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RELATIVE PURITY OVER NOETHERIAN RINGS 

LADISLAV B I C A N 

(Communicated by Tibor Katriiidk) 

A B S T R A C T . In this note we are going to show that if M is a left module over 
a left noe therian ring R of the infinite cardinality A > |H | , then its injective hull 
E(M) is of the same size. Fur ther, if M is an injective modu le wi th |M | > (2A) + 
and K < M is its submodu le such that | M / K | < A, then K con tains an injective 
submodu le L with | M / L | < 2 \ These results are applied to modu les which 
are torsionfree with respect to a given hereditary torsion theory and generalize 
the results ob tained by different me thods in au thor 's previous papers: [A note 
on pure subgroups, Con tribu t ions to General Algebra 12. Proceedings of the 
Vienna Conference, June 3-6, 1999, Verlag Johannes Heyn, Klagenfurt, 2000, 
pp. 105-107], [Pure subgroups, Ma th. Bohem. 126 (2001), 649-652]. 
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In this paper R denotes an associative ring with identity, which is usually left 
noetherian, and I?-mod stands for the category of all unitary left I?-rnodules. 
As usual, for a submodule K of the module M and for any element x G M the 
annihilator (left) ideal (K : x) of It consists of all elements r G R with rx E K. 
Dualizing the notion of the injective envelope of a module ([7]) H . B a s s [1] 
investigated the projective cover of a module and he characterized the class of 
so called perfect rings over which every module has a projective cover. By a 
projective cover of a module M it is meant an epimorphism cp: F —>• M with 
F projective and such that the kernel K of cp is superfluous in F in the sense 
that the equality K + L = F implies L = F whenever L is a submodule of F. 
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Recently, the general theory of covers has been studied intensively. If Q is an 
abstract class of modules (i.e. Q is closed under isomorphic copies) then a ho-
momorphism (p: G —• M with G G Q is called a Q-precover of the module M if 
for each homomorphism / : F —> M with F £ Q there is g: F —» G such that 
pg = f. A £-precover of Af is said to be a Q-cover if every endomorphism / 
of G with </?/ = ip is the automorphism of G. It is well-known (see e.g. 11]) 
that an epimorphism p: F — » M, F projective, is a projective cover of the 
module M if and only if it is a P-cover of M, where V denotes the class of all 
projective modules. Denoting by T the class of all flat modules, the Enochs' con­
jecture ([8]), whether every module over any associative ring with identity has an 
JF-cover, has been recently solved in affirmative independently by E . E n o c h s 
and L . B i c a n with R . E l B a s h i r in the common paper [4]. 

In the general theory of precovers several types of purities are used. In some 
cases (see e.g. [5], [6], [10], [11]) the existence of pure submodules in the kernels 
of some homomorphisms playj an important role. Using the general theory of 
covers, in [6] the main result of this note appears as a corollary. However, the 
direct proof presented here is of some interest because the existence of non-zero 
pure submodules of "large" flat modules contained in submodules with "small1' 
factors is sufficient for the existence of flat covers (see [6] and [4]). 

In my previous paper [2] I proved that if A is an infinite cardinal, then for arry 
torsionfree abelian group F of the size |F | > (2A)+ and any its subgroup K such 
that F/K is p-primary and \F/K\ < A, the subgroup K contains a non-zero 
subgroup L pure in F. This result was extended in [3] to the case when F K 
is an arbitrary torsion group of the size at most A, but the lower bound for the 
size of F is (*vH°)+, where v is the first cardinal with Az < *v, and \% are given 
by An = A and A^+i = 2Xi for every i — 0 , 1 , . . . . 

The purpose of this note is to solve this problem for modules over left noether-
ian rings, which are torsionfree with respect to a given hereditary torsion theory 
for the category it-mod. As a consequence we obtain that in the abelian groups 
category the estimation (2A)+ valid for the p-primary case is good enough for 
the general case. Moreover, we shall see that the submodule L of K can be found 
"large" in the sense that \F/L\ < 2A. As a by-product we shall also prove that 
for any module M over a left noetherian ring R of the size \M| > max(|It , Ho) 
the injective envelope E(M) of M is of the same size as M. 

