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A TOPOLOGICAL S T R U C T U R E 
OF SOLUTION SETS TO EVOLUTION SYSTEMS 

VLADIMÍR Ď U R I K O V I Č * — M O N I K A ĎURIKOVIČOVÁ** 

(Communicated by Michal Fečkan) 

ABSTRACT. In this paper we deal with the Peano phenomenon for general 
initial-boundary value prob lems of quasilinear evolution systems with arbitrary 
even order space derivatives. The nonlinearity is a continuous or continuously 
Frechet differentiable function. Qua l itative and quantitat ive structure of solution 
sets is studied by the theory of proper, Fredholm and Nemitskii operators. These 
results can be applied to the different technical and natura l science models. 

Introduct ion 

In this paper we shall study generic properties of quasilinear initial-boundary 
value problems for evolution systems of an even order with the continuous or 
continuous differentiable nonlinearities and the general boundary value condi­
tions. In special Holder spaces we use the Nikol'skii decomposition theorem from 
[29; p. 233] for linear Fredholm operators, the global inversion theorem of [9], 
[6] and [7; pp. 42-43] and the A m b r o s e t t i solution quantitative results from 
[2; p. 216]. In the consideration on surjectivity, the generalized Leray-Schauder 
condition is employed which is similar to that one in [20]. In the case of nonlinear 
Fredholm operators we use the main Q u i n n and S m a 1 e theorem from [22] 
and [24]. 

The topological structure of solution sets for ordinary differential systems 
has been studied by many authors in [3], [4], [5], [8], [17], [27]. Such questions 
for second order partial differential equations was studied in the authors papers 
[12], [13]. 

The present results allow us to investigate different problems describing dy­
namics of mechanical processes (bending, vibration), physical-heating processes, 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 35G30, 37L05, 47H30, 47J35. 
K e y w o r d s : evolution system, initial-boundary value problem, linear Fredholm operator, 
proper and coercive operator, bifurcation point, surjectivity. 
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reaction-diffusion processes in chemical and biological technologies or in the 
ecology. 

1. The formulation of problem, assumptions and spaces 

The set ft C W1 for n G N means a bounded domain with the boundary dft. 
The real number T will be positive and Q := (0, T] x ft, T := (0, T] x dft. If the 

n 
multiindex k = (k1,..., kn) with \k\ = ^2 k{, then we use the notation D^ for 

i = l 
the differential operator —%f -— and Dt for J^. If the modul |k | = 0, then 

OX Y • • • uXn 

Dk means an identity mapping. The symbol cl M means the closure of the set 
M in W1. 

In this paper we consider the general system of p > 1 nonlinear differen­
tial equations (parabolic or non-parabolic type) of an arbitrary even order 2b 
(b is a positive integer) with p unknown functions in the column vector form 
(ux,..., u ) T = u: cl Q —r MP . Its matrix form is given as follows: 

A(t,x,Dt,Dx)u + f(t,x,Dlu)=g(t,x) for (t,x)eQ, (1.1) 

where 

A(t,x,Dt,Dx)u:=Dtu- ^ ak(t,x)Dku- ^2 ak(t,x)Dku, 
\k\=2b 0 < | k | < 2 6 - l 

and D^ it is a vector function whose components are derivatives D^ ut with the 
different multiindices 0 < |7 | < 2b — 1 for / = 1,. . . ,p. 

The system of boundary conditions is given by the vector equation with the 
bp components 

B(t, x, D > | c | r := ( 5 , (t, x, D > , . . . , Bbp(t, x, D x ) M ) T | c | r = 0 (1.2) 

in which 
B3(t,x,Dx)u:= ] T bjk(t,x)Dku 

o<\k\<rj 

for an integer 0 < r < 2b — 1 and j = 1 , . . . , bp. 
Further the initial value homogeneous condition 

u(0,x) = 0 for xeft (1.3) 

is considered. 
Here the given functions are the following mappings: 

ak : = (ah
k

l)v
h l=1: c\Q -> Rp2 for 0 < |fc| < 2b 

are (p x p)-matrix functions; 
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bjk = {b)k,.-.yjk): c\T^W for 0 < |fc| < Tj , j = 1,.. • ,bp 

are row vector functions; 

f = (f1,...,fp)
T:c\QxW^W and g = (gx,... ,gp)

T: c\Q -> W 

are column vector functions, where K is a positive integer satisfying the inequality 

-[(VKHT)+-
/„ + | 7 | - 2 \ /n + | 7 | - l 
\ W - l / V l7l 

Under several supplementary assumptions, problem (1.1) - (1.3) defines homeo-
morphism between some Holder spaces. Now, we formulate these suppositions. 

(P) A J-uniform parabolic condition holds for system (1.1) in the sense of 
J. G. Petrovskii, 5 > 0. 

The system (1.1) and boundary condition (1.2) are connected by 

(C) a 8+ -uniform complementary condition with 5+ > 0 

and 

(Q) a compatibility condition. 
The coefficients of the operator A(t,x,Dt,Dx) from (1.1) and of B(t,x,Dx) 
from (1.2) and the boundary dfl satisfy 

(Sl+a) a smoothness condition for a nonnegative integer / and a number 
a e ( 0 , l ) . 

We shall be dealing with the Banach spaces of continuously differentiable 

functions C*(clQ,W) and Cl/^l(clQ,W) and the Holder spaces Cl
x+

a(clQ,RP), 

Ctx ' ' a(c\Q,Rp) for a nonnegative integer / and a G (0,1). 

For the exact definition of conditions (P), (C), (Q), (Sl+a) see [19; pp. 12 21] 
and for the definition of the spaces see [19; pp. 8-12] or [11]. 

The homeomorphism result for (1.1) (1.3) can be formulated as follows: 

PROPOSITION 1.1. (See [19; p. 21] and [15; pp. 182-183].) Let the conditions 
(P), (C) and (Sa) be satisfied for a G (0,1) . Necessary and sufficient conditions 
for the existence and uniqueness of the solution 

ueC^+a),2b'2b+a(c\Q,W) 

of linear problem (1.1) -(1.3) for f — 0 is 

g€Ca/
x
2b'a(clQ,W) 

and the compatibility condition (Q). 
Moreover, there exists a constant c > 0 independent of g such that 

C ll#lla/2b,a,Q,p — IMI(2&+a)/26,26+a,Q,p - cIMIa/2&, a,Q,p ' 
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2. General results 

In this part we remind some notions and assertions from the nonlinear func­
tional analysis applied in the fundamental lemmas and theorems. 

Throughout this paper we shall assume that X and Y are Banach spaces 
either both over the real or complex field. 

In the Z e i d l e r books [31; pp. 365-366] and [32; pp. 667 668] we find defi­
nitions of the linear and nonlinear Fredholm operator. 

The following proposition gives the necessary and sufficient condition for a 
linear operator to be Fredholm. 

