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RATE OF APPROXIMATION
FOR THE BEZIER VARIANT
OF BALAZS KANTOROVICH OPERATORS

Vijay GurTta* — X. M. ZENG**

(Communicated by Michal Zajac)

ABSTRACT. In the present paper we study the Bézier variant of the well known
Balazs-Kantorovich operators Ly «(f,z), @ > 1. We establish the rate of conver-
gence for functions of bounded variation. For particular value a = 1, our main
theorem completes a result due to Agratini [Math. Notes (Miskolc) 2 (2001),
3 10].

©2007

Mathematical Institute
Slovak Academy of Sciences

1. Introduction

For a real valued function f defined on the interval [0,00), Balazs [2] in-
troduced the Bernstein type rational functions, which are defined by

Rn(f,z):gpn,kmf(%), where pnae) = () g2l

(14 apz)™

and ay,, b, are suitably chosen positive numbers independent of x. The weighted
estimates and uniform convergence for the special case a, = n®~!, b, = n®,
0 < B < 2/3 were investigated in [3]. Actually the operators defined by (1) are
just Bernstein type rational functions, but the approximation properties of these
operators are different from the usual Bernstein polynomials.

Zeng and Piriou [12] were the first who introduce and study the Bézier
variant of the Bernstein operators. After this the rates of convergence for the
several integral type operators were obtained by Gupta and collaborators (see
e.g. [4] [10] etc). Actually Bézier curves play an important role in Computer
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VIJAY GUPTA — X. M. ZENG

Aided Geometric Design, this along with the different approximation properties
of Balazs operators from usual Bernstein polynomials motivated us to study
further in this direction.

Recently Agratini [1] defined the Kantorovich variant of the Balazs oper-
ators as

2(f,z) = nay, zn:pn’k(x) / f(t)de, neN z>0, (2)
k=0

where I, = [k/nan, (k+1)/nay), and 2 > 0,0 < k < n.

The Bézier variant of these Balazs-Kantorovich operators can be defined as:

k=0

Lnalf) = man 3" Q@) [, nenozo @
I

where Q(a)( ) = k(@) — Iy e (2), @ > 1, and Jpk(x) = kan’j(x) is the

basis function.

Throughout the paper let

Wi,al@, 1) = nay, Z Q) (@) xnk(t),

k=0

where Xn,k is the characteristic function of the interval [k/na,, (k+1)/na,] with
respect to I = [0,00). Thus with this definition it is obvious that

Lno(f @) 7f W a(z,t) dt.
0

Agratini [1] obtained some approximation properties and the rate of con-
vergence for the operators L,, but [1] does not explicitly contains the sign term
which is important part in the proof of the rate of convergence. In the present
paper we estimate the rate of convergence for the Bézier variant of Balazs-
Kantorovich operators. For special value our main theorem provides the com-
plete estimate on the rate of convergence for the ordinary Balazs-Kantorovich
operators.
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BEZIER VARIANT OF BALAZS-KANTOROVICH OPERATORS
2. Auxiliary results

LEMMA 1. For z € (0,00), we have
1+ anz

p. z) < —.
n.k(7) V2enanx
by

( L )tk(l -tk < —-\/%TL:(T”

Substituting ¢t = —2aZ_ in the above inequality, we get

1+anz
/n (anz)k < 1+ anx
k) (1+anz)™ ~ 2enanz

LEMMA 2. For x € (0,00), we have

1| _ [+ (an2)® + 0.5(1 + anz)?]
2, i) - 2’ = T+ ano)[1+ vraz]

k>nan:z:/(a.+anz)

Proof. Following [12, Lemma 2], for ¢ € [0, 1] we have

Z ( n )tk(l—t)"—k 3 1‘ < 0.8(2t2—2t+1)+1/2.
o, \ K 2 1+ +/nt( - ¢)

Substituting ¢ = 1427 in the above inequality, we get the required result.

