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ABSTRACT. In this paper the authors define Bernstein type rational functions
of two variables and prove the approximation theorems for them. Moreover, asym-
ptotic approximation theorem is proved for Bernstein type rational functions of
two variables.

1. Introduction

K. Balazs [1] introduced and considered some approximation properties of
the Bernstein type rational functions

_ 1 ey k k
R0 = (e 2 () 7 () )
and proved that if f is continuous in [0,00), f(z) = O(e**) (z — o0) with
some real numbers «, then in any interval [0, A] (A > 0) the estimate

|f(z) = R, (f,2)] < couaa(n™?)  (0<z<A) (2)

holds for sufficiently large n’s provided a, = n='/3, b, = n?/3. Here c, depends
only on A and o, and w, ,(-) is the modulus of continuity of f on the interval
[0,2A4]. As it was noted in [1], the convergence of R, (f,z) holds under the more
general conditions a,, = %'{1 —0, b, = 00 (n— o0) as well.

The positive linear operator R, was investigated by J. Szabados [2],
K. Balazs [3]and V. Totik [4].

K. Balazs and J. Szabados [2] improved the estimate (2) by an ap-
propriate choice of a,, and b, whenever f is uniformly continuous on [0, 0).
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Furthermore they showed that these results could been applied to approximate
certain improper integrals by quadrature sums of positive coefficients based on
finite number of equidistant nodes. In [4], they settled the saturation proper-
ties of R, (f,x) and proved a general convergence theorem for R, -like rational
functions.

K. Balazs [3] investigated approximation by modified Bernstein type ra-
tional functions R, on the real axis.

In the present paper we define Bernstein type rational functions of two vari-
ables and give an estimate, in therm of the first usual moduli of continuity, for
the approximation of functions by means of the operators R, . defined at (3).
Moreover, we prove an asymptotic approximation theorem.

Let f(z,y) be a function of two variables, defined in [0, 00) x [0,00). By
Bernstein type rational functions of two variables corresponding to f(z,y) we
mean the following:

1 n m k ]
: = P,, A
n m k= 0] 0 m
(n,m=1,2,...)
(3)
where a,,b,, ¢, ,dm are suitably chosen real numbers, independent of z and y

and P, ,(z) = (k)(anz)’“ and therefore P, i(y) = (') (c,,y) -

2. Convergence theorem

Let R, (f,,y) be the functions defined by (3) with a, = ba ' p =n?/3,

n’

¢, = im d, =m?? (n,m = 1,2,...) and let w,,(d) be the modulus of

contmu;gy of the function f(z,y) in [O 2A] [0,2A]. We shall prove the following
theorem:

THEOREM 1. Let f(z, y) be a continuous function defined in [0, c0) X [0, c0)
such that f(z,y) = 0(e*@+Y)) (2 — o0, y — o) for some real number c.
Then in any square 0 Sz <A, 0<y < A, (A>0) the inequality

m2/3

1 1
|f(z,y) = Ry, (fr2, )| < cowpy ( m+f—> (4)
is valid if n,m are sufficiently large, where c, is a constant depending on A

and « only.

The inequality (4) shows that Rn)m(f,at,y) — f(z,y) when z >0, y >0 if
n,m — oo, and this convergence is uniform in every finite square.
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To prove the theorem some lemmas are needed.

LEMMA 1. If z >0, y > 0, then the following identities hold:

1
ZZ P W)= (5)
(1+a,z)™ ( 1+c mko;o J
: W W)k~ b,e) = bt g
(1+a,z)" l+cmymh0J0 b (8) P (Y n T+az’
L c d_vy?
—d — __m~m
T+ a0 1+cmym§§ WG - = -E2L ()
1 b2zt +b
P k‘b 2=Lﬂ_
1 2Ryt +d y
i—d y)2=mmd ' "mJ
1
(ETREET: ymZZPM () (ks = b,2)(j = d,)
m k=0 j=0
(10)
anbncmdnlx y
(1+an YL+c,y)’
where a, = %, ¢, = dﬁ-
LEMMA 2. Ifz >0, y >0, then the inequality
1 1 a224+i
P bn < n bn
(I+a,z)" (14c,y)™ Z Z nk Z/)e cl__(l-i— ) (11)

——-—$|>5J =0

holds for sufficiently large n,m, where § > 0 and ~ are arbitrary fized real
numbers, an:%—%(), b, — o0, cm=d7n"i—>0, d,, —+ 00 as n,m —+ 0.