PROPOSITION 2 .1 . (S. M. Nikol'skii, see [29; p. 233].) A linear bounded oper­
ator A: X —>> Y is Fredholm of the zero index if and only if A = C + T, where 
C: X —» Y is a linear homeomorphism and T: X —» Y is a linear completely 
continuous operator. 

In the theory and applications of nonlinear operators, the notions as a proper, 
a-proper, closed, coercive operator (for definitions, see books [31] and [32]) are 
very frequent. Their significant application give the following statements. 

PROPOSITION 2.2. (The Ambrosetti theorem, [2; p. 216].) Let F e C(X,Y) 
be a proper mapping. Then the cardinal number card i ? _ 1 (g) of the set F~l(q) is 
constant and finite (it may be zero) for every q taken from the same component 
(nonempty and connected subset) of the set Y \ F(E). Here E means a closed 
set of all points u ~ X at which F is not locally invertible. 

A relation between the local invertibility and homeomorphism of Ar onto Y 
gives the global inverse mapping theorem. 

PROPOSITION 2.3 . ([9], [31; p. 174].) Let F G C(X,Y) be a locally invertible 
mapping in X. Then F is a homeomorphism of X onto Y if and only if F is 
proper. 

The following propositions give necessary and sufficient conditions for the 
proper mapping. 

PROPOSITION 2.4. (See [31; p. 176], [23; p. 49], [27; p. 20].) Let F <E C(X, Y). 

(j) If F is proper, then F is a nonconstant closed mapping. 
(jj) If d imX = +oc and F is a nonconstant closed mapping, then F is 

proper. 
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PROPOSITION 2.5. (See [23; pp. 58-59], [31; p. 498], [27; p. 20].) Suppose that 
F: X -> Y and F = F1+F2, where 

(i) F1: X —> Y is a continuous proper mapping on X, 
(ii) F2: X —> Y is complete continuous. 

Then 

(j) the restriction of the mapping F to an arbitrary bounded closed set in 
X is a proper mapping. 

(jj) If moreover, F is coercive, then F is a proper mapping. 

Now we can formulate some sufficient conditions for the surjectivity of an 
operator. 

PROPOSITION 2.6. (See [27; pp. 24, 27].) Let X be a real Banach space. 
Suppose 

(i) P = I — f: X -» X is a condensing field, where I: X -» X is the 
identity, 

(ii) P is coercive, 
(iii) there exists a strictly solvable field G = I — g: X -^ X and It > 0 such 

that for all solutions u G X of the equation 

P(u) = k • G(u) 

and for all k < 0 the estimation \\u\\Y < R holds. 
J ll ll A 

Then the following statements are true: 
(j) P is a proper mapping, 

(jj) P is strictly surjective, 
(jjj) cardF - 1(( / ) is constant, finite and nonzero for every q from the same 

connected component of the set Y \ F(Y>), where £ is as in Proposi­
tion 2.2. 

The definition of a condensing field is understood in the sense given in [10; 
p. 69]. For the definition of a strict solvable field and strict surjective field see [29]. 

Remark 2.1. It is clear that an operator F is strictly surjective, then it is 
surjective and if F is strictly solvable, then it is also solvable. Moreover, if F is 
strictly surjective, then it is strictly solvable, too. 

PROPOSITION 2.7. (The Schauder invariance of domain theorem, [31; p. 705].) 
Let F: M(C X) —> X is continuous and locally compact perturbation of identity 
on the open nonempty set M in the Banach space X. Then: 

(j) If F is locally infective on M, so F is an open mapping. 
(jj) If F is infective on M, so F is a homeomorphism from M onto the 

open set F(M). 
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For the compact perturbation of C1-Fredholm operator we shall use the fol­
lowing proposition. 

PROPOSITION 2.8. ([32; p. 672].) Let A: D(A) C X -r Y be a C1-Fredholm 
operator on the open set D(A) and B: D(A) -> Y be a compact mapping from 
the class C1. Then A + B: D(A) -> Y is a Fredholm (possible nonlinear) oper­
ator with the same index as A at each point of D(A). 

In the following propositions we use the notion of a regular, singular, critical 
point of an operator and a regular, singular values of operators. The reader finds 
these definitions in [32; p. 668] or [31; p. 184]. 

Also, we need a residual set. A subset of a topological space Z is called 
residual if and only if it is a countable intersection of dense and open subsets 
of Z. 

By the Baire theorem in any complete metric space or locally compact Haus-
dorff topological space, a residual set is dense in this space. 

The most important theorem for nonlinear Fredholm mappings is due to 
S. S m a l e [24; p. 862] and Q u i n n [22]. It is also in [7; pp. 11 12]. 

PROPOSITION 2.9. (A Smale-Quinn theorem.) If F: X -» Y is a Fredholm 
mapping (possible nonlinear) of the class Ck(X,Y) in the Frechet sense and 
either 

X has a countable basis (Smale), 

or 

F is a -proper (Quinn), 

then the set RF of all regular values of F is residual in Y. Moreover, if F is 
proper, then RF is open and dense set in Y. 

A necessary and sufficient condition for a local diffeomorphism (see [31; 
p. 171]) is given in the following proposition. 

PROPOSITION 2.10. (A Local inverse mapping theorem, [31; p. 172].) Let 
F: U(u0) C l 4 7 be a C1-mapping in the Frechet sense. Then F is a local 
C1 -diffeomorphism at u0 if and only if u0 is a regular point of F. 

PROPOSITION 2.11. ([23; p. 89].) Let dimY > 3 and F: X -> Y be a Fred­
holm mapping of the zero index. If u0 G X is an isolated singular point of F, 
then F is locally invertible at u0 . 

To illustrate the following results we shall need estimations of a Green 
p x p-matrix for linear problem (1.1) — (1.3). 
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LEMMA 2.1. Let the assumptions (P), (C). (Sa) be satisfied for a G (0,1) . 
Then for the Green matrix G of linear problem (VI) -(1.3) with f = 0 we have 

| D*° D* C7(1, x; r, 01 < c(* - r)-" | |a ; - ^-("+™°+W)E (2.1) 

/Or 0 < 2bk0 + |fc| < 2b and \i < (n + 2bk0 + |fc|)/26, thereby 0 < r < t < T 
and £,£ G clfi , x ̂  £. The positive constant c does not depend on t, x, r , £ 
and E means the p x p-matrix consisting only from units, r = 2b/(2b — 1). 

P r o o f . Since n + 2bk0 + \k\ — 2b/x > 0 and ||x — £\\Rn < d iamQ , so for 
0<5<t-T<Twe obtain (2.1) by the estimation (see [15; pp. 182 183]) 

| D * ° D * G ( t , s ; T , 0 l 
n + 2bfc0 + |fc| f M r - f i r - "I 

<c.(t-r)- « expj-c^^rx)} 

< C l ( t _ T ) -M | | _ _ e||26B--(»+26*o + IM) [H,. _ ̂ / ( t _ _ ) ] (n+26*o + |*|-26M)/26)< 

xexpf-cJIIx-^eA l-r)]1^6^}^. 