LemMa 3. ([1) For ei(t)=1t,i=0,1,2,..., and for all z > 0, we have
_ T + 1
T 1l+4apz  2na,

Ln(e()aw) = 17 Ln(elaw)

and
- 2
Ln(ez,z) = = _ 1 . +xanw)2 N nan(ff_ —+ 3nia%.
Ly((ey - zeo)?,z) = ! nayzt — a2z’ — ana? +
3n2a2 nan(1+ apz)?
== mn;:gn%f‘x‘l — O((nan)™)

Proof. Following [11], the optimum bound for Bernstein basis function is given

(4)

(5)

(6)
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Proof. Equations (4) and (5) were obtained in [1]. By a direct computation
from (4) and (5), we obtain

3,4 _ 2.3 2
Lo(( 9 1 na,xr* —a,xr° —apT” +
n((e1 —ze0)*,2) =555+ 3
3n2a? nan (1l + a,x)
1 na3x +a: 1+nanzv-+—n2 424
~ n2a2 nan n2a2

From the page 349 of the paper or the reference 3], we learn that

an =171, —1<pB-1<-1/3.
Thus
1+ napz + nlahz? 1
n2a2 = O((nan)™").
Lemma 3 is proved. O

LEMMA 4. Let x € (0,00), then for sufficiently large n, we have

2
ncay

Y 24,4
() Bra(@,9) = [ Wna(e,t) dt < o (Hroebrienst) 0 <y <o,
0

and

oo 2 4 _4
(11) 1- /Bn,a(x,z) = f Wn,a(l’,t) dt < (z_am):) <1+nan:2-;g Cnt >, r < z<o0o.
2

Proof. We first prove (i). By (6), there holds

y y

T — )2
/Wn,a z,t)dt < /Wn oz, t — &=t dt < a(z —y) 2L, ((t — x)%, )
0 0

(z—y)?
« 1+nan:v+n 2gd 2t
< , 0<y<m,
(z —y)? n*a}
where we have applied Lemma 3. The proof of (ii) is similar. O
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3. Rate of convergence

THEOREM. Let f be a function of bounded variation on every finite subinterval of
[0,00) and let V2(g;) be the total variation of g, on [a,b]. If a > 1, z € (0, c0),
r > 1 be given and f(t) = O(t"), t — oo, then for n sufficiently large

Lnalfi) = @) - (1= 3¢ ) flo-)

14 (anz)? + 0.5(anz + 1)?
< a2¢ ( n ) ( ) |f(x+)—f(x_)| (7)
(1+an2)[1+ 7,007 |
1 +nanz + narzzxg + n2a%x4 - z+z/vVk —r
e ( n2a? z? ) k2=:1 Vz_z/\/g (9z) + O((na,)™"),

where
ft)=fl@=), 0<t<a,
g:c(t) =40, t=u,
f(t) = f(z+), z<t<oo.

Proof. Making use of identity for all n, we have

It) — 16 g,

16 =gefe)+ (1= 532 ) fe=) +ault) + £
+8:0) [ 0) - g f+) - (1- 32 ) fle-)]

where

2@ -1, t>uz, I o=t
sign,(t) =< 0, t==x, and §,(¢) { S
1, t< 0, z#t.

It follows that
Lua(£,2) = go o) = (1= 32 ) £Ga-)

@) = 1) 1 g 0, ®

+ |1 - 5100 - (1 35 ) 1) Enaln

S ILn,a(gz7x)| +
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For these operators it is obvious that L, o(dz,z) = 0. We first estimate
Ly, »(sign,(t), z). Choosing &’ such that = € [k'/nan, (k' + 1)/na,], then

K -1 ("‘),
Lna(sign, (£),2) = 3 (-1)Q (@) + —’}'“ a / (=1)d
k=0

I, k' /nan
(K'+1)/nan
QL (=) o
+ fk 5 / dt+Z - 1)Q) (=)
e k=k'+1
'n.k’
n (a)’( ) (k’-{—l)/nan
= Y 22Q (=) + O /2°‘dt—1.
f dt
k=k'+1 ” p

Note that 0 < nok’ 2¢dt < 2¢ :k/ x), we conclude
_71n,k’ dat J
> Qo) 1]+ 20 @)

k=k'+1
= 1227 41(2) =11+ 2°Q00 (o).
Applying the inequality |a® — b%| < ala —b| for 0 < a, b <1 and a > 1 yields

