
Mathematica Slovaca

Sylvia Pulmannová
Book Reviews

Mathematica Slovaca, Vol. 53 (2003), No. 4, 427--431

Persistent URL: http://dml.cz/dmlcz/136891

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136891
http://project.dml.cz


Mathematica 
Slovaca 

©2003 
x . . , , _ _ .^^ Mathematical Institute 

Math. SlOVaCa, 53 (2003), NO. 4, 427-431 Slovák Academy of Sciences 

BOOK REVIEWS 

Faure, C - A . — Frolicher, A.: 
MODERN P R O J E C T I V E G E O M E T R Y . 
Mathematics and its Applications, Vol. 521. 
Kluwer Academic Publishers, Dordrecht 2000, 384 pp. 
ISBN 0-7923-6525-9 

The purpose of this excellent book is the presentation of modern aspects and some recent 
results which are mainly due to the study of morphisms. The reason why morphisms have 
not yet been studied much earlier is probably the fact tha t they are in general part ial maps 
between two point sets. By defining appropriate morphisms between lattices, the well-known 
isomorphism between projective geometries and lattices of their subspaces is extended to a 
categorical equivalence. A projective geometry is also determined by the closure operator tha t 
associates to an arbi trary set of points the smallest subspace containing it. Defining appro­
priate morphisms between closure spaces, also this correspondence extends to a categorical 
equivalence. 

The book is accessible for readers with some knowledge of linear algebra and partially 
ordered sets. The book consists of fourteen chapters . At the end of each chapter there is a sec­
tion with exercises. Some of them require only the application of results given in the preceding 
sections, but others introduce additional notions and form complements to the chapter. At the 
end of the book a list of some open problems can be found. 

Chapter 1: F u n d a m e n t a l N o t i o n s of L a t t i c e T h e o r y 
collets some basic facts about complete lattices, atomic and atomistic lattices, meet-continuous 
lattices, modular and semi-modular lattices, complemented lattices and maximal chains. Zorn's 
lemma is formulated without proof. 

Chapter 2: P r o j e c t i v e G e o m e t r i e s a n d P r o j e c t i v e L a t t i c e s 
presents two equivalent characterizations of projective geometries. The first one uses the 
ternary relation £, "collinear", on the set of points. The other one works with the opera­
tor that associates to each couple of points a, b the line through a, b if a ^ b and the singleton 
{a} if a = b. The notion of a subspace is introduced. Several examples are presented, the most 
important among them is the projective geometry associated to a vector space V. The sys­
tem of all subspaces is characterized as a complete, atomistic, mee t-continuous, modular and 
complemented lattice. In agreement with the well-known Menger-Birkhoff correspondence, the 
lattice with the lat ter properties is called a projective lattice. The notions of sub-geometries 
and quotient geometries (with respect to a subspace) are studied. It is shown tha t a projective 
geometry is irreducible if and only if every line contains at least three points. 

Chapter 3: C losure Spaces a n d M a t r o i d s 
shows that a projective geometry G can be described as a set together with a closure operator 
C: V(G) —> V(G) satisfying a system of axioms. A system of six axioms is given, the first 
two, (CI) and (C2), characterize closure spaces. The other two (C3) and (C4) are relevant to 
a dimension theory A set M with such a closure operator is called a matroid, and a geometry 
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if an additional axiom (C5) is also satisfied. Finally, to get a projective geometry, so-called 
projective axiom (C6) needs to be added. This yields a third characterization of projective 
geometries. The quotients of closure spaces are described as a generalization of quotients 
of projective geometries. Also two isomorphism theorems available for projective geometries 
are generalized, namely x/F ~ (x/E)/(x/F) and (E V F)/E ~ F/(E A F), for the lat ter 
modularity of the interval [E A E, E V F] is essential. 