If 0 < t - r < 5, then from 

lim yu exp{-cyv\ = 0 

2/-+ + oo 

for every U , D G I and c > 0, we get estimation (2.1). • 

Remark 2.2. 
a) For any x = (x1,..., £ n) G Mn the inequalities 

n n 

C n _ _ > i l < I M l R » < _ _ > . ! (2.2) 
i = l z = l 

hold if cn G (0, l /(>/2 ) n _ 1 ) , n G N not depended of x. 

b) Also, we see that the mild solution u G C^ I (clQ,IR) of problem (1.1) (1.3) 
satisfies the column vector integro-differential equation. 

t 

u(t, x) = J dr J G(t, x; r, £) [fl(r, £) ~ /(r, £, D7 i_(r, 0)] ^ 
o Q 

=:(Su)(t,x) for ( t , x ) G c l Q , 

for 0 < |7| < 2b — 1 and conversely the solution v G C^7' (clQ, W) satisfying 
(2.3) is a mild solution of (1.1)-(1.3). 
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3 . O p e r a t o r f o r m u l a t i o n and f u n d a m e n t a l l e m m a s 

Consider the following operators: 

(i) 
A:X^Y, (3.1) 

where 

(Au)(t,x) = A(t,x,DvDx)u(t,x) =Dtu(t,x) - ^ ak(t,x)Dku(t,x) 

0<\k\<2b 

for (t,x) G cl Q, u G X, 

X = {ueXp: (Vj G { 1 , . . . ,bp}) (£•(*, * , D > | r = 0) 

k (VxeclQ)(u(0,a;) = 0)} CC(clQ,Mp). 

Here 
^ p CC£ 6 + Q ) / 2 6 ' 2 6 + a ( c lQ ,R p ) 

is the Banach space of continuous functions H: cl Q —> Rp with the continuous 
derivatives D^ H, for \k\ = 1,. 
cl Q and with the finite norm 
derivatives Bku for \k\ = l , . . . ,2b and DkoDku for 1 < 2bk0 + |k| < 2b on 

vp Z = l , . . . , p 
] Г Snp\D^Ľk

xUl(t,x)\ + (DtUl)la<Q 

0<2Ъk0 + \k\<2Ъ ( ť ' æ ) Є c l Q 

+ £ <DS>L+P,Q + (D^/>t,a/26,Q 
|/e|=26 

2 6 - 1 

+ Z ^ \ D x ^ / > t , ( 2 6 + a - | A ; | ) / 2 6 , Q + /_^ \ D x ^ / > ? , ( a + p ) / 2 6 , Q 

|fc| = l \k\=2b 

where p > 0 and a + p < 1. Further 

Y:=TXcC?/x
2b'a(clQ,W) 

for a G (0,1) with the norm 

\u\\Y = max 
t = l , . . . ,p 

sup |u.(ř,x)| + (ui)v
 Q + {uJt /2bQ 

(t,x)£clQ 

For L>: cl Q —•> R we understand 

- SUD K*,*)-*(*,*)! 
\ ^ / t , p , Q ' - S U P i , c | » 

( t , a ; ) , ( a ,x )Ec lQ \t ~ S\^ 
t^s 

(v\y - S11D W,x)-v(t,y)\ 
\U/X,LL,Q •— b U P | | _ „ MM 

(«,a;),(t,3/)GclQ I F ~ 2/|.Rn 
x^y 
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(ii) The Nemitskii operator 

N:X->Y, (3.2) 

where 
(Nu)(t, x) = (fo u)(t, x) = / ( t , x, T>1 u(t, x)) 

for (t,x) e c lQ, ue X. 
(iii) The operator 

F.X^Y, (3.3) 

where 

(Fu)(t,x) = (Au)(t,x) + (Nu)(t,x) for (t,x)eclQ, ueX. 

Together with the solution sets of given problem (1.1)-(1.3) we shall search 
the bifurcation points sets. 

D E F I N I T I O N 3 . 1 . 

(i) A couple (u,g) G X xY will be called the bifurcation point of (1.1) (1.3) 
if and only if it is a solution of this problem and there exists a sequence 
{#*;}& _N ^ Y such that lim gk = g in Y and initial-boundary value prob-

k—>-oo 

lem (1.1)-(1.3) with g — gk has at least two different solutions uk, vk for each 
k G N and lim uk = lim vk = u in X. 

k—>oo k—>-oo 

(ii) The set of all solutions u G X of (1.1) - (1.3) (or the set of all functions 
g G F ) such that (u,g) is a bifurcation point of (1.1)-(1.3) will be called the 
domain of bifurcation (the bifurcation range) of (1.1)-(1.3). 

EXAMPLE 3.1. The point (ur,0) G X x Y for r G (0,T) is a bifurcation point 
of the Neumann problem (parabolic and non-parabolic) 

fill o II 

— = ±— + f(t,x,u), (t,x)e(0,T)xtt = QcR2, (3.1*) 

Fill f)u 
-(t,0) = -(t,l) = 0, te(0,T), (3.2*) 

«(0,a;) = 0 ) 1 6 f t , (3.3*) 

for f(t,x,u) = l^l1!2 — au, a > 0. 
Here for r € (0, T) 

J O if (t, x) e (0, r) x H , 
« r(<,x) = | ^ ^ _ e x p | _ f ( ^ _ r ) } ^ i f ( i a . ) G ( r r ) x n 

The function w0(t, x) = -^_-(l — exp{—at/2}) , uT(t,x) = 0 are solutions of 
the given problem, too. 
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Really, there is the zero sequence {gk}ke^ of the right-hand side of (1.1) for 
which exist two different sequences of solutions 

K } * 6 N = { U ^ l } f c e N
 a n d KlfcSN = {V^V}ken 

with the same limit ur E X. 

LEMMA 3 .1 . 
(j) The function u E X is a solution of initial-boundary value problem 

(1.1) (1.3)/or geY if and only if Fu = g. 
(jj) The couple (u,g) E X x Y is a bifurcation point of (1.1) (1.3) if and 

only if Fu = g and u is a point at which F is not locally invertible, i.e. u E £ . 

P r o o f . The first assertion is clear. 
(jj) If (u,g) is a bifurcation point of (1.1)-(1.3), then by Definition 3.1 we 

get F(u) = 0, F(uk) = gk = F(vk), uk ^ vk. Thus F is not locally injective 
at u. Hence, F is not locally invertible at it, i.e. u E X. To the contrary, if 
F is not locally invertible at u and F(u) = g, then F is not locally injective 
at u. Hence, it follows that the couple (u,g) £ X xY is a bifurcation point of 
(1.1) (1.3). D 

The following lemma gives sufficient conditions under which the operator A 
is of the Fredholm type. 

