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C,-WEDGE AND WEAK (C,-WEDGE FK-SPACES
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(Communicated by Lubica Hold )

ABSTRACT. In this paper we study the (weak) C,-wedge FK-spaces for C\
methods defined by deleting a set of rows from the Cesdro matrix C; and give
some characterizations. We also apply these results to summability domains.

1. Introduction and notation

In Section 1 we introduce the notation and terminology while in Section 2
we study the C\-wedge and weak C,-wedge FK-spaces, some characterizations
related to these spaces and compactness of the inclusion mapping are found. In
Section 3 we give some applications of results given above to general summability
domains. Also some important applications are obtained for some particular
summability domains.

Let E be an infinite subset of N and consider E as the range of a strictly
increasing sequence of positive integers, say E = {)\(n)}f;l. The Cesdro sub-
method C, is defined as

1 A(n)
Cyz) = —— x n=12...),

where {z,}7°, is a sequence of a real or complex numbers. Therefore, the
C,-method yields a subsequence of the Cesdro method C,, and hence it is regu-
lar for any A. C, is obtained by deleting a set of rows from Cesdro matrix. The
basic properties of Cy-method may be found in [1] and [11].

Let w denote the space of all real or complex-valued sequences. It can be
topologized with the seminorms p, (z) = |z, | (n = 1,2,...). Any vector sub-
space X of w is a sequence space. A sequence space X with a vector space topo-
logy 7 is a K -space provided that the inclusion map i: (X,7) = w, i(z) = z,
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iLHAN DAGADUR

is continuous. If, in addition, 7 is complete, metrizable and locally convex, then
(X,7) is an FK-space. So an FK-space is a complete, metrizable locally con-
vex topological vector space of sequences for which the coordinate functionals
P (z) = z,, (n = 1,2,...) are continuous. An FK-space whose topology is
normable is called a BK-space. The basic properties of FK-spaces may be found

in [13], [14] and [16].
By ¢, ¢y, £° we denote the spaces of all convergent sequences, null sequences
and bounded sequences, respectively. These are FK-spaces under [|z|| = sup |z;].
JEN

P, 1< p< oo, is the space of all absolutely p-summable sequences,
&0 .
5 = {a: Ew: J;l z; ex1sts}
is the space of all summable sequences, and bs is as the following

k
bsz{xéw: sup]ij|<oo}.
keEN j=1

As usual, £ is replaced by £. The sequence spaces

A(n)
UO(A):{wa lim LZ:Ej:O}

n— oo )\( )j:l

and

h(A)z{me lim z; =0 and Z)\ )]Aa:j|<oo}

_)—>00 ] 1
are BK-spaces with the norms

A(n)
x
=1

H»’EHUO(,\ Sup

<.

and -
||37||h(>\) = Z/\(j) 'ij| + sup [373|
—1 JEN

respectively, where A:Ej =, -z
following

i1 Also, bv and bv, can be shown as the

bb:{wa: lej—xj+1|<oo}, bv, = boNc,
j=1
(see [3], [4], [6] and [7]).
Throughout the paper, e denotes the sequence of ones, i.e, e = (1,1,...

1,...); & (j =1,2,...) the sequence (0,0,...,0,1,0,...) with the one in
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the jth position; ¢ the linear span of the §7’s. The topological dual of X is
denoted by X'. A sequence z in a locally convex sequence space X is said to
have the property AK if 2™ — z in X, where z(® = (%), 29,...,2,,0,...) =

» ¥

Z 7,0%. Let z = {2;}32, € w be such that z; # 0 for every j = 1,2,.... Then
Vo(z) = {x €cyt Y |yllAzy < oo}
i=1

o

is an FK-AK space with norm ||zl ) = >° |2;|[Az;| ([7]). We recall (see [7])
j=1

that the (-dual of a subset X of w is defined to be

X8 = {yEw: nga:jyj converges for all z EX}
={yew: z-yecc forall z€ X}.

o0
For example ag = h with h = {m Ew: Zj|A:cj| <oo and z € co}
(see [4] and [6]). j=1
Following Bennett [3] we say that a K-space (X, 7) containing ¢ is a weak
wedge space if 67 — 0 (weakly) in X . It is a wedge space if 67 = 0in X.Ince,
in (8], continued to work on Cesdro wedge and weak Cesiro wedge FK-spaces
and to give some characterizations.