In Chapter 4: D i m e n s i o n Theory , 
the notion of a basis of a subspace of a matroid is defined, which generalizes the notion of 
linearly independent subset of a vector space. It is shown that every subspace of a matroid 
admits a basis. Using Zorn's lemma, a transfinite version of the Steinitz Exchange Theorem is 
proved, which implies tha t all bases are equipotent, and allows to define the rank of a subspace 
as the cardinal number of any of its bases. 

For a vector space the rank of an n -dimensional vector subspace is equal to n , while for 
a projective geometry or an affine geometry the rank of an n-dimensional subspace is equal 
to n - f l . The important theorems are anyhow invariant if the rank is modified by an additive 
constant. It is shown tha t the rank provides a distance function on the lattice of subspaces. 
The classical dimension theorem of projective geometries says tha t for any subspaces E, E, 
r ( E V F) + r(E A F) = r(E) + r ( F ) . For an affine geometry this equation fails in general, but 
holds for all non-disjoint subspaces. Fourteen equivalent conditions are given. It is shown tha t 
for a geometry the following properties are equivalent: the validity of the rank equation for any 
subspaces, the projective law, the modularity of the lattice of subspaces, the validity of the 
second isomorphism theorem, and the property tha t the geometry is projective. The co-rank 
f(E) of a subspace E is defined as the rank of the quotient geometry M/E. Hyper-planes of 
the projective geometries are characterized in several equivalent manners. 

Chapter 5: G e o m e t r i e s of D e g r e e n 
introduces the following definition: A geometry is of degree n if for any subspaces E, E 
the rank equation r(E V E) + r(E A E) = r(E) + 7-(E) holds provided tha t r(E A F) > n. 
The geometries of degree 0 are exactly the projective geometries. A geometry of degree n is 
trivially of degree n + 1. Within the geometries of degree 1, the projective geometries are 
characterized by the requirement tha t parallel lines must be equal, the affine geometries by an 
axiom requiring that for any line and any point there exists a parallel line containing the point. 
Mobius geometries are characterized as certain geometries of degree 2. The points of the unit 
sphere of any pre-Hilbert space form an example of a Mobius geometry. Relations between 
affine and projective geometries are shown. It is shown that every geometry of degree 1 and 
rank at least 5 can be embedded into a projective geometry. 

Chapter 6: M o r p h i s m s of P r o j e c t i v e G e o m e t r i e s 
starts with some generalities on the so-called partial maps. A partial map / : X —> Y is a 
map / from a subset of X, called the domain of / , to Y. The points of X which are not in 
the domain, form the kernel of / . The sets together with the partial maps form a category 
denoted by Par . A morphism of projective geometries is defined as a part ial map g: G1 —» G2 

satisfying simple geometric axioms. Several equivalent definitions are given. It is shown tha t for 
a non-constant morphism, the domain cannot be enlarged within G1. A map between vector 
spaces / : V -> W is called semi-linear if it is additive and satisfies f(Xx) = a(X)f(x) for some 
field homomorphism <r. These mappings are those which induce morphisms V(V) —> V(\V). 

The projective geometries together with their morphisms form a category Proj . The vector 
spaces together with semi-linear maps form a category Vec, and there is a natural functor 
V: Vec -> Proj . 

Special morphisms, called homomorphisms, are stable under compositions and hence yield 
a full subcategory P r o j ^ of P r o j . 
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For the case of a morphism Of : V(V) —> V(W) which is induced by a semi-linear m a p / 
with respect to a, we obtain the result tha t if / is quasi-linear, i.e., a is an isomorphism of 
fields, then Vf is a homomorphism. The converse holds if Vf is nonconstant. 

In Chapter 7: E m b e d d i n g s a n d Quo t ient M a p s , 
some categorical properties of the category Proj are examined. Sources are considered as 
families of morphisms of the form gv: G —> Gv, where G does not depend on the index v. 
Mono-sources and initial sources are considered. Initial sources have the property tha t a part ial 
map h: G' —> G between two projective geometries is a morphism if and only if gv o h is a 
morphisrn for all v. 