LEMMA 3.2. Let the operator A from (3.1) satisfy the smoothness hypothesis 
(Sa+p) y a E (0,1) . p > 0. a + p < 1 (it has not to satisfy the conditions (P), 
(C) ; (Q)). Further let the condition 

(A.l) There exists a linear homeomorphism H: X -> y such that 

Hu = D t u — H(t, x, D J w , u E X , 

uj/iere 

#(*,*,D>= £ /ifc(t, !)£)*«+ J]) ftfe(t,x)D*« 
|A;|=2b 0 < | / C | < 2 & - 1 

satisfies (Sa+P) for a E (0,1). p > 0, a + p < 1 

bo/ds. 

T/zen 

(j) d imX = -hoo . 
(jj) The operator A: X —> Y is a linear bounded Fredholm operator of the 

zero-index. 

P r o o f . 
(j) The equation 

dimC£°(Q,R) = +oc 

538 



A TOPOLOGICAL STRUCTURE OF SOLUTION SETS TO EVOLUTION SYSTEMS 

and the inclusion 

C0°°(Q,M) CX 

imply dimX = +00. 

(jj) Since the coefficients ak for 0 < |fc| < 2b are continuous on the compact 
set cl Q, there is a positive constant K > 0 such that 

P_| |y<__(| |D t_| |y+ J2 l|D_^lly)=^IHIx 
^ 0<\k\<2b ' 

for all u £ X, whence the operator A is bounded on X. 

If the operator A is a homeomorphism, then statement (jj) is clear. 

If A is not the homeomorphism, then by the decomposition Nikol'skii theorem 
from Proposition 2.1, it is sufficient to show that 

Au = Hu + (H(t, x, D_) - A(t, x, D_))u := Hu + Tu, 

thereby the mapping T: X -» Y is the linear completely continuous operator. 
It will be proved by generalized Ascoli-Arzela theorem from [21; p. 31]. 

From the hypothesis (Sa+P), the equi-boundedness of 

Tu= _C ( M í , s ) - a „ ( ť , s ) ) D _ _ + ___ (hk(t,x)-ak(t,x))B 
\k\=2b 0 < | _ | < 2 6 - 1 

ku 

holds at the bounded set S C X, i.e. there is a constant K1(n, a, T, f_) > 0 such 
that | |Ti/| | y < K^luWx for all n G 5. 

Now for the equi-continuity of the set TS C Y we have to prove the inequality 
(for every element ut, I = 1,..., p, of u = (ux,..., u )) 

l(r.),(.-)-(7-),(...)| + K^-fe-)~(^>«(*-»)l 
\\x y\mn 

| ( r - ) , ( t , g ) - ( T - ) f ( - , a ) | 
|t - s|«/2b 

for all u € S and (t,x), (s,y), (t,y), (s,x) ec\Q, x + y, t±s for which the 
norms ||x - j / | | R n ancj |̂  _ s | a r e sufficiently small, e > 0. 
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With respect to (5 a + / 9 ) we obtain for the first member of the previous in­
equality 

KTu^fax)-^)^)] 

< Y \(hk-ak)(^x)-(hk-ak)(^y)\\Dk
x

ui(^x)\ 
0<\k\<2b 

+ Y \K(s^y)-ak(s^y)\\^kui(^x)-vx
ui(s>y)\ 

\k\=2b 

+ Y \hk(s,y)-ak(s,y)\\D
xul(t,x)-Dx:ul(s,y)\ 

0<|fc |<26-l 

<K
2Y \(hk-ak)(^x)-(hk-ak)(s^y)\ 

0<\k\<2b 

+ Kz Y \Vkul(t,x)-Dk
xul(s,y)\ 

\k\=2b 

+ K3 J2 \Vxul(t,x)-Dk
xul(s,y)\, 

0<\k\<2b-l 

where K2, Ks are positive constants dependent only of n , a , T , Q. For 
\t — s\ < S, \\x — y\\Rn < S with a sufficiently small S > 0 every member of 
the last inequality is smaller than a fixed arbitrary e > 0. (Since u G 5 C A", 
the number 5 does not depend on u.) 

For the second member wre get by the condition (5 a + / 9 ) and using the mean 
value theorem 

\(Tu)l(t,x)-(Tu)l(t,y)\\\x-y\\^ 

< ^ E \(hk-ak)(^x)-(hk-ak)(^y)\\\x-y\\R-
0<\k\<2b 

+ K3 J2 l|D*«/(t,a;)-D*«/(t)2/)||.||.r-j/||^ 
\k\=2b 

+ K3 J2 \Dkul(t,x)-Dkul(t,y)\-\\x-yW^ 
0<|fc |<26-l 

<K(2\\x-y\\^ + \\x-y\\1-a). 

In a similar way we have for the third member 
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\(TU)l(t,x)-(TU)l(s,x)\\t-s\-^2b 

< ^ E \(hk-ak)(t,x)-(hk-ak)(s,x)\\t-s\-a^b 

0<\k\<2b 

+ K3 £ \Dk
xUl(t,x) -Dk

xUl(s,x)\\t- s\-a'2b 

\k\=2b 

+ K3 £ \Dk
Ul(t,x)-Dk

Ul(s,x)\\t-s\-a/2b 

0<\k\<2b-l 

<K[2\t- s\pl2b + \t- s\l-a'2b + J T It-al1-!*!/2 6) . 
^ 1*1=1 ' 

By these three estimations the assertion (jj) is proved. • 

Remark 3.1. Necessary and sufficient conditions for the existence of a linear 
homeomorphism H: X —•> Y from the assumption (A.l) are given in Proposi­
tion 1.1. Concretely, for example, Hu = ff — Aw, u G X. 

COROLLARY 3.1. Let C mean the set of all linear differential operators A = 
Dt-A(t,x,Dx): X -» Y satisfying the hypothesis (Sa+P), a G (0,1), p > 0, 
a+p < 1. Then for each A G C the initial-boundary value homogeneous problem 
Au = 0, (1.2), (1.3) has a nontrivial solution, or any A G C is a linear bounded 
Fredholm operator of the zero index. 

P r o o f . Really, if there exists an operator A G C such that the problem 
Au = 0, (1.2), (1.3) has only trivial solution, then A is a homeomorphism from 
X onto Y (see Proposition 1.1). Then by Lemma 3.2 all operators of C are 
Fredholm of the zero index. • 

LEMMA 3.3. Suppose 

(N.l) The vector function f G C(cl<2 x R*,IRP) satisfies the following local 
grown vector condition 

\f(t,x,Ui)-f(s,y,v"<)\ <L |t-*|Ä + ||*-y|lfc + Ê £ K-^l^' 
1=1 0 < | 7 | < 2 6 - 1 

for (t.x.u1), (s.y.v1) from a compact subset of MK and /?-_ > a/2b, 
/?2 >a, /?7|- > a / ( a + p), 0 < | 7 | <2b-l, J = l , . . . , p , where L>0. 