2. C,-Wedge FK-spaces

In this section, the concept of C-wedgeness for an FK-space X containing
¢ is defined, and some characterizations related to this space and compactness
of the inclusion mapping are studied.

DEFINITION 2.1. Let (X, 7) be a K-space containing ¢ and

e()\(n )\(n)

n .__ k:
= Z _( 1 %%"LO) (1)

Am)

If u» = 0 in X, then (X, 7) is called a C, -wedge space; and if pu™ — 0 (weakly)
in X, then (X,7) is called a weak C,-wedge space.

We shall now present several examples of C\-wedge FK-spaces which are
not wedge space. For example ¢, cy, £°°,bv,bo,, and €7 (p > 1) are C,-wedge
FK-spaces, but these are not wedge spaces. Also, by, is weak C-wedge space
but not wedge space.
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Let s = {s,}32, denote throughout a strictly increasing sequence of non-

negative integers with s; = 0. Let c|s|()A) designate the space defined by
Sn+41 .
cls|(A) = {z €cy: sup 3 A(j)|Az,| < oo}.
nEN j=s,+1

Then c|s|(A) is a FK-space under the norm

Sn41

Il gpsjy =sup Y A() Az
nENj=3n+1

Also, it is obvious that h(X) C c[s|()) C ¢, C €.

LEMMA 2.2. Let lim % =0 forn=1,2,.... Then there exists z € w with
j—o0 A9)

jl_iglo /\—z(jj = 0 such that JILIEO %JL =0 (n=1,2,...). Moreover, for any such z,

we get

Vo(z) € () Vale™.

The proof uses the same technique as in [3] and (8], therefore it is omitted.
Now we give the sufficient conditions for an FK-space X to be a C,-wedge
space.

LEMMA 2.3. Let X be an FK-space and sup &,\—’\(%D < 00. Consider the fol-
lowing propositions: neN
(i) Vo(2) C X for some z € w such that z; = o(A(j)) ;
(i) X contains c|s|(A) for some s, and the identity map
I: (ClSl()\), ” ’ ||c|s|(A)) - (X,7)
1§ compact;
(i) h(X) C X, and the identity map I: (R(N), [l - llos(n) = (X,7) is com-
pact;
(iv) (X,7) is a C,-wedge space.
Then (i) = (ii) = (iii)) = (iv).
Proof.
(i) = (ii): Let s, =0 and s = {s,, : n > 1} denote a strictly increasing
sequence satisfying Ll o 3w, J 28, (n=1,2,...). Let z € c|s|(A). Suppose

A@7)
t,m €N, t <m. Then
Sm+1 m 1 Sn+1 m 1
Z |z;||Az,;| < Z on Z ADNAT| < [zl gs1n) Z o
j=s¢+1 n=t j=sn+1 n=t
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hence = € V,(z). So ¢|s|(A) C X. Let now K C c|s|(\) be such that [|z]|

clsl()
<M forallz€ K.Fors, <m<s,,, andz € K,

llz - 33(m)“vo(z) = Z |zj”AIj|

j=m-+1
Sit1 Sitl > 1
Z |2;|Az;| < Z > MDAz < Nzl g 5
nj=si+1 i=n j=si+1 i=n

I/\

Z — 0 (uniformly).

Hence, the convergence with respect to topology of the space V,(2) is uniform
on K. On the other hand, since Vj(z) is AK-space by [3; Lemma 2], we find
that K is 7-relatively compact.

(ii) == (iili): Since h(A) C c|s|(A), by [9; Proposition 3.1] the identity map
from h(A) into c|s|(A) is continuous, hence (iii) follows from (ii).

(ili) = (iv): Since supw < 00, first observe that ¢ := {u" : n =

2,...} is a bounded subset of h(A) and so it must be relatively compact in X .
Therefore, it is easy to see that, for each i, p,(u™) = T\Tﬁ— if 1 < A(n), and 0 if

i > A(n). Hence, for each i, p,(u™) = 0 as n = co. Now [9; Theorem 2.3.11]
implies that u™ — 0 in (X, 7), giving (iv). |

Using the fact that the space z7!- X ={z €w: z -z € X} is an FK-space
([14]) one can get immediately the following:

LEMMA 2.4. Let (X,q) be an FK—space with ¢ C X and z € w, then 271 - X
is a Cy-wedge space if and only if 5~ 200 5 00n X

Proof.
Sufficiency: Consider [14; Theorem 4.3.6] to obtain the seminorms of z7!- X .