Monomorphisms and initial morphisms (called embeddings) are introduced as a special 
cases of morphisms. For an embedding G' -» G the dimension of G' can be greater than tha t 
of G. This does not happen for the smaller class of proper embeddings. Still smaller is the 
class of subspace-embeddings which are inclusions of subspaces (up to an isomorphism). Dual 
notions of sources, episinks, final sinks and quotient maps are also considered. 

Projections of G are homomorphisms p: G —>• G satisfying p op = p. It is shown tha t for 
any projection p the sets E := kerp and F := Imp are complementary subspaces and any 
couple of complementary subspaces E, F are of this form for a unique projection p. In the last 
section, two so-called factorization systems of the category Proj are described. They imply 
that every morphism factors in three morphisms of special classes and this decomposition is 
unique up to isomorphism. 

Chapter 8: E n d o m o r p h i s m s a n d t h e D e s a r g u e s P r o p e r t y . 
It is well known tha t the Desargues property for a projective geometry G is equivalent with 
the existence of certain collineations of G. The respective collineations have an axis H (which 
is a hyperplane of G such tha t (j)x = x for all x £ H), and a center z (which is a point 
of G such tha t £(z,x,(f>x) for all x £ G). The notions axis and center are generalized for 
the case where 0 : G —> G is any endomorphism. It is shown tha t an endomorphism 0 is 
completely determined by its axis H, its center z and the image a' = <f>a of only one point 
a £ Dom</>\ ( H U z ) . 

A collineation (f> is called a translation (with axis H) if it has a center in H, and a 
homothety (with axis H) if it has a center in G \ H. The translations with axis H form a 
subgroup TH of the set CH of all collineations with axis H. 

An irreducible projective geometry is called arguesian with respect to H if dim G > 2 and 
if for any point z £ G, A £ G \ (H U z) and b £ a * z (where a * z denotes the line joining a 
and z) there exists an endomorphism of G with axis H and center z such tha t (pa = b. G is 
called arguesian if it is arguesian for every hyperplane H. It is known tha t every irreducible 
projective geometry of dimension > 3 is arguesian. It is shown tha t G is arguesian if and only 
if the classical Desargues property (involving pairs of triangles) is satisfied. 

Chapter 9: H o m o g e n e o u s c o o r d i n a t e s . 
On an arguesian projective geometry G, homogeneous coordinates are introduced by means 
of the homothety group 7iH with axis H and an endomorphism aQ with kernel H and 
constant value o. The homothety group 7iH is actually the multiplicative group of a field, on 
which a vector space VH (or briefly V) can be constructed such tha t there is an isomorphism 
u: V(V) —> H. One says tha t u yields homogeneous coordinates for H. All the vector spaces 
VH are isomorphic . Conversely, if one has homogeneous coordinates u: V(V) —> H for a 
projective geometry H, then by composing it with the inclusion map i: V(V) —> VUV(V) 
one gets a hyperplane embedding iou~l of H with {0} as the complement of the image of H. 
For an irreducible projective geometry G of dim > 2, the following conditions are equivalent: 
G is arguesian with respect to some hyperplane H, G is arguesian, G admits a hyperplane 
embedding. The last section deals with the well-known fact tha t for an arguesian geometry 
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the following conditions are equivalent: the classical property of Pappus holds, the homothety 
fields are commutat ive, there exist homogeneous coordinates by means of a vector space over 
a commutative field. 

Chapter 10: M o r p h i s m s and S e m i - l i n e a r M a p s 
deals with the Fundamental Theorem of projective geometry: Every non-degenerate morph ism 
g between arguesian geometries is described in homogeneous coordinates by a semi-linear 
map / . For given coordinates / is unique up to a non-zero constant factor. Moreover, / is 
quasi-linear if and only if g is a homomorphism. Non-degenerate means tha t Img contains 
three non-collinear points. 

All morphisms between arguesian geometries which are described by semi-linear maps (so-
called arguesian morphisms) may be characterized as those that are composites of finitely many 
non-degenerate morphisms between arguesian geometries. Together with arguesian geometries 
as objects they form a category Arg . If Vec3 denotes the category having vector spaces of 
dimension > 3 as objects and the semi-linear maps as morphisms, one gets a full and dense 
functor V: Vec3 —» Arg . Some applications of the Fundamental Theorem are given. 

