
<L1 and {bn}^>

=1 are two sequences of positive integers with 
{an}n

<L1 is nondecreasing such that for every sufficiently large positive integer n 

n1+e < an (9) 
and 

K < <% • (io) 
Then there exists a positive real number /3 such that for every sufficiently large 
positive integer n 

00 b. 1 

£^2- (11) 

j=n 3 n 

P r o o f . Prom (10) we obtain 
00 b. °° i i 1 

E ? < E ^ = E j r ^ + E -i4-. <*> 
J = n

 a3 j=n a3 i - 1 . ttj i__«l aJ 
n<j<an

 2 j>an
 2 

Now we will estimate the right side of inequality (12). For the first summand we 
have the estimation 

l - e i 

1 an E -£:<£-— r- («) 
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Now we will estimate the second summand of inequality (12). From (8) and (9) 
we obtain that for every sufficiently large positive integer n 

oo 

V l V 1 f 2dx 
2-v 'a^^ < 2 ^ ?-(l + e ) ( l - e i ) < / x ( l + £ ) ( l - £ i ) 

l - £ l ^j l - £ l J , J 

j > ß r г 

< 

(14) 

(1 + Є ) ( 1 - Є 1 ) - 1 ( 1 - Є l ) ( i + Є ) ( т g - - - Є l ) 

a n

 4 

Let us put 

/? = imin{ i^, I( l-£ l)(l + £ ) ( ^ - - £ l ) } . (15) 

Then inequalities (12), (13) and (14) and equation (15) imply (11). The proof 
of Lemma 3.1 is complete. • 

P r o o f of T h e o r e m 2 .1 . Let {cn}n
<

=1 be a sequence of positive in­
tegers. Then there is a bijective map a: N -> N such that the sequence 

{co-(n)ai,<-(n)}n=1
 i s non-decreasing. 

Now we will prove that the sequences {ca{n)aia{n)}™=1 and {bia{n) } ~ = 1 

(i — l , . . . , i \ " ) will satisfy conditions (2)-(7). Condition (2) holds. From 
Ca(n)ai,a(n) ^ a l , n > Ca(n)ai}a(n) ^ a i , a ( n ) (l = 1, • • • , K) Mid £2 < 1 < £3 

we obtain conditions (3), (5), (6) and (7). If i > j , then 

U m
 Ca(n)ai,a(n)bJMn) = - ^ a i ,o-(n)& j>(n) = - ^ \nbj,n = Q 

n->°° Ca(n)aj,a(n)\cr(n) n^°° aj,a(n)bi,a(n) n^°° aj,nbi}n 

Hence (4) holds. 

Thus it suffices to prove if K, e, e1, s2, ez and the sequences {ain}n
<L1, 

{b{ n}n
K)

=1 (i = 1, • . . ,K) satisfy all conditions stated in Theorem 2.1, then the 

numbers ]T -^-^..., J2 ^ ^ a r e algebraically independent over the rational 
n = l ' n = l 

numbers. To establish this, we verify condition (1) of Theorem 1.1. Let J? be a 
large positive real number. 

1. We prove that for every k = 2 , . . . , i f and for every sufficiently large 
positive integer n 

CO L k — 1 OO L 

ѓ = n + l ^'- j = l ѓ=n-f-l ^' г 
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From (4) we obtain that for every sufficiently large positive integer n 

oo L k-1 oo i k-l oo / 1 L h \ 

E ^-*E E ^ = E E (^^-40 
i=n+l *.* j=l i=n+l i»* j=l i=n+l X *.* i.* 7 

/c—1 oo Ьk,i ( 1 -A,.a*,. 
д-^V^ >o. ^ • ^ i a * t V * - l "aabki 

j = l i = n + l K ' 2 N J » l A e » 2 

Thus (16) holds. 
2. Now we prove that there exist infinitely many positive integers n such that 

for every k = 1,2,..., K 

00 h 1 

y ^ i < _ i (17) 
<=n+l *.. ( n n fl ) 

Inequalities (6) and (7) imply that for every k = 2,.. ., K and for every suffi­
ciently large positive integer n 

