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ABSTRACT. Quantum computation has suggested new forms of quantum logic, 
called quantum computational logics ([CATTANEO, G.—DALLA CHIARA, M. L. 
—GIUNTINI, R.—LEPORINI, R.: An unsharp logic from quantum computation. 
e-print: quant-ph/0201013]). The basic semantic idea is the following: the mean­
ing of a sentence is identified with a quregister, representing a possible pure 
state of a compound physical system, whose associated Hilbert space is an n-fold 

n 

tensor product (§) C2 . The generalization to density operators, which might be 
useful to analyse entanglement-phenomena, is due to [GUDDER, S.: Quantum 
computational logic. Preprint]. In this paper we study structural properties of 
density operators systems, where some basic quantum logical gates are defined. 
We introduce the notions of standard reversible and standard irreversible quan­
tum computational structure. We prove that the second structure is isomorphic 
with an algebra based on a particular set of complex numbers. 

1. Introduction 

Quantum computation has recently suggested new forms of quantum logic 
that have been called quantum computational logics ([CDCGL01]). These log­
ics are based on the following semantic idea: unlike orthodox quantum logic 
([DCG02]), the meaning of a sentence is identified with a qubit or a quregister 
(a system of qubits) or, more generally, with a qumix (a mixture of quregisters). 
From a physical point of view, qubits represent possible pure states of quantum 
systems whose associated Hilbert space is C2 . Quregisters represent pure states 
of compound systems whose associated Hilbert space is an n-fold tensor product 
n 

0 C2 , while qumixs correspond to density operators. 
2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 81P68; Secondary 03G12. 
Keywords : quantum computation, quantum logic. 

87 



G. CATTANEO — M. L. DALLA CHIARA — R. GIUNTINI — R. LEPORINI 

The qubit semantics, presented in [CDCGL01], takes only in consideration 
qubits and quregisters. The generalization to qumixs, which might be useful to 
analyse entanglement-phenomena, is due to G u d d e r [Gu03]. In this paper we 
will study structural properties of qumix systems, where some basic quantum 
logical gates are defined. The logics that are naturally characterized by such 
structures will be investigated in forthcoming papers. 

2. Qubits, quregisters and qumixs 

Consider the two-dimensional Hilbert space C2 (where any vector \ip) is rep­
resented by a pair of complex numbers). Let B^ = {|0), |1)} be the canonical 
orthonormal basis for C2 , where |0) = (1,0) and |1) = (0,1). 

DEFINITION 2.1. (Qubit) A qubit is a unit vector \rp) of the Hilbert space C2 . 

Recalling the Born rule, any qubit \ip) = c0|0) + c1 |l) (with |C0I
2 "̂" lci I2 = 1) 

can be regarded as an uncertain piece of information, where the answer NO has 
probability |c0 |2, while the answer YES has probability \cx\

2. The two basis-
elements |0) and |1) are usually taken as encoding the classical bit-values 0 
and 1, respectively. From a semantic point of view, they can be also regarded 
as the classical truth-values Falsity and Truth. 

An n-qubit system (also called n-quregister) is represented by a unit vec-
n 

tor in the n-fold tensor product Hilbert space 0 C 2 := C2 ® • • • ® C2^ (where 
1 n-times 

0 C2 := C2 ). We will use x, y,... as variables ranging over the set {0,1}. At 
the same time, \x), \y),... will range over the basis B^ . Any factorized unit 

n 

vector \xx) ® • • • ® \xn) of the space 0 C 2 will be called an n-configuration 
(which can be regarded as a quantum realization of a classical bit sequence of 
length n). Instead of 1^) ® • • • ® \xn) we will simply write \xx,..., xn). Re-

n 

call that the dimension of 0 C 2 is 2n , while the set of all n-configurations 
,g(n) = [\x1,... ,xn) : x{ e {0,1}} is an orthonormal basis for the space 
n 

0 C 2 . We will call this set a computational basis for the n-quregisters. Since 
any string x1,...,xn represents a natural number j e [0, 2n—1] (where j = 

n 
2n~1.x1 + 2n~2x2 H !-£„). any unit vector of 0 C2 can be briefly expressed 

2 n - l 
in the following form: J2 cj\\J)) > where c. G C, \\j)) is the n-configuration 

j = 0 2 n - l 

corresponding to the number j and ^ | c | 2 = 1. 
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Consider now the two following sets of natural numbers: 

C[n) :={i: \\i)) = \xlt...,xn) anda:„ = l} 

and 

C<">:--{.: \\i)) = \Xl,...,xn) a n d x n = 0 } . 
n 

Let us refer to a generic unit vector of the space 0 C2 : 

i=0 

We obtain: 
W = £ aj|t»+ £ a.||i». 

ieC<,n) jec[n) 

Let Px and Pfn) be the projections onto the span of {||z» : i e C[n)} and 

{||t)> : * € C ( n ) } , respectively. Clearly, P[n) + P0
(n) = j("), where J(") is the 

identity operator of 0 C2 . Apparently, P[n) and P0
(n) are density operators 

if and only if n = 1. Let kn = ^ = T be the normalization coefficient such 
that knPi and /cnP0 are density operators. From an intuitive point of view, 
knP[n) can be regarded as a privileged information corresponding to the Truth, 
while knPQ corresponds to the Falsity. In particular, P[ ) represents the bit 

|1>, while P0
Uj represents the bit |0>. Let £>(0C2) be the set of all density 
n oo n 

operators of 0 C 2 and let 2) := [J 2 ) ( 0 C 2 ) . 
n = l 

DEFINITION 2.2. (Qumix) A qumix is a density operator in 2). 