Then the Nemitskii operator N: X —> Y from (3.2) is completely continuous 
on X. 
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P r o o f . For any bounded set S C X the operator jV is equi-bounded in Y 
Indeed, for all u G S using (N.l) the norm satisfies 

| Л ^ | | у < т а х 
/=1,...,р 

s u p | / , ( í , x , D ^ и ( ť , x ) ) | 
(ť,ж)ЄclQ 

\\*-y\\fc + í E | D > J ( ť , x ) - D > 1 ( ť , ) | ' î - ' 
1 = 1 0 < | 7 | < 2 ò - l 

+ L sup п — 
(ť,æ),(ť,2/)ЄclQ \\x — ž/IІRn 

xфy 

l í - ^ + Ž E | D > Д í , x ) - D > Д 5 , x ) | ^ - ' 
1 = 1 0 < | 7 І < 2 6 - 1 

+ sup 
(ť,æ),(s,æ)ЄclQ 

tфs 
|ť - s|°/-ft 

Hence, it is bounded by a positive constant K(Q, T, L, a, /?l5 /32, /3 J . 
Also, for \t — s\2 + \\x — H||^n < <52 with a sufficiently small 5 > 0 we get the 

equi-continuity of jV. It is sufficient to prove that for every e > 0 there exists 
5 > 0 such that the inequality 

| ( N u ) . ( i , x ) - ( ; V u ) , ( t , y ) | 
\(Nu)l(t,x)-(Nu)l(s,y)\ + 

\x-y\\%r. 

\(Nu)l(t1x)-(Nu)l(s,x)\ 

\t-s\«'2b 

is true for all u G S if both t, 5 and x, ?/ are sufficiently near and / = 1, . . . ,p . 
D 

LEMMA 3.4. Let (Sa+P), a G (0,1). p > 0, a + p > 1. (A.l), (N.l) and an 
almost coercivity condition 

(F.l) for each bounded set S C Y there is a constant Ka > 0 such that for all 
solutions u G X of (1.1) -(1-3) w^b g G 5 £be inequality 

L Q ^ , ™ * * .E s u p | D ^ ( ( ť , a : ) | < K a (3-4) 
0<lfc|<o (*^)ЄclQ 

holds for a = max{ |7 | , r } . Here r is an integer 0 < r < 2b— 1 /Or which 
the coefficients of operators A and H from (3.1) and (A.l), respectively, 
satisfy the relations ak — hk for \k\ = r + 1 , . . . , 2b and ak ^ hk for at 
least one multiindex k with \k\ = r on c\Q 

be satisfied. Then 

(j) F from (3.3) is coercive at X. 
(jj) F is proper and continuous at X . 
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P r o o f . 

(j) We need to prove that if the set S C Y is bounded in Y, then the set 
of arguments F~1(S) C X is bounded in X. 

By (3.4) and assumption (F .l) it follows that the set F~1(S) is bounded in 
the norm || • ||a Q • Hence, and by (N.l) one obtains the estimation ||jVii||y < K4 

for all u e F~{(S). From Lemma 3.2 (jj) also \\Au\\Y < \\Fu\\Y + ||-Vu||y < K5 

for any u ' F~1(S), where i\T4, K5 are positive constants. 

On the other hand, condition (A.l) ensures the existence and uniqueness of 
the solution u ~ X of the linear equation Hu = y for any y € Y and (see the 
Green representation of solution from (2.3) and [15; pp. 182-183] and estimation 
(2.1)) the estimation 

\x 
<K6\\y\\Y, K6>0, ueF-^S), (3.5) 

is true. 

Then for u G F~1(S) we have 

Hu = Au+ ^T (ak(t,x)-hk(t,x))Dk
xu. 

0<\k\<2b 

With respect to (Sa) and (F.l) 

\\y\\Y = \\Hu\\Y<\\Au\\Y + Y, I K - M Y I | D ! > I I Y 
0<|A;|<r 

< K5 + K7\\u\\r,Q < K5 + K7\\u\\a<Q < K5 + K7K
a, K7>0. 

From this, and by (3.5), 

\\u\\x<Ke(K5 + K7K
a), ueF-^S). 

(}']) Since dimX = +oo and A is a nonconstant and closed mapping on X, 
then by Proposition 2.4(jj) it is proper on X. From Lemma 3.3 the operator N 
is completely continuous on X. From (j) of this lemma, F is coercive on X. 
Proposition 2.5 (jj) concludes the proof of (jj) and the proof of Lemma 3.4. • 

In the following lemmas we shall consider the continuous nonlinearity / . 
Conditions for the continuous F-differentiability of the Nemitskii operator jV 
gives the following lemma. 
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LEMMA 3.5. Let the Nemitskii operator N: X —•> Y satisfy the condition (N.l) 
and 

(N.2) df 

7 r^-ec(cigxRK ,Rp) 
9V0J 

for I = 1 , . . . ,p and the multiindices 13 with the modul 0 < \8\ < 26 — 1, 

where K represents the number of all components in the vector function 

fjfu from (1.1). 

Then 

(j) the operator N is continuously Frechet differentiable on X, i.e. N G 
C\X,Y). 

(jj) If moreover ( 5 a + p ) for a G (0,1), p > 0, a + p < 1 holds, then 
FeC\X,Y). 

P r o o f . 
(j) We need to prove that the Frechet derivative N': X —> L(X, Y) defined 

by the vector equation 

N'(u)h(t,x)= £ ^ [ ^ , B > ( M ) ] D f V ^ ) (3-6) 
0 < | / 3 | < 2 b - l ^ 
card{/3,/} = /•£ 

t=l,...,p 

is continuos on X for every u,h G X. Here (5 = ( /5 \ , . . . , (3n) represents every 
multiindex 7 = ( 7 1 ? . . . ,7 n ) appearing in the nonlinearity / . It is sufficient to 
show, for every fixed v G X, the implication: 

(Ve > 0) (36(e, v) > 0) (Vu G X) (||u - v | | x < £ = > ||/V'u - A ^ | | L ( x ? y ) < e) 

i.e. 
sup ||JV'(u)/i - N'(v)h\\Y < e . (3.7) 

hex,\\h\\x<i 

Let us take an arbitrary e > 0 and ^ G X such that ||w — v\\x < o", i.e. 

\Dtul(t,x)-Dtvl(t,x)\ < 5 and | T*k
xul(t,x)-Dk

xvl(t,x)\ < S for all multiindices 

0 < \k\ < 2b on c\Q. Hence with respect to the uniform continuity of -^— for 

0 < |/?| < 2b — 1, / = 1 , . . . ,p on every compact of clQ x W we get the vector 
inequality 

\N'(u)h(t,x) - N'(v)h(t,x)\ 

-- E ^ - ['»*> Ď* «(*. *)] - -Ě- [*. *>D* «(*. *)l 
0 < | / 3 | < 2 6 - 1 
card{/3} = «: 

Z = l , . . . , p 

ð ^ / ' ' ""» дvt ß,l 
Ђß

xht(t,x)\ < є J 
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for \\h\\x < 1 and all (t,x) G c lQ . It finishes the proof of (3.7). 
(jj) We easily see that Frechet derivative F': X -> L(X,Y) is defined by 

the vector equation 

F'(u)h(t,x) = Dth(t,x)- J2 ak(t,x)Dk
xh(t,x)+N'(u)h(t,x) 

0<\k\<2b 

for u,h G X. Hence and by (j) we get F e C1 (X, Y). U 

LEMMA 3.6. Let the hypotheses (Sa+P), a G (0,1), p>0, a + p < 1, (A.l), 
(N.l) and (N.2) be satisfied. Then F = A + N: X -» Y is a nonlinear Fredholm 
operator of the zero index on X. 