OO t C O - O O - o o 1 

V -&-< V 1 < V - <2 V -
2^ a ^ 2^ l-«i ^ Z ^ (l-ei)ea ~ Z^ r (l-*i)e2l , -, ' 

j=n+l *.J j=n+l UkJ j=n+l al,j j=n+l Lal,j J + -1 

where [x] is the greatest integer less than or equal x. Let {an}n

<L1 and {bn}n

<>

=1 

be two sequences of positive integers such that either {an}n^=l = {ax n}n

<L:1 and 

{Un°=l = {̂ l,n}n°=l <* {-OS-l = { [ ^ " l + l C l «--d {&„}*.. = {1}~ ,.. 
Now we will prove that the sequences {an}£Li and {&n}^L1 satisfy all as­

sumptions stated in Lemma 3.1. This is obvious for {an}n^=l = {ax n}n
<

=i and 

{bJn=i = {bijn=i- For {a n}~= 1 = {[afc*1*] + l } ~ i a n d ( U S L i = 
{l}£Li we have 6n = 1 = a°n. Thus (10) holds. Conditions (2) and (5) imply 
an = [a[]n

£l)e2] + 1 > a(l~£l)£2 > n(i-«i)«2(i+0, where (1 - e->2( l + e) > 1. 
Hence (9) holds. Condition (8) has the form (1 — el)e2{l + e) > 1 and immedi­
ately follows from (2). 

Hence Lemma 3.1 implies that there exists positive real number ft such that 
for every k = 1,2,..., K and for every sufficiently large positive integer n 

0 0 h 1 

i=n+l *.* al,n+l 

Let 5 be a sufficiently large positive integer such that 

(1 + (fc - l)e,)i- , x 

5>1 + - 3 • (19) 
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Then (3) implies that 
i 

lim sup aYr\ = oo . (20) 
n-»oo 

From this we obtain that for infinitely many positive integers n 

o f f e > max a$4, (21) 
' ^ j = l , . . . , n >J 

otherwise there exist n0 such that for every positive integer n with n > n0 

i i i 
a i ^ + i < . ^ a x a f . = m max afJ, , 

j = l,...,n 'J j = l,...,n0 ^ 

which contradicts (20). Now inequality (21) implies that for infinitely many 
positive integers n 

/ ^ X S n + 1 / _lx (S-l)(Sn+Sn-1+--- + S) 

( n _^ SA5"1 / n \ 5 _ 1 (2 2) 

n(,i?-„»5)) 2(11.,) • 
From (18), (19) and (22) we obtain that for infinitely many sufficiently large 
positive integers n 

(
, . R (l + (fc-l)e3)R 
k n \ °° ft, . n s~1 (i + (fc-i)efl).R n 

T T T T 1 V ^ M ^ a 1 , n + i s - i ~fl / 1 

l l l K i 2- u ~ " < — ^ = ai^+1 <l' 
j=li=l / z = n + l *»* a l , n + l 

This and (16) imply (1) and the proof of Theorem 2.1 is complete. • 

REFERENCES 

[1] BECKER, P . G . : Algebraic independence of the values of certain series by Mahler's 
method, Monatsh. Math. 4 (1992), 183-198. 

[2] BUNDSCHUH, P . : Transcendental continued fractions, J. Number Theory 18 (1984), 
91-98. 

[3] BUNDSCHUH, P . : A criterion for algebraic independence with some applications, Osaka 
J. Math. 2 5 (1988), 849-858. 

[4] HANCL, J . : Continued fractional algebraic independence of sequences, Publ . Math. De­
brecen 46 (1995), 27-31. 

[5] NETTLER, G. : Transcendental continued fractions, J. Number Theory 13 (1981), 456-462. 

[6] NISHIOKA, K. : Mahler Functions and Transcendence. Lecture Notes in Math. 1631, 
Springer, New York, 1996. 

48 



ALGEBRAICALLY UNRELATED SEQUENCES 

[7] NISHIOKA, K.: Algebraic independence of Mahler functions and their values, Tohoku 
Math. J. (2) 48 (1996), 51-70. 

Received January 7, 2002 Department of Mathematics 
University of Ostrava 
Dvofdkova 7 
CZ-701 03 Ostrava 1 
CZECH REPUBLIC 
E-mail: hancl@osu.cz 

49 


		webmaster@dml.cz
	2012-08-01T16:20:14+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