Needless to say, quregisters correspond to particular qumixs that are pure 
n 

states (i.e. projections onto one-dimensional closed subspaces of a given 0 Cn ). 
Recalling the Born rule, we can now define the probability-value of any qumix. 

n 
DEFINITION 2.3. (Probability of a qumix) For any qumix p G S ) ( 0 C2): 

p(p) = tr(P1
(n)p). 

From an intuitive point of view, p(p) represents the probability that the 
information stocked by the qumix p is true. In the particular case where p 
corresponds to the qubit 

|V) = c0|0) + C l | l ) , 
we obtain that p(p) = IcJ2. 

For any quregister |^>, we will write p(|^>) instead of p ( P ^ ) , where P .v 
is the density operator represented by the projection onto the one-dimensional 
subspace spanned by the vector l^). 
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3. Quantum gates 

In quantum computation, quantum logical gates (briefly gates) are unitary 
operators that transform quregisters into quregisters. Being unitary, gates rep­
resent characteristic reversible transformations. The canonical gates (which are 
studied in the literature) can be naturally generalized to qumixs. Generally, gates 
correspond to some basic logical operations that admit a reversible behaviour. 
We will consider here the following gates: negation, the square root of negation, 
conjunction and disjunction. 

Let us first refer to quregisters. 
n 

DEFINITION 3.1. (The negation) For any n > 1, the negation on (g) C2 is the 
linear operator NOT^71) such that for every element \xx,... ,xn) of the compu­
tational basis B^: 

N0TW{\x1,...,xn)) = \x1,...,xn_1)®\l-xn). 

In other words, N O T ^ inverts the value of the last element of any basis-
n 

vector of 0 C2 . 
Clearly: 

NoT(n) = fX ifn = l, 
\ j(«-i) <_ x otherwise, 

where X is the "first" Pauli matrix, i.e., 
0 1" x - - i 0 

DEFINITION 3.2. (The Petri-Toffoli gate) For any n > 1 and any m > 1 the 
n+m+l 

Petri-Toffoli gate is the linear operator T^'™'1) defined on (g) C2 such that 
for every element \xx,..., xn) <g> \yv . . . , ym) eg) \z) of the computational basis 
£(n+m+l) . 

T ( n ' m , 1 ) ( K . - - - ^ „ > ® l » i , - - . , » m > ® k » 
= |X1; . . . , Xn) <g> \Vl, . . . , yj _ \Xnym ® z) , 

where © represents the sum modulo 2. 

Clearly: 

T (n ,m,l ) ._ ^(n+m) _ p(n) 0 p(m)^ ^ / ( 1 ) + _ ( n ) ^ _ ( m ) ^ ^ ^ 

One can easily show that both NOT<») and T(»,m,i) a r e u n i t a r y o p e rators. 
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The quantum logical gates we have considered so far are, in a sense, "semi-
classical". A quantum logical behaviour only emerges in the case where our gates 
are applied to superpositions. When restricted to classical registers, such oper­
ators turn out to behave as classical (reversible) truth-functions. We will now 
consider a genuine quantum gate that transforms classical registers (elements 
of #(n)) into quregisters that are superpositions. 

DEFINITION 3.3. (The square root of the negation) For any n > 1, the square 
n / \ 

root of the negation on ® C2 is the linear operator \/NOT such that for every 
element l ^ , . . . , xn) of the computational basis B^ : 

vWn )(K,. . . ,rO)H* i , . .^^ 

One can easily show that \ / N O T is a unitary operator. The basic property 
of V /NOT is the following: 

( V | ^ ) 6 ® C 2 ) ( V ^ =NoT<n>(|̂ >)V 

In other words, applying twice the square root of the negation means negating. 
Clearly: 

W n ) f M i f „ = l . 