P r o o f . According to Lemma 3.2 the operator A: X -> Y is a linear 
continuous and C1 -Fredholm mapping of the zero index. By the statement of 
Lemma 3.3 the operator jV: X —> Y is compact. By Lemma 3.5 it belongs to 
the class C1. Then the Proposition 2.8 implies that F is a nonlinear Fredholm 
operator with the zero index. • 

4. The solution set for continuous nonlinearities 

The first results for that proper mapping F are given by the following 
theorem. 

THEOREM 4 . 1 . Let hypotheses (Sa+P) for a G (0,1) , p > 0, a + p < 1, 
(A.l), (N.l) hold. Then 

(a) for any compact set of the right-hand sides g eY of (1.1) the correspond­
ing set of all solutions of (1.1) -(1.3) is a countable union of compact 
sets, 

(b) for u0 G X there exists a neighbourhood U(u0) of u0 and U(F(u0)) of 
F(u0) G Y such that for each g G U(F(u0)) there is a unique solution 
of (1.1) -(1.3) if and only if the operator F is locally infective at u0 . 

(c) Let moreover (FA ) hold. Then for any compact set of the right-hand 
sides g eY from (1.1), the set of all solutions of (1.1) (1.3) is compact 
(possible empty). 

P r o o f . 
(a) Since F = A + N (see (3.3)), by the decomposition of A = C + T 

(Proposition 2.1) we have F = C + (T + N), where C is a continuous and 
proper mapping X onto Y (see Proposition 2.4), A is a Fredholm operator of 
the zero index, T and N are completely continuous mappings. Since X is a 
countable union of closed balls in X , by Proposition 2.5(j) the operator F is 
cr-proper (continuous). Lemma 3.1 (j) implies assertion (a). 

545 



VLADIMIR DURIKOVlC — MONIKA BURIKOVltOVA 

(b) Suppose that F is injective in a neighbourhood U(u0) of u0 G A". From 
the decomposition (for ff see Lemma 3.2) 

F = H + (T + N) 

we obtain ff_1F = I + H~l(T + TV), which is a completely continuous and 
injective perturbation of the identity / : X —r Y in U(u0). According to Propo­
sition 2.7(j) the set H~lF(U(u0)) is open in X and the restriction H~1F\V^UQ^ 

is a homeomorphism of U(u0) onto H~lF(U(u0)). Therefore F is locally in-
vertible at uQ. Again by Lemma 3.1 (j) we obtain (b). 

(c) By Lemma 3.4 (jj) the operator F: X -> Y is proper, which implies the 
given assertion and includes the proof of Theorem 4.1. • 

Further qualitative and quantitative properties of the set of solutions of 
(1.1)-(1.3) are given by the following theorem. 

THEOREM 4.2. Let hypotheses (Sa+P), a e (0, l ) , p > 0 , a + p < l , (A.l), 
(N.l), (FA ) hold. For solutions of (1.1) -(1.3) the following statements are true: 

(d) The set of solution for each g G Y is compact (possible empty). 
(e) The set R(F) = [g G Y : there exists at least one solution u G A" of 

(1.1) -(1.3)} is closed and connected in Y. 
(f) The domain of bifurcation Db is closed in X and the bifurcation range 

Rb is closed in Y. The set F(X \ Db) is open in Y. 
(g) If Y \Rb ^ 0 ; then each component of Y \Rb is a nonempty open set 

(i.e. domain). 
(h) If Y\Rb^$, the number n of solutions is finite and constant (it may 

be zero) on each component of Y \Rb, i.e. n is the same nonnegative 
integer for each g belonging to the same component of Y \Rb. 

(i) If Rb = 0, then the given problem has a unique solution u G X for each 
g G Y and this solution continuously depends on g as a mapping from 
Y onto X. 

(j) If Rb ^ 0, then the boundary dF(X \ Db) is a subset of F(Db) = Rb 

(dF(X\Db)GF(Db)). 

P r o o f . Assertion (d) follows directly from Theorem 4.1 (c). 
(e) Take the sequence {g n } n 6 N C R(F) C Y converging to g G Y as 

n -» oo. By (d) there is a compact set of all solutions {u1}lEl C X (here I 
means an index set) of the equations F(u) = gn for n = 1,2, . . . . Thus there 
exists a subsequence {^nfc}feGN C {^ 7 } 7 e / converging to u e X and F(unk) = 
gn —•> g in Y as n -» oo. Since the mapping F is proper (Lemma 3.4(jj)), by 
Proposition 2.4(j) it is closed, whence F(u) = g, i.e. g G R(F). The set R(F) 
is closed. R(F) = F(X) is connected as a continuous image of the connected 
set X. 
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(f) According to Lemma 3.1 (jj) Db = £ and Rb = F(Db) = F ( E ) . Since 
A" \ S is an open set, Db is closed in X and its continuous image Rb is a closed 
set in Y. 

Since X \ Db = X \ S is the set of all points at which the mapping F is 
locally invertible, to each u0 G X\Db there exists a neighbourhood U1(F(u0)) C 
F(Ar \ Db). It means, the set F(X \ Db) is open. 

(g) The set Y\Rb = Y\F(Db) ^ 0 is open in Y. Then each its component 
is nonempty and open, too. 

(h) This directly follows from Proposition 2.2. 
(i) By Rb = 0, we have Db = 0 and the mapping F is locally invertible 

in A". Proposition 2.5(jj) asserts that F is a proper mapping. Then the global 
inverse mapping theorem (Proposition 2.3) implies that F is homeomorphism 
X onto Y. 

(j) From Lemma 3.1 (jj), Db = S and by (f), Db and F(Db) are closed. 
Then dF(X \ Db) = dF(Db) c F{Db). 

This finishes the proof of the theorem. • 

For the surjectivity of (1.1)-(1.3), see the following two theorems. 

THEOREM 4.3. Under the assumptions (Sa+P) . a G (0 ,1) , p > 0, a + p < 1, 
(A.l), (N.l), (F.l) each of the following conditions is sufficient to the solvability 
of problem (1.1) -(1.3) for each g E Y : 

(k) For each g G Rb there is a solution u G X \Db of (1.1) (1.3). 
(1) The set Y \Rb is connected and there exists g G R(F) \ Rb (for R(F) 

see Theorem 4.2(e)). 