THEOREM 1. Let R be a left noetherian ring, \i = max(|i?|,Nn). If M is an 
arbitrary module then 

(i) \E{M)\ = \M\ whenever \M\ > \i; 

(ii) \E(M)\ < fi whenever \M\ < fi. 
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P r o o f . 

(i) Proving indirectly, let us suppose that | i?(M)| > \M\ for some M G i?-mod 
with \M\ > \i. For each finite subset L = {a\,..., am} we fix an order on L and 
consequently we shall consider L as a finite sequence. Now for each left ideal 
I of R we fix a finite set Gi of generators of I and to each element x G M 0 = 
E(M) \ M we associate the finite sequence Sx = { a i x , . . . , amx} C M in such 
a way that Ix = (M : x) and Gix = {a\,..., am} (as a sequence). Further, we 
define the equivalence relation ~ 0 on the set Mo by setting x ~n V if and only 
if (M : x) = Ix = Iy = (M : y) and Sx = Sy (as sequences, again). Obviously, 
there is at most \M\ different sequences of the form Sx and consequently there 
exists an equivalence class M0 under ~o having |P?(M)| elements. Finally, we 
put xo = 0, we select an element x\ G Mo arbitrarily and we shall continue by 
the induction. Assume that for some n < u we have constructed the subsets 
Mo, M i , . . . , M n of E(M) and the elements x0 , # i , . . . , xn+1 in such a way that 
M0 2 Mi 2 ••• 2 Mn,x0 = 0, xi+1 G Mi, \Mi\ = \E(M)\ for each i = 0 , l , . . . , r a 
and Ix-Xi = Iy-Xi, Sx-Xi = Sy-Xi for all x,y G Mi and all i = 0, 1 , . . . , n. 
Setting M n + i = {x G M n : x — x n + i ^ M } we obviously get the set of the 
size |.E(M)| and we define the equivalence relation ~ n + i on the set Mn+\ by 
setting x ~ n + i y if and only if Ix-Xn+1 = Iy-xn+1 and Sx-Xn+1 = Sy-Xn+1. 
By the same argument as in the case n = 0 we obtain the existence of an 
equivalence class M n + i under ~ n + i having |.E7(M)| elements and we finally select 
an element x n + 2 G Mn+1 arbitrarily. To finish the proof, let n G {1, 2 , . . . } and 
x G Mn C M n _ i be arbitrary. Then x ~ n xn+1 yields Ix-Xn = IXn+1-Xn = I 
and for Gi = { a i , . . . , a m } it is <n(x - xn) = ai(xn+1 —xn), i = 1 , . . . ,m. Thus, 

m 
for each r G / , r = ^ riai, we have r(x - xn+\) = r(x - xn) - r(xn+1 - xn) = 

2 = 1 

53 riai(x-xn)- Y, riai(xn+1-xn) = 0. On the other hand, x-xn+1 £ M and 
z = l i=l 

so there is an element s G Ix-Xn+1 = (M : ( x - x n + i ) ) with 0 ^ s ( x - x n + i ) G M, 
M being essential in E(M). We have thus proved that Ix-Xn % Ix-Xn+1 for each 
n = 1, 2 , . . . , which contradicts the hypothesis that the ring R is left noetherian. 

(ii) If the ring R is infinite, then E(R) 0 E(M) = E(R 0 M) is of the size // 
by (i), while for i? finite E(R^ 0 M) is of the size /x again, and the assertion 
follows easily. D 
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For the sake of completeness we sketch the proof of the following technical 
lemma, the proof of which can be found in [5]. Recall, that two homomorphisms 
/ : F —> M and g: G —> M are called M-equivalent, if there is an isomorphism 
7T: F —> G such that O7r = / . 