[ I^-1) eg) M otherwise, 

where 

M:=U\ + \ } - ' . 
2 V 1 - 1 1 + -

-(n) 
Interestingly enough, the gate \/NOT admits physical models and imple-

—(n) 

mentations ([DELOO]). From a logical point of view, V N O T can be regarded 
as a "tentative partial negation" (a kind of "half negation") that transforms 
precise pieces of information into maximally uncertain ones. For, we have: 

p(yiW1)(|l>)) = I =p(^/N^(1)(|0>)). 

oo n 
Consider now the set |J 0 C 2 (which contains all quregisters 1̂ ) "living" 
n n=l 

in 0 C 2 for a given n > 1). The gates NOT, \/NOT and T can be uniformly 
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defined on this set in the expected way: 

n 

N O T ( | V ) ) :=N0T(n )( |^)) if | V K ® C 2 , 

VNOT(|V>>) := \ZNOT (|^)) if | V ; > e ® C 2 , 

T{\i>),W),\x)):=T^m^{\^),W),\X)) if ^ ) € ( g ) C 2 , 
m 

k)e®C2, 
|X> € C2 . 

On this basis, a conjunction AND and a disjunction O R can be defined for 
any pair of quregisters \I/J) and \ip): 

A N D ( | ^ , | ^ ) : = T ( | ^ ) , | ^ , | 0 ) ) ; 

O R ( | V > ) , M ) : = N O T ( A N D ( N O T ( | ^ ) ) , N O T ( | < P ) ) ) ) . 

Clearly, |0) represents an "ancilla" in the definition of AND. 
One can easily verify that, when applied to classical bits, N O T , AND and 

O R behave as the standard Boolean truth-functions. 
At first sight, AND and O R may look as irreversible transformations. How­

ever, it is important to recall that, in this framework, AND (!?/>), \ip)) should be 
regarded as a mere metalinguistic abbreviation for T(\ip), \<p), |0)) (where T is 
reversible). Similarly O R . 

The gates considered so far can be naturally generalized to qumixs. When our 
gates will be applied to density operators, we will write: NOT, \/NOT, AND, 
OR (instead of N O T , >/NOT, AND, O R ) . 

n 
DEFINITION 3.4. (The negation) For any qumix p G 2)((g)C2), 

NOT(n)p = NoT (n)pNoT (n). 

DEFINITION 3.5. (The square-root of the negation) For any qumix p G 

2>(<g)C2), 

VWofin)p = VN^{n)pVN^{n)*, 
" ( n ) * • x1_ J - • j. r /TVT^~Jn) 

where V N O T is the adjoint of V N O T 

It is easy to see that for any n G N+ , both NOT(n)(/9) and \/NOT(n)(p) are 

qumixs of 2)(<g)C2). Further: NOT(n)NOT(n) = / ( n ) . 
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n rn \ 
DEFINITION 3.6. (The conjunction) Let p e 2)(®C2) and a € 3)(® C2) . 

A N D (n,mA ) (p? a ) = T(n,m,l)p 0 a 0 pU^Cn.m.l) ^ 

Like in the quregister-case, the gates NOT, VNOT, AND, OR can be uni­
formly defined on the set 2) of all qumixs. 

The following theorems describe some basic properties of our gates. 

T H E O R E M 3.1. ([Gu03]) 

(i) NoTfcnP0
(n) N O T = knP[n); 

(ii) NoTfcnP1
(n)NOT = A;nP0

(n); 
(iii) p(NOTp) = l - p ( p ) . 

Consider now the "second" Pauli's matrix: 

Y 
- ( ! - . ' ) • 

This matrix can be naturally generalized to an operator Pt(n) defined on 

0 C 2 (for any n<EN+): 

#n).= !Y * » = -; 
\ /(n"1) ® y otherwise. 

LEMMA 3.1. For any n € N+ , the following properties hold: 

(i) t r (B . ( ") )=0; 

(ii) tr(i?(n)Px
(n)) = 0 ; 

(iii) tr(P (n )P0
(n)) = 0 . 

P r o o f . 
(i) Let n = 1. Then tr(/i (1 )) = tr(Y) = 0. Let n > 1. Then, t r (# ( n ) ) = 

t r ^ " " 1 ) ® y ) = tr(7 (n-1)) tr(Y) = 0. 

(ii) If n = 1, then t r ^ p } 1 * ) = tr ( y p ^ ) = 0. If n > 1, then tr(R (n)Px
(n)) 

= t r ( / ( n - 1 ) ®yp 1
( 1 ) ) = 0 . 

(iii) It follows from the fact that t r ^ P ^ ) = t r {YP^) = 0. • 

THEOREM 3.2. 

(i) VNOTVNOTp = NQTp; 
(ii) p(v^OTp) = | - | t r ( i i ( n ) p ) ; 

(iii) p(VNOTNOTp) = p ( N O T ^ O T p ) ; 

(iv) (Vn € N+) (p(VNOTfcnP (n)) = p(VNOTfcnP0
(n)) = §) . 
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P r o o f . The proof of (i) is contained in G u d d e r [Gu03]. 

(ii) Let n = 1. Then p(VNOTp) = tv(M*p[x)Mp) = tv(\(I^ - Y)p) 
= l^llM. Let n > 1. Then p(v/NOTp) = t r ^ " " 1 ' ®M*p[x)Mp) = 
t r ^" - - ) ® \(lW - Y)p) = \ - \ tv(R^p). 