Hence it easy to see that, for each i, p,(u™) = ﬁ? if i < A(n),and 0if i > A(n).
Thus we have for each 4, that p,(u"™) = 0 as n = oo. Also,

h(p") = q(z - u™) ( szak)ao as n— oo.
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THEOREM 2.5. If z € 0,()\), then z° is a Cy-wedge FK-space.

o0
Proof. Recall that 28 = {a: DD - converges} is an FK-space under
k=1
the topology given by the seminorms

p,(x) =1z, (n=1,2,...) and po(z) = su%
me

m
§ :kak
k=1

([14]). Observe that

Pa() = 0, n > A(r).

Hence, for each n, p,(u") — 0 as r — oco. Now a few calculation yields

{ )\(1.,‘) y N .<_. )‘(T) )

m
that py(p") = max f=| > Z’“I' By hypothesis, since z € o,()\), choose
1<mn Mz
an index sequence (vy),cy such that EA- > 2V and for each A(v) > vy,
A(v)
—-N

)\(lu) kz—:l zk’ <2 .

Let A(r) > vy ; then for an arbitrary N > 2,

X N

(i) m=A(r), (1) kgl z | <277

. 1| & N 1] <

(i) m<vy_,, ,\7(7;)75 sz’<2 sup Elszi,

k=1 meN k=1
m

(ili) vy_; <m < A(r), /\'(’;) ;11-} 12—31 zk‘ < 9—(N-1)

Hence, since
1| < 1| < kL
po(u") = max{ Sup 3y Zk‘ ) SUP X7y 2kl XM > Zk}} )
m<vy_1 k=1 vn_1<m<A(r) k=1 k=1

this proves the theorem. O

COROLLARY 2.6. The intersection of all (weak) C,-wedge FK-spaces is h.

Proof. Let the set of all (C,-wedge) C,-wedge FK-spaces be (I'(C,))
I'(Cy). Since every C)-wedge FK-space is C,-wedge, we get I'(C;) C I'(C,).
Also,

({X: Xxer(@c)}c[[{x: XeT(C,)}.

On the other hand the intersection of all (weak) C|-wedge FK-spaces is h in [8].
Hence h ¢ N{X : X € I'(C,)}. Therefore, we have

hCﬂ{X: XGF(CA)}Cm{zﬁ: ZEO'O}ZUg:h,
thus the result. O
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THEOREM 2.7.
(i) An FK-space that contains a (weak) C, -wedge FK-space must be a (weak)
C, -wedge FK-space.
(ii) A closed subspace containing ¢ of a (weak) C,-wedge FK-space is a
(weak) C\-wedge FK-space.
(i) A countable intersection of (weak) C\-wedge FK-spaces is a (weak)
C, -wedge FK-spaces.

The proof is easily obtained from elementary properties of FK-spaces (see,
e.g, [14]).
THEOREM 2.8.

(i) If X is a C,-wedge space, then X N (bs \ ¢s,) is non-empty.

(i) If X s a C,-wedge space, then X N (¢s\ £) is non-empty, where

5, = {:v: ngxj :0}.

Proof.
(i): It is clear that cs is not Cy-wedge, and hence, by Theorem 2.7(i), nor is
c¢sNX . Theorem 2.7(ii) implies that ¢sNX is not closed in X . Thus we consider

7
the one-to-one and onto mapping S: X =Y, Sz = <m1,x1+x2, e 2 Ty, )
k=1

([9] and [3]). Hence S(csNX) =¢NY isnot closed in Y. If ¢cNY is not closed
in Y, then ¢, is of codimension 1 in ¢ so it follows from [2] that ¢, NY is not
closed in Y. Therefore, by [12; Corollary 1], Y N (£ \¢,) is non-empty. We have
that S™1(Y N (£ \ ¢p)) is non-empty. Moreover, since S~1(Y N (£*° \ ¢,)) =
X N(bs\cs,), we get X N(bs)\ cs,) is non-empty.

(ii): Since £ is not a C,-wedge space, then by Theorem 2.7(i), N X is not
C,-wedge space, too. Hence, Theorem 2.7(ii) implies that £N X is not closed
in X . Therefore, by [2; Theorem 2(i)], X N (¢s\ £) is non-empty. O

THEOREM 2.9. If X is a C,-wedge space, then X N bs is a non-separable
subspace of bs.