The proofs of Lemma 1 and Lemma 2 are evident from [1].

It is well known that if A and § are arbitrary positive numbers, then
Wy 4 (M) S wy ()(A+1). (12)
Now we prove the convergence theorem.
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Proof of Theorem 1. By (3) and (5)

A, (fizy) =
=|f(z,y) = R, .(f,2,9)|

1 S ko g
< = 2
~(I+a,z)™( 1-|-cmymz:Z ()P 5 \fzy f(bn’dm>

k=0 j=0
1 1
S(1~1— 1+ )m{ Z Z + Z Z (13)
In® CmY Ez|<2d | —y|<24 & —c|>24 | A —y|>24

DD SR S z}

B -z|<24 | F-—y[>24 | —z|>24 | —y|<24

=S, +S,+5;+5,.

We obtain by (12)

e ( ) e ({62
-

(14)
By (13), (14) and (5)
S, Swyy (6 ) ! ! > > P ()
15924 Onm) 5 1+cmy)’r__$|<2A|L_y|<2A
k 2 . 2
\ (””‘ﬂ # (1= 2) +enalnn)
= Si + Wo g ((5n,m) : (15)

Using the Schwarz inequality, then considering (5), (8) and (9) we obtain
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, 1 (1 1 1
< — .
5'1 S Wy (6n,m) (5n’m b% (1 +a x)n (1 + cmy)m

ZZ k(@) P () (k = b,z)?

k=0 j=0
1 1 ZZ 1/2
o (€500 = 4
2 m n,k m
d2, (1+a,z)" (1+cmy Pt
T 1 iaibix4+bnx+_l_dfncf‘ny4+dmy 12
2anml s 02 (Lt a,z)®  d2, (1+c,y)?
(16)
Since b, = n?/% and d,, = m?®, in this case a, = % = n"'/3 and ¢, =
dn = m~1/%. So by (15) and (16) we have
1 (zt+z oty
Sl Sw2A(5n,m) {(5 ( n2/3 + m2/3 +1,. (17)
n,m

Since 0 <z < A and 0 <y < A, then by (17)

1 /1 1 \?
Sl S ColWs g (6n,m) 5 (n2/3 + m2/3> +1,. (18)

where ¢, = VA* + A.
Assuming 4, ., = (——1——

1 1
Slgc;w“< ;L—z—/—3+-1:n—2/—3)’ (19)

1/3)1/27 by (18) we have

where ¢}, = 2¢,.
Since f(z,y) = O(e*=*¥)) (z,y — o0, a fixed), the estimation of S, is a
trivial consequence of Lemma 2:

1 1 k _J_
S, < P Yo e%dm
2= Tr a2 Lteg)m 2. > Pup(@)Pp jW)ey e e

| & —z|>24 |- —y|>24

cece aiw4+—b—x; 2yt + &

=S 1+ a,x)? (1+c,y)?

< ce e (aim“ + g—) (cfny4 + f—) _ (20)
n m

c

TLQ/B—:W(I4 +z)(y* +v)
C6Ch _ C7

= n2/3m2/3 T p2/3m2/3°

IN
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4
where ¢ = ¢,c ¢ and ¢, = cgcp, ¢ = AT+ A.