> pea@ )

k>nanz/(1+anz)

|Ln,a(signg (), 2)| <

1
Jn,k’-l—l(x) - 5‘ S a2®

2202 k0 41(z) — 1] < 02°

Therefore by Lemma 1 and Lemma 2, we get
1+ (anz)?2+0.5(1 4+ anz)?]  14anz
. < 2&
[En.a(signs(t),2)| < [ (1+ anz)[1 + /na,z] + V2enayz|’ 9)

Next we estimate Ln,a(9gz, *) as follows:

Ln,a(gza .’E)

gz (t) Wn,a ('73’ t) dt

Il
0\8

z—z/\/n z+z/vVn oo
/ + / + / Wh,a(z,t)gz(t)dt = E1 + E; + E3,  say.

(10)
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BEZIER VARIANT OF BALAZS-KANTOROVICH OPERATORS
We start with E,. For t € [z — z/\/n,z + z/\/n], we have

001 < VL 02) < 2 SV g,)

o/vn I z— z/\/_
k=1
and thus
|Bal < VIV (g,) Z VI (ga). (11)

Next we estimate E;. Setting y =z — z/ \/ﬁ and integrating by parts, we have

y y
= /gm (t) dt (:Bn,a (:L‘, t)) =9z (y)ﬂn,a(m’ y) - /,Bn,a (.7:, t) dt (gm(t))
0 0

Since |gz(y)| < Vi(gz), we conclude

lEll < V;(gz)ﬁn,a(x’y) + /,Bn,a(x’t) dt(_‘/tz(g:c))
0

Also y = z — z/+/n < z, therefore by Lemma 4, we have for n sufficiently large

a 1+ na,z + naiz?
IEll S (x _ y)2 < n2a2 V’yz(gz)

1 n 4zt I -
+a( + na,z + n?a >O/($~t)2 d¢(=V#(gz))-

n2a2

Integrating by parts the last integral, we obtain

y
1 n 2 4 4 V= - dt
|E1|Sa( + na,x + n“a )(.’1}_2‘/01(9:1:)4'2/&)'
0

n2a2 (x —1t)3

Replacing the variable y in the last integral by = — z//n, we get
z—z/v/n n
_ 1 z
| veGe-oa= o / VE, iles) dt
0

1 kt1

2:1722/ VAL

) kT=Ll
< 327 2 Vi elae)
=1
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Hence

14+ nape +naz?\ <.,
Bil < 5 (BRI Y ve o) (12)
k=1

Finally we estimate Ej3, defining
N g (t if 0 <t <2z,
aalt) =100
9:(2z) if 2z <t < o0.
We split E3 as follows:
E3 = E31 + E3g,

where

E3 = / Wh,a(z,t)§.(t)dt and Esp = /Wna z,t)[g:(t) — 9-(22)] dt
N
with y = & + x/+/n the first integral can be written in the form
R
Bus = im_{ ) 10,0+ R F) -1 1= o)) 1)
Y

By Lemma 4, we conclude for n sufficiently large

1+ na,z +n’al 4)
2,2 '
n2a2

|Es1| < a<

R

PR e R A R

y

2x
2.4 ,.4 Yy 1
:a(1+"anx+n In® ) Ve (9:) +/ (e de(V(gz))

n’af, (y—z)?

Using a similar method as above, we get
2z

n—1
[ s i) < a7V () = I o S vl VR,
J &) - a) 2.
Yy
which implies the estimate
2a (1+napz +n?atzt\ N
E <= n E:Hz/kx. 13
| 31| ( nQa% >k_1Vz (g) ( )
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Lastly we estimate E3;. By assumption there exists an integer » > 1 such that
f(t) = O(t*"), t — oo. Thus for certain constant M > 0 depending only on f,
xz, T, we have

0o (ee)
|Es2| < Minan Z Qia;)c(x) /Xn,k(t)t% dt
k=0 2z
00 [e o]
< Minano anvk(x) / Xn.k(t)E2" dt.
k=0 2z
By Lemma 3, we have
|Esg| < a2"M - L, ((t — 2)°",2) = O((na,)™"), n — oo. (14)
Finally collecting the estimates of (8)—(14), we get (7). This completes the proof
of the theorem. g
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