P r o o f . First of all we see that conditions (k) and (1) are mutually equiva­
lent to the conditions 

(k') F(Db)GF(X\Db) 

and 

(P) Y \ Rb is a connected set and F(X \ Db) \ Rb ^ 0, 

respectively. 
From the proof of Theorem 4.2(f) we have Db = S . 
(k) From (k') we have F(X) = F(Db) U F(X \ Dh) = F(X \ Db). So 

R(F) = F(X) is closed and connected in Y (Theorem 4.2(e)) as well as open 
set in Y (see Theorem 4.2(f)). Thus R(F) = Y, which implies the surjectivity 
of F. 

(1) By (h) of Theorem 4.2, cardF _ 1 ({g}) is a constant k > 0 for every g 
from the same component of Y\Rb. 

If k = 0 for all g G Y \ Rb such F(X) = Rb, whence F(X \ Db) C Rb. It is 
a contradiction with (!'). D 
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THEOREM 4.4. Let ( 5 Q + ^ ) , ae (0,1), p > 0, a + p< 1, (A.l), (N.l), (F.l) 
hold together with the hypothesis: 

(S.l) Pbere exists a constant Ka > 0 such that all solutions u G X of the 
initial-boundary value problem for the equation 

Hu + p(Au -Hu + Nu) = 0 , n G (0,1) , 

with data (1.2), (1.3) fulfil inequality (3.4) from Lemma 3.4. H is the 
linear homeomorphism from hypothesis (A.l) . 

Then 

(m) problem (1.1) -(1-3) has at least one solution for each g G Y, 
(n) £be number n of solutions (1.1)-(1.3) is finite, constant and different 

from zero on each component of the set Y \Rb (for all g belonging to 
the same component of Y \Rb). 

P r o o f . 
(m) It is sufficient to prove the surjectivity of F: X -» Y. By Lemma 3.2 

(see the proof of (ii)) we can write 

F = A + N = H + (T + N). 

The mapping 

H~lF = 1 + H~l (T + N): X -» X 

is a completely continuous and condensing field (see [31; p. 496]). 
Let S C X be a bounded set. Then H(S) is a bounded set in Y. From 

the coercivity of F (see Lemma 3.4(j)) the set F'1 [H(S)] = (H-1F)~l(S) is 
bounded at X. Hence H~1F is coercive. 

Now we show that condition (iii) from Proposition 2.6 is satisfied for the con­
densing and coercive field P = H~XF. Take the strictly solvable field G(u) = u. 
Then the equation P(u) = kG(u) implies 

(H~lF)(u) = ku. 

Hence we get, for u G X and k < 0, 

Hu + (l- k)~l[Au -Hu + Nu} = 0 

where (1 - k)_1 G (0,1). With respect to condition (S.l) 

IML.Q < Ka 

for a = m a x { | 7 | , r } , where | —y | = 0 , 1 , . . . , 2b—1 and 0 < r < 2b — 1 are fixed. 
Using the same method as in Lemma 3.4(j) we obtain for all solutions of 

(H~1F)u = ku 

the estimation \\u\\x < Ks, Ks > 0. By Proposition 2.6 we have the strict 
surjectivity of H_1F and so F. This proves (m). 

(n) From the surjectivity of F on X it follows ng ^ 0. The other assertions 
of (n) follow from Theorem 4.2(h). • 
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E X A M P L E 4 .1 . The initial-boundary value problem for the system of p equa­
tions can be a simple example illustrating results of this part. 

UlJ UlJ 

-j£ - K l - ^ + fl(u) = 0 , (t,x) e ( 0 , T ) x ( ] c R x l , 

/ = 1 , . . . , p , with the conditions 

^ f t 0 ) = ^ ( u ) = 0 , te«,,T>, 

щ(0,x) = 0ђ x G c l í ì . 

We také Kt>0 and 

/.(«) = < 

щ if щ Є (0, a), 

a 1/ 2 if щ Є (a, oo), 

0 if щ < 0 

for / = l , . . . , p . Assumption (A.l) is satisfied by Proposition 1.1. Condition 
(N.l) can be verified by elementary calculus. Supposition (FA) follows from 
equation (2.3) and Green matrix estimations (2.1). Condition ( 5 a + p ) holds for 
0 < a < 1/2, 1/2 < p < 1 and a + p < 1 (for example a = 1/5, p = 3/5). 

5. The solution set for C f l-nonlinearities 

With respect to the C1-differentiability of the operator N from (3.2) we prove 
here several stronger results than in Section 4 for the solutions of (1.1)-(1.3). 

THEOREM 5.1. Suppose that (Sa+P), a G (0,1), p > 0, a + p < 1, 
(A.l), (N.l) . (N.2) and (F.l) be satisfied and Rb mean the bifurcation range 
of (1.1) -(1.3) from Definition 3.1. Then the set Y\Rb is open and dense in Y 
and thus the bifurcation range Rb of initial-boundary value problem (1.1) -(1.3) 
is nowhere dense in Y. 

P r o o f . The openess of Y \ Rb follows from the statement (f) of The­
orem 4.2. 

From previous lemmas the operator A: X —> Y is a linear continuous Fred-
holm mapping of the zero index and the Nemitskii operator N: X -> Y is 
compact and N e C1 (X, Y). 

For every u G X the linear operator N': X —> Y from (3.6) is completely 
continuous on X. By the Nikol'skii decomposition theorem (see Proposition 2.1) 
the operator F'(u) = A + N' (u): X —•> Y is a linear Fredholm mapping of the 
zero index for each u e X. By Lemma 3.5(jj) there is F G Cl(X,Y) and by 
Lemma 3.6 the F is a nonlinear Fredholm operator of the zero index. 
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According to the Banach open mapping theorem (see [30; p . 77]) the mutual 
equivalence is true: F'(u) is a linear homeomorphism if and only if it is a bijective 
mapping. Since F'(u) is a linear Fredholm mapping of the zero index for every 
HEX, F'(u) is bijective if and only if it is injective (in this case the injectivity 
implies surjectivity, see [31; p. 366, Proposition 8.14(1)]). We see that u G .Y is 
a singular point of the Fredholm operator F if and only if u is a critical point 
of F. 

From Proposition 2.10 wre obtain that the set £ (of all points u G X for 
which F is not locally invertible) is a subset of all critical points of F. Then, 
evidently £ is a subset of all singular points S of F , i.e. £ C S. Hence we get 
for the set of regular values RF of the operator F the relations 

RF = Y\F(S)cY\F(2)cY\RhcY, 

where Rb C -F(E) is a bifurcation range of F. 