Since
. & .
ten -1 ()| < e =1 (Fo)|+ s () -1 (B 2)].
we have
1 1
53 S (]‘ + anx)n (1 + c1ny)m Z Z Pn’k(a:)me.l(y) ’

|ﬁ—z|§2A|Ei;—y|>2A

f(zy) - f <bﬁy>‘

n

1 1
F e G, 2 2 Pu@P )

———:c|<2A|—L—y|>2A (2]_)

k E o
| f(w) ‘f(mzﬂ

1 c
S Way ( ) [(@* + )2 +1] + 28/3 (y* +7v)
1 1
< ¢ {sz (W) + —m2/3} :
The estimate of S, is similar to .S .
Since
k j j koo
=1 (5o )|l =1 (=)o (=) -4 G 22
1 1
Sy < cipqWay 7 +W . (22)

then we obtain
Now, on the basis of (19), (20), (21) and (22), the inequality (13) may be written
in the following way

1 1
A, (fizy) < oy ( n2/3 + m2/3 )
1 1 1 1
+cg Qwyy i3 ) Vs [ T 0 @ea s )T n2/3
< 1 1 1 1
=Gy Wau n2/3 + m2/3 + n2/3 + m2/3

1 1
+ Wy (nl/s) tWyy (m1/3) }

+
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Since § < ¢} w(d), then

1 1 [ L 1 1
n2/3 + me2/3 =\ n2/3 + me/s = 10%24 n2/3 + mel3 |-

Also,
1 1 1 1
ni/3 — \[ p2/3 < n2/3 + m2/3
and
1 1 1
w2A m < w2A -n_2ﬁ + m2/3 )
we obtain

1 1
An,m(faa::y)scszA( m'{'m) (OS-TSA: OSySA))

which gives the proof. O

3. Asymptotic approximation

In this part of the paper we prove an asymptotic approximation theorem
similar to [1].

THEOREM 2. Let f(t,7) be a function defined in [0,00) x [0,00) such that
ft,7) = O(e"‘(H'T)) (t,7 = o0, a is a fized real number), then at each point
(z,y) in which fro, fy, and f, ezist finitely

2 2
_ ’ —XT / _y
Rn,m(f,w,y) = f(z,y) + a,fz(2,9) (1 + an:c> T enfy(@:9) (1 + cmy>
a,b,z* + =
+a, fro(,y) <ﬁ+a—x32>

1 $2y2
+ ancmfzy(-'t, Y) ((1 +a,z)(1+ Cmy)>

44 U
" Cmdmy + Cm
+ cmfyy(CC’ y) (2dm(1 + Cmy)2 + (an + C.m)pn,m 1]
(23)
) d nl/2? ml/2
wherepn)méo’anz-#ﬁo)cm:_ftn&—)oy bn "')Oand-w—)oas
n,m — 00.
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Proof. By the conditions of the theorem, f/ , f;’y and f;’y are finite, thus
we may write

Ft7) = f(@,y) + (t = 0) falz,9) + (1 = 9)fy(@,9) + 5t = 2)* fo ()
+ (= )T = y)fey (@, y) + 27— )21 (2,y) (24)
+ [(t=2)* + (1 - y)?] At 7, 7,y),
where A\(t,7,z,y) > 0 as t— z, 7 — y. Hence

1) 1@+ (£ -o) o)+ (£ -0) e

n

+ .;_ (bﬁ - x)2f;’x(x,y) + (bﬁ —x) (di - y) fay(@,y)

n

. 2
+ % (di - y) Fo(@:y)

(£ ()
(25)

Substituting this expression in R, (f,,y) and taking into account the iden-
tities (5)-(10), we get

_+_

R, .(f,z,y) =
::f(m’y)(1+¢11x) d+c ymzz Py i
n m k=0 j=0

+f;(;i,y) (1+ina:) 1+cmy)m,;);) (@) P () (k = b,7)

f;fi:y) (1+c11 )" (1+cmymk§:ojzo 90 = dmd)
* f;é(bwi’ . (1 -i-clz z)m (1 +ch)’” ;;:ZOPM A=y
+ f;zlf:;;y) T T ol ,CZO;,P"’“ k=8 2)G = )
+ f%iizg;y)(ui )" (1+c ) meO;ZO ik ) = d,,y)*
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1
+(1—|—a x)"(1+c mzz ok (TP (9)

k=0 j=0

-[(&-z)”(i:-y)z]A(%w) &

b 2 d 2
= f(z,y) + f1(z,9) (~m) @) (‘#’%)

a2’z +b x a b c d_z2y?
n n'n n n n_n-_m-’'m
+ fe(2:9) (21)2(1 4+ an:c)2) + fmy(:v,y) (bndm(l +a,z)(1+ cmy))