LEMMA 2. Let F = Q) Fs be a direct sum of modules and let f: F —> A/ be an 
(5eL> 

arbitrary homomorphism. Then there is a subset D' C D such that F = U 0 V, 
where U = 0 F$, V C K e r / and for 5,e E J}7, o ^ e, the restrictions f\p5 

5eD' 
and f\pE

 are n°t M-equivalent. 

P r o o f . Denoting fs = f\p5 f° r each 5 E D, we can define the equivalence 
relation ~ on the set D in such a way that we put 5 ~ £ if and only if /«$ and / 
are M-equivalent. Let D' be any representative" set of equivalence classes under 
~ . If S ^ e, then there is an isomorphism TT£S : Fa —> Te such that /£7r£(5 = / j . 
Setting G£s — {x — TT£S(X) : x E Fs} and D's = {s E -D : £ ~ 5, £ 7̂  (5}, 

it is a routine to check that F 0 (F$ © ( 0 G£(5) ), the inclusion V — 
(5eD / V KeeDf

5
 n 

© ( © ^£<5) -= Ker / is obvious and the proof is complete. D 

THEOREM 3. Let R be a left noetherian ring and let A > Lt = max(|it | , KQ) be an 
arbitrary cardinal number. If M is an injective module with \M\ > (2A)+ and if 

K is its submodule such that \M/K\ < X, then there exists a submodule L C K 

of M such that L is injective and |M/L | < 2A. 

P r o o f . Since R is left noetherian, we can decompose the module M into a 
direct sum M = 0 Ms of injective hulls of cyclic modules. By Lemma 2 there 

5eD 
is a subset D' C D such that M = U 0 V, where V C Ker7r, TT: M —> M J\ 
being the canonical projection, and U = 0 M^, where 7r|Af5 and 7T|M£ are not 

6<ED' 

M/i^-equivalent whenever 5, e E D7, 8 ^ e. There is at most \i left ideals of it, 
the ring R being left noetherian, hence at most \x different cyclic modules and 
consequently, by Theorem 1, at most (A^)^ < AA = 2A homomorphisms from 
injective hulls of cyclic modules into M/K. So, it suffices to put L = V, since 
in this case we have L C K and \M/L\ = \U\ < 2A. D 

Recall, that a hereditary torsion theory a = (T, T) for the category it-mod 
consists of two abstract classes T and T", the a-torsion class and the a-torsionfree 
class, respectively, such that Hom(T, F) = 0 whenever T G T and F E .T, the 
class T is closed under submodules, factor-modules, extensions and arbitrary 
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direct sums, the class T is closed under submodules, extensions and arbitrary 
direct products and for each module M there exists an exact sequence 0 —> T —> 
M -> F -> 0 such that T G T a n d F G f . 

THEOREM 4. Let a = (T, T) be a hereditary torsion theory for the category 
it-mod over a left noetherian ring R. If A > fi = max(|it | ,tto) is an arbitrary 
cardinal number and F G T is an arbitrary module such that \F\ > (2 A ) + . then 
every submodule K < F such that \F/K\ < A contains a submodule L with 
F/LeJ7 and\F/L\ < 2A. 

P r o o f . Consider the following commutative diagram 

F j—+ E(F) 

F/K — ^ E(F/K) 

where j , i are inclusions, IT is the canonical projection and the existence of a 
homomorphism g making the square commutative follows from the injectivity 
of E(F/K). Since \E(F)\ > (2A)+ and \E(F/K)\ < A by Theorem 1, it fol­
lows from Theorem 3 that there exists an injective submodule V C Ker g such 
that \E(F)/V\ < 2 \ Setting L = V H F , we obviously have L C K, F/L ^ 
(F + V)/V C E(F)/V yields \F/L\ < 2A and F/L G T, V being a direct 
summand of E(F). D 

As a special case we obtain the following generalization of our previous results 
proved in [2] and [3]. 

COROLLARY 5. Let A be an infinite cardinal and let F be a torsionfree abelian 
group such that \F\ > (2 A ) + . If K < F is any subgroup with \F/K\ < X, then 
there exists a pure subgroup L of F contained in K and such that \F/L\ < 2A. 

P r o o f . Obvious. • 
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