(iii)-(iv) It follows from (ii) and Lemma 3.1(ii)-(iii). • 

T H E O R E M 3.3. 

(i) p(AND(p,cr))=p(p)p(Cr); 
(ii) p(VNOT(AND(p)(x))) = i . 

P r o o f . 

(i) 

p(AND(p)(j)) = t r (P 1
( n + m + 1 )r("+ m + 1 )p® (7®P (S

1 )r("+ m + 1 )) 

= tr((P>+ m) - P[n) ® P[m))p ® a(l^n+m) - P[n) ® P[m)) 

® P[x)p(x) + P[n)pP[n) ® p[m)aP[m) ® p[x)XPix)X) 

= tv((l<n+m) - P[n) ® P[m))p ® a) tv(p[x)Pkx)) 

+ tv(p[n)p) tv(p[m)a) tv(P[l)P[x)) 

= P(P) P(^) • 

D 
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4. The standard reversible 
quantum computational structure 

An interesting feature of the qumix system is the following: any real number 
A G [0,1] C R uniquely determines a qumix p^n' (for any n G N + ) : 

p™ := (1 - X)knPt] + \knP[n). (4.1) 

Clearly, p^n) G S ( 0 C 2 ) . From an intuitive point of view, p^n represents 
a mixture of pieces of information that might correspond to the Truth with 
probability A. 

From the physical point of view, p\ } corresponds to a particular prepara­

tion of the system such that the quantum system is in the state &nIo with 

probability 1 — A and in the state knP[n' with probability A. It is worthwhile 
recalling that the random polarized states of the photon are represented by the 
density operator p[L = \l^. 

LEMMA 4.1. 

(i) (VnGN+)(VAG[0,l])(p(pln))-=A); 

(ii) p (v / NOT^ ) ) = | . 

P r o o f . 
(i) Straightforward. 

(ii) 

p (^OTpj )
n ) ) = \ ~ \ ti{R(n)p{n)) (Theorem 3.2(H)) 

= \ - !^tr(B(">P0
(n)) - A t r^WpW) 

= -j . (Lemma 3.1(ii)-(iii)) 

• 
We will now introduce two interesting relations that can be defined on the 

set of all qumixs. Both of them turn out to be a preorder-relation. We will speak 
of weak and of strong preorder, respectively. 

DEFINITION 4.1. (Weak preorder) 

P < ° <=> P(P) < P W • 

95 



G. CATTANEO —• M. L. DALLA CHIARA — R. GIUNTINI — R. LEPORINI 

DEFINITION 4.2. (Strong preorder) p •< a if and only if the following condi­
tions hold: 

(i) P W < P W ; 
(ii) p(v/NOTo-) <p(\ZNOTp). 

Clearly, p •< a implies p < a, but not the other way around. One immediately 
shows that both < and •< are reflexive and transitive, but not antisymmetric. 
Counterexamples can be easily found in 2) (C2). 

Consider now the following structure: 

( a , :<, AND, NOT, V N O T , P0
(1), P ( 1 ) , p ^ ) . (4.2) 

We will call such a structure the standard reversible quantum computational 
structure (briefly the RQC-structure). 

In the following we will generally write 7, P0 , P1 and p 1 / 2 instead of 1^, 

P0 , Pf , p[L. From an intuitive point of view, P0 , P1 and p1y2 represent 
privileged pieces of information that are true, false, indeterminate, respectively. 
Generally, our qumixs fail to satisfy Duns Scotus law: P0 and Px are not the 
minimum and the maximum element of the RQC-structure. Hence, in this situ­
ation, it is interesting to isolate the elements that have a Scotian behaviour. 

DEFINITION 4.3. (Down and up Scotian qumixs) Let p be a qumix of 2). 

(i) p is down Scotian if and only if P0 •< p\ 
(ii) p is up Scotian if and only if p •< Px; 

(iii) p is Scotian if and only if p is both down and up Scotian. 

L E M M A 4.2. 

(i) p •< V^OTP1 if and only if p(p) < \ ; 
(ii) VNOTP0 <p if and only if p(p) > \ . 

P r o o f . 

(i) Suppose p ^ x/NOTPj. By Theorem 3.2(iv), we obtain p(p) < 
p(v /NOTP1) = \ . Viceversa, suppose p(p) < \. Then, p(p) < \ =p(VWjTP1). 
Now, VNOfV^OTP1 = P0- Thus 0 = p ( v / N O T v ^ T P 1 ) < p(VNOTp). 
Hence: p •< x/NOTP^ 

(ii) Similar to the proof of (i), via Theorem 3.2(iv). • 
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T H E O R E M 4.1. 

(i) p is down Scotian if and only z/p(\/NOT/)) < ~ if and only if \/NOTp •< 
VNOTP^ 

(ii) p is up Scotian if and only if \ < p(\/NOTp) if and only if >/NOTP0 •< 
\/NOTp. 

(iii) p is Scotian if and only if p(vNOT/9) = \ . 