Proof. Since ¢s is not a C,-wedge space, then by Theorem 2.7(i), s N X
is not a C,-wedge space either. Theorem 2.7 (ii) implies that ¢sN X is not closed
in X. Therefore, S(¢cs N X) = c¢cNY is not closed in Y. Hence [2; Theorem 8]
implies that the space £*° NY is a non-separable subspace of £°°. In this case
we claim that the space S (¢*° NY) = bsN X is a non-separable subspace of
S~1(¢%°) = bs. To see this, suppose that bs N X is a separable subspace of bs.
Then there exists a countable set x C bs N X such that £**"X = bsN X . Thus,

S(k) C S(bs N X) = S(R*"Y) = (¢>NY) N S(R").
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However, since £ C &, then S(&%*) C S(R") therefore, we get

~nYy =5k .

Since S(k) is countable and £*° NY is dense in the topology of £*°, then it is
a separable subspace of £°°, which is a contradiction. This completes the proof.
a

THEOREM 2.10. Let X be an FK-space and sup 2208 < oo, If h(N) C X,
neN

A(n)

and the identity map I: (h(\),]| - ”h(/\)) — (X, 1) 1s weakly compact, then X 1is
weak C-wedge space.

Proof. Suppose that 2(A\) C X and I: (A(X), |- [l) — (X,7) is weak
compact. Since sup 1\—(%1 < oo, P:={p": n=1,2,...} is a bounded subset

neN

of h(\) and it is o(X, X')-relatively compact. Observe that p,(u") = ﬁ if
i < X(n), and zero if i > A(n). Hence, for each i, p,(u™) — 0 as n — oc. The
same is also true in o(X, X’) by [9; Theorem 2.3.11]. This proves the theorem.

0
THEOREM 2.11. Let X be an FK-space with ¢ C X and z € w, then 271 - X
is a weak C,-wedge space if and only if 5‘(—;(%)—) — 0 (weakly) in X .
Proof.

Necessity: Let f € (z7'-X)'. By [14; Theorem 4.4.10], f € (27 !+ X)' if and
only if f(z) =az+g(z-2), a € ¢, g€ X'. Also,

"= (xn) — e()\(n)) — 1 1 1 0
) k A(n) An)’ A(n)" T AMn)T )
Hence we get that

f@@") = az™ +g(z- ")

o0
=Y oy + g((z27))
k=1
s )
mzak) pg)\(n) A(n)
k=1 1 k
= Aln) +g<m]§l Zk(s ).
/\Ln) Py a,, p>Xn)

Therefore, for each f € (z7! - X), f(/\(ln) S 6’“) — 0 as n — oo, which
proves the theorem.
Sufficiency is trivial by (2). a

310



C,-WEDGE AND WEAK C,-WEDGE FK-SPACES
3. Summability domains and applications

In this sections we give simple conditions for a summability domains E, to be
(weak) C\-wedge. We shall be concerned with matrix transformations y = Az,
where z,y € w, A = {aij}f‘;.zl is an infinite matrix with complex coefficients,

and
o0

yi=2aijxj (i=1,2,...).
j=1
The sequence {a;;}52, is called the ith row of A and is denoted by at (i =
1,2,...); 51m11arly, the jth column of the matrix A, {a;; -}, is denoted by a,
(j = 1,2, ... ). For an FK-space E, we consider the summability domain E,
defined by
E,={z€w: Az existsand Az € E}.

Then E, is an FK-space under the seminorms p,(z) = |z,| (n =1,2,...);

Z% 2

(z) = sup (1=1,2,...) and (qgo A)(z) = q(Ax)

meN

i

([14] and [16]).
The following theorem is an application of Lemma 2.3 to summability do-
mains.

THEOREM 3.1. Let E be an FK-space, A be a matriz and sup ’\(,\’\((n"))) < 00.