Chapter 11: D u a l i t y 
starts with some elementary results on duals of vector spaces. Then the dual G* of a projective 
geometry G is defined. It is shown tha t if G is irreducible and arguesian, the same holds for 
G* . The notion of pairing between two projective geometries G1 and G2 is introduced in 
terms of two partial maps gx: Gx —» G2 and g2: G2 —> G\ satisfying three simple conditions. 
It turns out tha t gl and g2 determ ine each other and they are homomorph isms. A pairing is 
called duality if one requires tha t gx and g2 have empty kernels. The couple J: G —> G** , 
where J is the canonical embedding, and Id^* : G* —> G* form a duality between G and G* . 
The general results for dualities imply tha t J is a subspace embedding which is an isomorphism 
if d i m O < oo. 

The map G —> G* can be extended to a contravariant functor * : Proj H —> Proj H, where 
Proj H is the category of projective geometries together with homomorphisms. By means of the 
Fundamental Theorem it is shown tha t pairings between arguesian geometries are described 
in homogeneous coordinates by sesqui-linear forms and dualities by non-singular sesqui-linear 
forms. 

Chapter 12: R e l a t e d C a t e g o r i e s 
establishes a correspondence between projective geometries and projective lattices, which can 
be extended to an equivalence of categories. This equivalence, moreover, is the restriction of a 
more general one, between simple closure spaces and complete lattices. 

In the second part of this chapter, morphisms between affine geometries are studied. The 
main result is an improved version of the so-called fundamental theorem of affine geometry, 
which characterizes non-degenerate morphisms between two vector spaces, considered as affine 
geometries. 

In Chapter 13: L a t t i c e s of C l o s e d S u b s p a c e s , 
projective geometries with an additional s tructure consisting of a set of distinguished sub-
spaces, called the closed subspaces, are considered. A motivation comes from topological vector 
spaces, where closed subspaces of the associated projective geometry are subspaces in the form 
V(W), where W is a closed subspace. Projective geometries with the property tha t if E is a 
closed subspace, then also a V E is a closed subspace, are so-called Mackey geometries. Any 
topological vector space over R, C and H fulfils this condition. A correspondence between 
Mackey geometries and two different types of lattices is established: 

(1) the projective lattices equipped with an appropriate closure operator, 
(2) the complete atomistic lattices which are upper and lower semi-modular. 
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This correspondence is extended into an equivalence of three categories. A particular case of 
dualized geometries is studied, where the set of closed subspaces is determined by the set of 
closed hyperplanes. 

Chapter 14: O r t h o g o n a l i t y 
deals with a particular case of dualized geometries, when the set of closed hyperplanes is 
given by a polari ty The so-obtained orthogeometries can be equivalently described by an or­
thogonality relation _L. A typical example is the projective geometry associated to a vector 
space equipped with a nonsingular reflexive sequi-linear form. Moreover, one can choose either 
an alternating bilinear form or a hermitian form. The two types of lattices tha t correspond 
to orthogeometries are called orthosystems and ortholattices, respectively Orthogonal mor-
phisms between orthogeometries are studied, a typical example is the morphism induced by 
an orthogonal sesqui-linear map . Under some additional assumptions this semi-linear map is 
a quasi-linear isometry. This yields a generalization of the well-known theorem of Wigner for 
pre-Hilbertian spaces. A well-known result on Hilbertian spaces says tha t a pre-Hilbertian 
space V is a Hilbertian space if and only if for every vector subspace W C V with W = W1-1-
one has V = W + W1-. An ortholatt ice satisfying this additional property is called a Hilbertian 
lattice. These lattices together with the corresponding Hilbertian geometries and propositional 
systems (i.e., orthosystems satisfying the orthomodular law) are described in the final section. 

Sylvia Pulmannova, Bratislava 
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