(iv) For all n G N+ , knP0
(n). A ^ P ^ , pfy are Scotian. 

n 

(v) For any n G N + , Jfte set 3 ( 0 C 2 ) contains uncountably many Scotian 
density operators. 

P r o o f . The proof of (i)-(ii) follows from Lemma 4.2. 

The proof of (iii) follows from (i) and (ii). 

(iv) The proof follows from Lemma 4.1 and from (iii). 

(v) It is sufficient to show that 2)(C2) contains uncountably many Scotian 
elements. Let A G [—1,1] C E. Consider the operator 

Clearly, p(X) G 2)(C2). An easy computation shows that p(\/NOTp(A)) = \. 
Thus, by (iii) we can conclude that p(X) is Scotian. • 

5. An irreversible operation: Lukasiewicz-sum 

The gates we have considered so far represent typical reversible logical op­
erations. Prom a logical point of view, it might be interesting to consider also 
some irreversible operations. An important example is represented by a Luka­
siewicz-like disjunction. 

n 

DEFINITION 5.1. (The Lukasiewicz-disjunction) Let r G 2)((g)C2) and a G 
m 

^((gjC2) . 

T 0 a := Pp{T)S)p(<7) , 

where © in P(T) © p(cr) is the Lukasiewicz "truncated sum" defined on the real 
interval [0,1] (i.e. p(r) © p(cr) = min{l,p(T)+p(o-)}) ([Za34]). 
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LEMMA 5.1. 

(i) 

1 < T = ( C ) © P W tfPW + P t o - - - . 
t P[ otherwise] 

(ii) p ( r0 ( r ) = p(r)ep((T); 
(iii) p(v/ITOT(reGT)) = I . 

P r o o f . 
(i) Straightforward. 
(ii) The proof follows from Lemma 4.1 (i). 
(iii) The proof follows from Lemma 4.1(ii). 

n 
-<2> LEMMA 5.2. Let p e 35((g)C2). 

(i) (VnGN+)(p®knP1
(n)=P1

(1)); 

(ii) (VnGN+)(pefcnP0
(n)=p(1

(
)
p)); 

(iii) p0NOTp = P1
(1). 

P r o o f . Straightforward. D 

From Lemma 5.2 it follows that p(p © knP^n)) = 1, p(p 0 fcnP0
(n)) = P(P) 

and p(/9©NOTp) = 1 . 

6. The standard irreversible 
quantum computational algebra 

The preorder •< permits us to define on the set of all qumixs an equivalence 
relation in the expected way. 

DEFINITION 6.1. (The strong equivalence relation) 

p « a <=> ( p ^ ( 7 & CT < p). 

Clearly, ~ is an equivalence relation. Let 

[2>]« := {[p]« : P S D } . 

We will omit ~ in [p]% if no confusion is possible. 
Unlike the qumixs (which are only preordered by <), the equivalence-classes 

of [S]~ can be partially ordered in a natural way. 
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D E F I N I T I O N 6.2. 

[p]_.M <=>• p<°-

The relation •< (which is well defined) is a partial order. 

LEMMA 6.1. 

(i) (VneN+)([P 1]=[fc nP 1
(" )]) ; 

(ii) (VnGN+)([P0]=[A;„P0
(" )]); 

(iii) (VnGN+)(VA€[0,l])([ / 9i1)] = [pi" )]). 

P r o o f . 
(i)-(ii) The proof follows from Theorem 3.2 (iv) and from the fact that 

(Vn€N+)(p(P1(1)) = l = p(A ; npW)). 
(iii) The proof follows from Lemma 4.1. • 

On this basis, one can naturally define on the set [2)]~ a conjunction, a 
negation, the square root of the negation, a Lukasiewicz-disjunction: 

n m 

D E F I N I T I O N 6.3. Let p e £>((g)C2) and a e 2)(® C2) . 

(i) [p]AND[a]=[AND(p,rr)]; 

(ii) NOT[p] = [NOTp]; 

(iii) VNOT[p] = [v/NOTp]; 

(iv) [p]®[cr] = \p®<T]. 

LEMMA 6.2. The operations of Definition 6.3 are well defined. 

P r o o f . 
(i) Suppose p' « p and a1 « cr. We want to show that p(AND(p, cr)) = 

p(AND(p/,a/)) and p(v
/NOT(AND(p,a))) = p(v^OT(AND(p /,cr /))) • The 

proof follows from Theorem 3.3. 
(ii) The proof follows from Theorem 3.1 (iii) and Theorem 3.2(iii). 
(iii) The proof follows from Theorem 3.1 (iii) and Theorem 3.2 (i). 
(iv) Straightforward. • 

LEMMA 6.3. 

(i) The operation AND is associative and commutative; 

(ii) The operation © is associative and commutative; 

(iii) NOTNOT[p] = [p]; 

(iv) VNOTv^OT[p]=NOT[p] ; 

(v) xj^OTNOT[p] = NOTv/NOT[p]. 
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P r o o f . Straightforward. • 

Consider now the structure 

([2>]s, AND, e , NOT, V N O T , [P0]„, [P^, [p1 /2] s) . (6.1) 

We will call such a structure the standard irreversible quantum computational 
algebra (briefly the IQC-algebra). 