Then consider the propositions below.
(i) h(X\) C E,, a' € 04(N) for all i > 1 and the mapping A: h(\) = E is
compact;

(ii) the sequence defined by A( Z 87 ) {T(lyT) j‘(él) ai]}il for each n
belongs to E and converges to zero there;
(i) E, is a C,-wedge space.
Then (i) = (ii) = (iii).
Proof.
(i) = (ii): Observe that 67 € h(\) for all j, and since h(X) C E,, we have

= A(87) € E for all j > 1. Since sup%l <oo,¢:={p": n=12,...}
n€eN
is a bounded subset of A(A) and A: h(X) = E is compact, A(¢) = {A(u™): n=
2,...} is relatively compact in E. Thus, by [9; Theorem 2.3.11], A(u") — 0
in w implies that A(u™) —» 0 in E.
The proof (ii) = (iii) is similar to Theorem 2.5 and hence is omitted. O
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The following theorem is an application of Theorem 2.12 to summability
domains.

THEOREM 3.2. Let E be an FK-space, A be a matriz and sup % < 0.
n€eN
Then consider the propositions below.

(i) h(A) C E,, a' € g4(\) for all i > 1 and the mapping A: h(\) = E is
weakly compact,

An) A(n) ©°
(i) the sequence defined by A(A—(l—ﬂ > 5’) = {3\—(177) > ai]} for each n
j=1 '

Jj=1 i=1
belong to E and converge weakly to zero there;

(iii) E, is a weak C,-wedge space.
Then (1) = (ii) = (iii).
Proof.
(i) = (ii): Proceed as in the proof (i) = (ii) of Theorem 3.1.
(i) = (iii): By [14; Theorem 4.4.2], f € E’; if and only if f(z) =

o0 (oo}
Y. oz, + g(Az) for all z € E,, where a € wi = {x : Y, x,Y, converges
k=1 n=1

for all y EwA}, and g € E'. Thus we get for each i € N

laz| < Mrsnlé% Zaijzj = Mh,(z), M>0.
j=1
Therefore
la(p™)| < Mh,(p") forall +>1. (3)

A(n)
Since /\(ln) ng a;; = 0 (weakly) in E for each 7 € N, and E is a K -space, we

get
1 A(n) oo 1 A(n)
p({mz}%mz“’ wones

for each ¢ € N. Hence as in the proof of (ii) == (iii) of Theorem 3.1,
h,(u™) = 0 as n — oo for each i € N. Thus (3) implies that

a(p™) =0 as n — 00. (4)

Also,
fu™) = a(u™) + g(Aw™), acwh, geE. (5)
By hypothesis, g(A(u™)) — 0 as n — oco. Therefore, by (3), (4) and (5),
f(u™) — 0, for each f € E'y as n — co. O

Let A:= {A\(n)} ", be an infinite subset of N and sup i;\((:% < 0o. Then
- n€eN

we have some important applications.
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COROLLARY 3.3. If

A(n)
(i) j\elg X | 2 a;;| <o (n=1,2,...)
YD R
11_1—3{.10 Nl P a;; exists for each n, respectively 11_1}{.10 el ; a;; =
A(n)
. o . .
(ii) nli)n;o sgg ) ng a, (£2) 4 (cy, respectively (cy)4) is a

C\ -wedge space.

Proof. This is just Theorem 3.1, (ii) = (iii), with E = £> (¢, respec-
tively ¢, ). O

00 A(n)
COROLLARY 8.4. If lim leﬁ Zl a
1= J=

4 15 a C,-wedge space.

Proof. This follows at once from Theorem 3.1, (ii)) = (iii), with E = £.

O
) )\(n ' ) A(n)
COROLLARY 3.5. If nllfgo{ > ’ (ay; a"“»j)l + il_lglo ) El a;; }
=0, then (bv), is a C,-wedge space.
Proof. This is just Theorem 3.1, (ii)) = (iii), with E = bo. a

PROPOSITION 3.6. Let A € (£,0;p) and sup 3% < oo. Then £, is not
neN

C\ -wedge space.
Proof. A€ (¢ ¢;p) if and only if

o0
(8) sup 3. lay,] < oo
k€ENn=1

) Sa,=1foralk>1
n=1

(see, [10; p. 189]). Hence we get the following

SRS e )
a. _— a.. = a,. = 1 .
y y (Xe) =52
i=1 )\(TZ, 7j=1 i=1 /\(TL Jj=1 A(n) Jj=1 “i=1 ’ )\(TL) J=1
00 A(n)
Therefore, Zl ‘ﬁﬁ ‘21 a;;| =+ 0 as n — co. Thus £, is not C,-wedge space by
1= j=
Corollary 3.4. 0
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