Since F: X -+ Y is nonconstant closed mapping with dim A" = oo, by 
Proposition 2.4 we obtain that F is a proper mapping. By the Proposition 2.9 
(the Quinn version) the set RF is residual, open and dense in Y. Hence Y \ Rb 

is dense in Y, too. By Lemma 3.1 (jj) we can conclude the proof. • 

In the following results we shall deal with the linear problem in h G A" 

Ah(t,x) + Y, ^[t^^lu(t,x)}^xh(t,x)=g(t,x) (5.1) 
0<|/3 |<26-1 ^ 
card{|/3|} = K 

for (t,x) G Q and some fixed u G X with condition (1.2), (1.3). The left-hand 
side of equation (5.1) represents the Frechet derivative F'(u)h of the operator 
F = A + N: X - > Y. 

THEOREM 5.2. Let the hypotheses (Sa+P), a £ (0,1), p > 0, a + p < 1, 
(A.l), (N.l), (N.2) and (FA) be satisfied. Then: 

(o) The number of solutions o / (1.1)-(1.3) is constant and finite (it may 
be zero) on each connected component of the open set Y \ F(S), i.e. for any g 
belonging to the same connected component of Y \ F(S). Here S means the set 
of all critical points of the operator F = A + N: X —r Y . 

(p) Let u0 G X be a regular solution of (1.1) (1.3) with the right-hand 
side g0 CY. Then there exists a neighbourhood U(g0) CY of g0 such that for 
any g G U(g0) initial-boundary value problem (1.1) (1.3) has one and only one 
solution u G X. This solution continuously depends on g. 

The associated linear problem (5.1), (1.2), (1.3) for u = u0 has a unique 
solution hcX for any g from a neighbourhood U(g0) of g0 = F(u0). This 
solution continuously depends on g. 
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(q) Denote by G the set of all right-hand sides g eY of equation (1.1) for 
which the corresponding solutions u G X of (1.1) -(1.3) are its critical points. 
Then G is closed nowhere dense in Y. 

(r) If the singular point set of (1.1) -(1.3) is empty, then this problem has 
unique solution u G X for each g EY. It continuously depends on the right-hand 
side g. 

P r o o f . 
(o) In the proof of Theorem 5.1 we have showed that the set of all sin­

gular points of F is equal to the set of all critical points of F. Then the 
A m b r o s e t t i theorem (see Proposition 2.2) implies the statement (o). 

(p) Since u0 € X\S, where S is a set of all singular (in our case all critical) 
points, by Proposition 2.10 the mapping F is a local C1-diffeomorphism at u0. 
This proves first part of (p) for (1.1)-(1.3). 

From F as the C^diffeomorphism it follows that F' G C(X,Y), (F'1)' G 

C(X, Y), where F'(u)h is the left-hand side of (5.1) and (F~l)'(Fu) = (F'(u))~l 

for every u G X. Hence linear problem (5.1), (1.2), (1.3) for u = u0 has a unique 
solution h G X for any g G U(g0) with g0 = F(u0). This solution continuously 
depends on the right-hand side g. The proof of (p) is completed. 

(q) In our case the equality G = F(S) holds, where 5 is the set of all critical 
(all singular) points of F. By the S m a l e - Q u i n n theorem (Proposition 2.9) 
we obtain the expected results. 

(r) By Proposition 2.10, the operator F: X —•> Y is a local C1-diffeo-
morphism at any point u £ X. Hence there follows the last assertion. • 

By point (p) of Theorem 5.2 we obtain the following corollary. 

COROLLARY 5 .1 . Let the hypotheses of Theorem 5.2 hold and moreover: 

(H.l) Linear homogeneous problem (5.1), (1.2), (1.3) (for g = 0) has only zero 
solution h = 0 G X for any u G X. 

Then initial-boundary value problem (1.1)-(1.3) has a unique solution u G X 
for any g €Y. Moreover, linear problem (5.1), (1.2), (1.3) has a unique solution 
h G X for any u G X and the right-hand side g G Y of (5.1). This solution 
continuously depends on g. 

COROLLARY 5.2. Let the assumptions of Theorem 5.2 be satisfied. Then we 
have: 

(s) If the set S of all singular (in our case all critical) points of F is 
nonempty, then dF(X \ S) C F(S). 

(t) If F(S) c F(X \ S), then problem (1.1) -(1.3) has the solution u G X 
for any g eY, i.e. R(F) = Y (F is a surjectivity of X onto Y). 

(u) IfY\F(S) is connected and X\S 7-- 0, then R(F) = Y (the solvability 
of (1.1) (1.3) for any gEY). 
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P r o o f . By Theorem 5.2 (q) the set F(S) is closed in Y, and by Proposi­
tion 2.9, F(X \ S) is open in Y. Hence we have the equations 

F(X) = F(S) U F(X \ S) = F(S) U F(X \ S) = F(X), (5.2) 

which implies that F(X) is a closed set. 
(s) Since F G Cl(X, F ) , we get S C S as in Theorem 5.1. Hence, and by 

Theorem 4.2 (j) 

dF(X \ S) C dF(X \ E) c F(E) C F(S). 

(t) From the first equation of (5.2) we have F(X) = F(X \ S) and so R(F) 
is an open as well as a closed subset of the connected space Y. Thus R(F) = Y. 

(u) Since Y\F(S) is connected, by Proposition 2.2 we obtain card F~l {{g}) 
= const =: k > 0 for each g G Y \ F(S). 

If k would be equal to 0, then F(X) = F(S) and F(X \ S) C F(S) and 
this is a contradiction with X \ S ^ 0. Thus k > 0. • 

THEOREM 5.3. Suppose that hypotheses (Sa+P). a G (0,1), p > 0. a + p < 1, 
(A.l). (N.l) . (N.2) ana7 (F.l) hold together with the condition: 

(H.2) Each point u G X is either a regular point or an isolated critical point 
of problem (1.1) -(1.3). 

Then to every g G 7 there exists one solution u G X 0/(1.1) -(1.3). .ft continu­
ously depends on g. 

P r o o f . The associated operator F: X -> Y is a proper C^Fredholm map­
ping of the zero index. By Proposition 2.10, F is a local C1-difTeomorphism at 
a regular point of F. In the isolated singular point, by Proposition 2.11, F is 
locally invertible. Since F is proper, the global inverse mapping theorem (see 
Proposition 2.3) implies the statement of the theorem. • 

E X A M P L E 5.1. Example 4.1 illustrates the results of Section 5 for ft(u) = 

in(X>?)' 
The studied models describe different natural science phenomena (a reaction-

diffusion and environment models, a diffusive waves in fluid dynamics the 
Burges equation, the wave propagation in a large number of biological and chem­
ical systems — the Fisher equation, a nerve pulse propagation in nerve fibers 
and wall motion in liquid crystals). 

The results of the present paper can be generalized also to the quasilinear 
parabolic and general evolution systems of the type (1.1)-(1.3). We can apply 
the Fredholm theory to hyperbolic equations modelling different nonlinear vibra­
tion problems, to a nonlinear dispersion (the nonlinear Klein-Gordan equation), 
a propagation of magnetic flux and the stability of fluid notions (the nonlinear 
Sine-Gordan equation) and so on. 
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