As happens in the case of <, also the weak preorder < permits us to define 
an equivalence relation, which will be called weak equivalence relation. 

DEFINITION 6.4. (Weak equivalence relation) 

p = a 4=-> {p < a & a < p). 

Clearly, = is an equivalence relation. Let 

[2>]s := {[p]s : peS}. 

Also [£)]_ can be partially ordered in a natural way. 

D E F I N I T I O N 6.5. 

[p]_<[(j]_ <*=* p<a. 

One can easily show that the relation < (which is well defined) is a partial 
order. 

A conjunction, a Lukasiewicz-disjunction, a negation (but not the square root 
of the negation!) can be naturally defined on [2)]_ . 

n m 
DEFINITION 6.6. Let p e £((g)C2) and a € 2)((g)C2). 

(i) b]_AND[O-]_ = [AND(p,o-)]_; 
(ii) NOT[p]_ = [NOTp]_; 

(iii) [p]_e[o-]_ = [peO-]_. 

LEMMA 6.4. The operations of Definition 6.6 are well defined. 

P r o o f . 
(i) It is a consequence of Theorem 3.3(i). 
(ii) It is a consequence of Theorem 3.1 (i). 
(iii) Straightforward. • 

Unlike __, the relation = is not a congruence with respect to \ /N0T . In fact, 
the following situation is possible: [p]_ = [cr]_ and [A/NOT p] _ ^ [VNOT a] _ . 

Consider for example the following unit vectors of C2 : \ip) := ^ | 0 ) + ^ | 1 ) 

and|^>:=f|0> + i±i|l>. 
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Let P ,K and P. v be the projections onto the unidimensional spaces spanned 

by \ip) and |(/?), respectively. It turns out that P(PI^A) = p(Pi v) = \. Accord-

ingly, [Pm]= = [P\v)]s. However, p ( ^ O T P | ^ > ) = \ and p(vlNOTP |v>) = 

\ + (2 - 57f)2 » 0.146447, Consequently, [ P , ^ ] g # [E | v ) ] g . 

An interesting relation between the weak and the strong preorder is described 
by the following theorem. 

THEOREM 6.1. For any p,a G S : 

[p]_ < [a]- <=-> M_AND [PJ^ _< M_AND [PJ« . 

P r o o f . Suppose p(f>) < p(cr). By Theorem 3.3(i), we obtain 

p(AND(p,P2)) = p(p) < p(a) = p(AND(a,P1)). (6.2) 

By Theorem 3.3(H), 

p(v^TOTAND(p,P1)) = i--_p(v/NOTAND(O-,P1)) . (6.3) 

Thus, [y9]_AND[Pj^ _< [(jJ^ANDtPjg. 
Viceversa, suppose [p]^ AND [PJ^ ;_ [cr]_ AND [PJ^. 
Then, 

p(p) = P ( P ) P ( ^ I ) = p(AND(p,P1)) < p(AND(cr,P1)) = p(o-). (6.4) 

• 
L E M M A 6.5. 

(i) The structure ([2)]__, AND, [PJ-) zs an Abelian monoid with neutral 
element [PJ_-; 

(ii) ([£)]_, 0 , [-P0]_) Z5 an Abelian monoid with neutral element [P0]=; 
(iii) NOTNOT[p]_ = [p]_. 

P r o o f . Easy. D 

7. The Poincare irreversible 
quantum computational structures 

We will now restrict our analysis to qumixs living in the two-dimensional 
space C2 . As is well known, every density operator of 2)(C2) has the following 
matrix representation: 

l(l + riX + r2Y + r3Z), (7.1) 
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where r1,r2, r3 are real numbers such that r 2 + r\ + r\ < 1 and A", Y, Z are the 
Pauli matrices: 

* = ( ! ; ) • " - ( ? - o ) - Z = ( J -i 
It turns out that a density operator | (I + r1 X + r2Y + r3Z) represents a 

pure state (a qubit) if and only if r 2 + r\ + r\ — 1. Consequently, 

• Pure density operators are in 1 : 1 correspondence with the points of 

the surface of the Poincare sphere; 

• Proper mixtures are in 1 : 1 correspondence with the inner points of the 
Poincare sphere. 

Let p be a density operator of 53 ( C 2 ) . We will denote by p the point of the 

Poincare sphere that is univocally associated to p. 

Let (r 1 ? r 2 , r 3 ) be a point of the Poincare sphere. We will denote by (r1 ,r2,r3) 

the density operator univocally associated to (r1,r2,r3). 

LEMMA 7.1. Let p G 2)(C 2 ) such that p = (r1,r2)r3). The following condi­

tions hold: 

(О Р Ы = ^ ; 

(ii) p(v / ŇOŤp) = b a 

P r o o f . Easy computation. • 

An irreversible conjunction can be now naturally defined on the set of all 
qumixs of 2) ( C 2 ) . 