+ fy, @) (dfn ' +dmy.) s
2d% (1 + c,,y)? m

where

1
rn,m (1+a .I)" (1+Cm3/ m ZZP )

k=0 j=0

k 2 j 2 ko j
(z”) *(z,;"y)]A<a:’w’y)’

For given an € > 0, let us choose § > 0 so small that |[A(¢,7,z,y)| < € when
|t —z| < é and |7 — y| < §. For this §, decompose the sum (27) into four parts:

1 1{22+zz

T =
N e e R O Y

Yy s X z}

|8 —al<s|ak—vl26  |d a2 |ar-v[<s

(27)

=A +A,+A;+ A,
(28)
By (8) and (9) and considering the property of A(t, T, z,y) we obtain

a2x4+i 62 4+_y_
IA1I<6{(n b (29)

14+a,z)?  (1+4c¢,y)?

Now we give upper estimation for |A4,|. Henceforth ¢;, 1 = 11,12,..., are
positive numbers depending only on z,y and «.

By f(t,7) = O(e***7) (t,7 = o0, a, fixed), it follows from (25) for some
c;; that

(GRRCRINCS

< cyy €@ T (30)
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Using (27), (28), (30) and (11) we get

|4,] < ¢pp | — b m Ao (31)
(1+a,z) (1+c v)
A enY’ + 7, (32
|A3] < cy5 1+c y)2 J )
N alzt + = 23
I 4' < C14 (1+anx)2 . ( )
Let now r
pnm a’n+cm ( )

By (34), (28), (29), (31), (32) and (33), the relation

Ao A3y Pnim] <

< i li € 0,7 + ad
m
le;rcl)o n—o0 (an + cm)(l + a"n,',r)2 bn(a’n + cm)(]‘ + an‘r)Z

C2 4
N 2y N y 2]
(a, +c, )X +c,y)?  d,(a, +c,)(1+c,y)

2.4 T
Rt <(an +c,,)(1+a,z)? + b, (a, +c,,)(1+ anm)2> . (35)

_ my® y )
(1+c,y)?  d,(1+c,y)?

2.4
a,T

my
+C13((an+cm)(1+cmy)2+d (a,+c )1+C Y) )

+c14 ((an+cm)(1+anl‘)2 b, (a, +c, 1+a a:)2)

holds, because an:%—>0, %1—:—2——>O, cm:dﬁ—)Oa‘nd mi:_z_%oas
n,m — 00.
(26), (27), (34) and (35) give the proof of Theorem 2. O
Acknowledgment

The authors would like to thank Professor A. D. Gadjiev for his valuable
suggestions.

300



ON BERNSTEIN TYPE RATIONAL FUNCTIONS OF TWO VARIABLES

REFERENCES

1

BALAZS, K.: Approzimation by Bernstein type rational functions, Acta Math. Acad. Sci.
Hungar. 26 (1975), 123-134.

BALAZS, K.—SZABADOS, J.: Approzimation Bernstein type rational functions II, Acta
Math. Acad. Sci. Hungar. 40 (1982), 331-337.

[3] BALAZS, K.: Approzimation by Bernstein type rational functions on the real azis, Acta
Math. Hungar. 46 (1985), 195-204.

(4] TOTIK, V.: Saturation for Bernstein type rational functions, Acta Math. Hungar. 43
(1984), 219-250.

2

Received June 4, 2002 * Department of Mathematics
Faculty of Science
Ankara University
06100, Tandogan
Ankara
TURKEY

E-mail: atakut@science.ankara.edu.tr

** Department of Mathematics
Sciences and Arts Faculty
Gazi University
06500, Teknikokullar
Ankara
TURKEY

E-mail: nispir@gazi.edu.tr

301



		webmaster@dml.cz
	2012-08-01T17:32:27+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