DEFINITION 7.1 . (The irreversible conjunction) Let r, a G 2 ) ( C 2 ) . 

IAND(r,a)=pJ )
1

(
)
r ) p ( f f ). ( 7 ' 2) 

Interestingly enough, the density operator IAND(r, a) can be described in 
terms of the partial trace. Suppose we have a compound physical system con­
sisting of three subsystems, and let 

n m r 

^-(®c2)®(cg)c2)®(®c2) 
be the Hilbert space associated to our system. Then, for any density operator p 
of %, there is a unique density operator tr12(p) that represents the partial trace 

r 
of p on the space ® C 2 (associated to the third subsystem). The two operators 
p and tr x 2(p) are statistically equivalent with respect to the third subsystem. 

' r 

In other words, for any self-adjoint operator _4( r) of (g) C 2 : 

t r ( t r 1 | 2 ( p ) A W ) = t r ( p j W ® / ^ ® A W ) . 
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The density operator tr1 2(p), obtained by "tracing out" the first and the 
second subsystem, is also called the reduced state of p on the third subsystem. 

One can prove that: 

IAND(r,(j) = tr1)2(AND(r,O-)). 

In other words, IAND(r, a) represents the reduced state of AND(r, a) on 
the third subsystem. 

An interesting situation arises when both r and a are pure states. For in­
stance, suppose that: 

r = Pw and * = -%)> 

where \I/J) and \tp) are proper qubits. Then, 

AND(r, a) = -Pr(i.i.i)(|̂ )®k>(8)|o» > 

which is a pure state. At the same time, we have: 

IAND(r, a) = t r 1 2 (-Prd.i.i)(|̂ >(8H v>®|o») > 

which is a proper mixture. Apparently, when considering only the properties of 
the third subsystem, we loose some information. As a consequence, we obtain a 
final state that does not represent a maximal knowledge. As is well known, situ­
ations where the state of a compound system represents a maximal knowledge, 
while the states of the subsystems are proper mixtures, play an important role 
in the framework of entanglement-phenomena. 

L E M M A 7.2. 

(i) IAND is associative and commutative; 
(ii) IAND(p,P0) = P 0 ; 

(iii) lAND(p,P1)=pp{p); 
(iv) p( lAND(p,(7))=p(p)p( (T); 

(v) p (^OTIAND(p ,a ) ) = ±. 

P r o o f . Easy computation. • 

Consider now the structure 

(®(C2), IAND, ©, NOT, %/NOT, P0, PV p1 / 2) . (7.3) 

We will call such a structure the Poincare irreversible quantum computational 
algebra (briefly the Poincare IQC-algebra). 

We can now refer to the relation f~, representing the restriction of ~ to 
2)(C2). For any p € ^ ( C 2 ) , let 

[p]m:= {a €£>(<&): p « a} . (7.4) 
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Further define 

[2>(C2)]r2:={b]r«: P€S)(C2)}. (7.5) 

The operations I AND, 0 , NOT, v'NOT and the relation ^ can be defined 
on [2)(C2)] rw in the expected way. 

On this basis we obtain the following quotient-structure 

([2)(C2)] f2, IAND, e , NOT, v'NOT, [P0]m, [ P J ^ , \p1/2]m) • 

We will call such a structure the contracted Poincare irreversible quantum com­
putational algebra (briefly the contracted Poincare IQC-algebra). 

THEOREM 7.1. The contracted Poincare IQC-algebra is isomorphic to the 
IQC-algebra via the map g: [S(C2)] ^ -> [2)]g such that for all p G ©(C2) : 

ff(Wts) =!>]«• (7.6) 

Further, for any p,a G S ( C 2 ) : [p]^ < [a]^ if and only if g([p]m) •< ff(Mr»). 

P r o o f . One can readily see that g preserves the operation NOT, VNOT 
and ©. By Theorem 3.3 and Lemma 7.2(iv-v), g preserves also the operation 
IAND. Clearly, the map g is injective. Let us prove that g is also surjective. To 

n 

this aim, it is sufficient to show that for any n G N+ and for any p G S)(® C2) , 
there exists a density operator pl G 2)(C2) such that: 

(i) P(P) = P ( P ' ) ; 

(ii) p(VNOTp) = p(v/NOTp'). 
n 

Let p € £)(®C?) and let p' be the reduced state of p on C2 . Accordingly, for 
any self-adjoint operator A of C2 , we have: 

t r ( / ( " - i ) ® ^ p ) = t r ( A p ' ) - (7.7) 

Thus, p(p) = ti(Pin)p) = tr(/(»-i) ® P[l)p) = tr(Px
(1 V ) • 

We now prove (ii). 

p(v/NOT>) = ti(pl")(jl*-1) ® M)p(l(n~V <g> M*)) 

= tr(/(n-i) ® M*P[l)Mp) 

^HM-p^Mp') 
= P(V^OT>0-
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8. The complex quantum computational algebra 

An interesting algebraic property of the contracted Poincare IQC-structure 
is the following: our structure turns out to be isomorphic to a structure based 
on a particular subset of the set C of all complex numbers. Let 

Cj := {(a,b): a , 6 e R and (1 - 2a)2 + (1 - 2b)2 < 1} . 

Note that for all pairs (a, b) G Cx, both elements a, b belong to the real interval 
[0,1]. 

L e t 0 : = ( 0 , i ) , l : = ( l , | ) , i : = ( | , I ) . 

The following operations (IANDCl, NOTCl , %/NOTCl , ®Cl) can be defined 
on C1. 

D E F I N I T I O N 8.1. 

(i) (a1,a2)IANDCl(61,62) = (a 16 1 , i ) ; 

(ii) NOTCl(a1,a2) = ( l - a 1 , l - a 2 ) ; 

(iii) \/NOTCl (ava2) = ( a ^ l - a j ; 

One can easily see that Cx is closed under the operations of Definition 8.1. 

L E M M A 8.1. 

(i) The operations IANDCl and ©Cl are commutative and associative; 
(ii) (a1,a2)IANDCl0 = 0; 

(iii) ( a 1 , a 2 ) © C l 0 = ( a 1 , | ) ; 
(iv) (a1,a2)IANDCll = (ax i ) ; 
(v) ( a 1 , a 2 ) e C l l = I ; 

(vi) NOTCl NOTCl (fll ,a2) = (ava2); 

(vii) VWyf1 NOTCl (a, ,a2) = NOTCl VWyf1 (a, ,a2); 

(viii) VNOT^1 x/NOT^1 (av a2) = NOTCl (ava2) ; 
(ix) (av a2) is a fixed point of NOTCl if and only if (ava2) is a fixed point 

of \/NOT if and only if (ax,a2) = ~ . 

P r o o f . Easy computation. • 

DEFINITION 8.2. 

(a^a2) ^ (61,62) <=> (ax < bx k b2< a2) . 
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Consider now the structure (cx, IANDC*, 0C*, NOTCl, VNOT^1, 0, 1, £ ) . 

We will call such a structure the complex quantum computational algebra (briefly 
the CXQC-algebra). 

We will prove that the contracted Poincare IQC-algebra and the C^QC-al-
gebra are isomorphic. 

Let (a, b) € Cx and let p(a, b) be the density operator associated to the triple 
( 0 , l - 2 M - 2 a ) . Thus, 

p(a,6) :--- (0, l -^2M-2a) . 

Hence: 

*.Kiv., •,(t-J))-
L E M M A 8.2. 

(i) p((a1,o2)IANDCl(61,62)) =LAND(p(a1,a2),p(61,62)); 

(ii) p(NOTCl (a1; a2)) = NOT(p(a1,a2)); 

(iii) p ( x ^ O T C l ( a 1 , o 2 ) ) = v ^ O T ( p ( a 1 , a 2 ) ) ; 

(iv) p((ai,d2)®
Cl (b1,b2))=p(a1,a2)®p(b1,b2). 

P r o o f . Easy computation. • 

THEOREM 8.1. The Cx QC-algebra 

(Cx, IANDCl, e C l , NOTCl, VNOT01, 0, 1, \_) 

is isomorphic to the contracted Poincare IQC-algebra 

([£>(C2)]rg, IAND, ©, NOT, V N O T , [P0]r„, [P.].*, [p1/2]r«) . 

P r o o f . Let h be the map of Ĉ  into [£)((?)] rw such that for all (a, b) € C^: 

h((a,b)):=[p(a,b)}^. 

That h is a homomorphism follows from Lemma 8.2. We now prove that h is 
injective. Suppose (a, b) ^ {c,d). Suppose, by contradiction, that /i((a, b)) = 
h({c, a1)). Then, jp(a, b)} ^ = [p(c, d)] ^ . Thus, 

p(p(a,6)) = p(p(c,d)) and p(VŇ0Tp(a,6)) = P (N/NOTp(c,d)) . 
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By Lemma 7.1, we obtain 

p(p(a,b)) = a = c = p(p(c,d)) 

and 

p(\/NOTp(a, b)) = b = d = p(\/NOTp(c, d)) . 

Hence: (a, 6) = (c, d), which is a contradiction. 

We now prove that h is surjective. Let p be a density operator of 2)(C2) 
and let (a,b,c) be the point of the Poincare sphere associated to p. Thus, 
{aAc) = p. Take ( V > ¥ ) G Cx. By Lemma 7.1, [^(l=£,l=6)] r s = [p]^ . 
Consequently, [p]^ = / i ( ( i ^ , ^ ) ) . • 

As a consequence of Theorem 7.1 and of Theorem 8.1, we obtain that the 
IQC-algebra and the CjQC-algebra are isomorphic. 
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