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A B S T R A C T . It is natura l to expect t ha t lacunary almost convergence must be 
related to the some concept of lacunary almost bounded variations in the some 
view as almost convergence is related to almost bounded variation . The purpose 
of this paper is to examine this new concept in some details. Some inclusion 
theorems have been established . 

©2007 
Mathematical Institute 

Slovak Academy of Sciences 

1. Introduction 

Let s be the set of all sequences real and complex and ^ , c and CQ respectively 
be the Banach spaces of bounded, convergent and null sequences x = (xn) 
normed by ||x|| = sup \xn\. Let D be the shift operator on 5. That is, 

n 

Dx = \xn j n = 1 , D x = \Xn\n=2 5 • • • 

and so on. It is evident that D is a bounded linear operator on ^ onto itself 

and that ||-Dfc|| = 1 for every k. 
It may be recalled that Banach limit L is a non-negative linear functional on 

ôo such that L is invariant under the shift operator, that is, L (Dx) = L (x) for 
all x e £oo and that L (e) = 1 where e = ( 1 , 1 , 1 , . . . ) , (see, B a n a c h [1]). 

A sequence x G C is called almost convergent (see, L o r e n t z [2]) if all 
Banach Limits of x coincide. 

Let c denote the set of all almost convergent sequences. L o r e n t z [2] proved 
that 

c = \ x : l imd m n (x) exists uniformly in n > 
I m J 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 40A05. 
K e y w o r d s : lacunary sequences, almost convergence, almost bounded variation. 
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where 
7 / \ %n +%n+l i * * ' i %n+m 

Umn \%) — ; Z 

m + 1 

Let 0 — (kr) be the sequence of positive integers such that 

i) ko = 0 and 0 < kr < fcr+i 

ii) hr = (kr — kr-i) —> oo as r —> oo. 
Then 9 is called a lacuanry sequence. The intervals determined by 9 are denoted 
by Ir = (fc r_i,k r]. The ratio -^- will be denoted by qr (see, F r e e d m a n 
et al [5]). 

Recently, D a s and M i s h r a [3] defined Mo, the set of almost lacunary 
convergent sequences, as follows: 

MQ = I x : there exists I such that uniformly in i > 0, 

™ ^ E ( X f e + i " 0 = 0r 
It is natural to expect that lacunary almost convergence must be related to some 

A 

concept BVQ in the same view as almost convergence is related to the concept 
A A 

of BV. BV denotes the set of all sequences of almost bounded variation and a 
A 

sequence in BVQ will mean a sequence of lacunary almost bounded variation. 

The main object of this paper is to study this new concept in some details. 
A A 

Also a new sequence space BVQ which is apparently more generals than BVQ 
A 

naturally comes up for investigation and is considered along with BVQ. 
A 

We may remark here that the concept BV of almost bounded variation 
have been recently introduced and investigated by N a n d a and N a y a k [4] as 
follows: 

BV = < x : Yl \tmn (x)\ converges uniformly in n > 

1 m 

*mn [%) == 7 : 7T / . ^ \%n+v %n+v — l) • 
m{m + 1) -—' 

where 

v=l 

Put 

trn — trn yX) — y ^ Xj.\-n. 
lV i — . 7 . ., 

.7=fcr_i + l 

Then write r, n > 0, 

^Prn \%) ~ ^rn {%) ^r—In \<E) • 
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When r > 1, straightforward calculation shows that 

1 hr 

Prn (x) = (frn = , / , -v ^ U (xkr_1+u+l+n ~ Xkr_1+u+n) • 
r^ r ' u=l 

Now write 

and 

A 

BVQ = < x : ^2 Wm (x)\ converges uniformly in n 

BVe = <x: sup £) l</Vn (x)| < oo > . 

Here and afterwards summation without limits sum from 1 to oo. 

2. Main results 

We have the following theorem. 

A A 

THEOREM 1. BVQ C BVQ for every 9. 

A 

P r o o f . Suppose that x _ BVQ and write <prn for (prn (x). We have to show 
A 

that z_l^rn| is bounded. By the definition of BVQ there exists an integer It 
r 

such that, for all n, 

y ^ |<rVn| < 1. 
r>R+l 

Therefore it follows that for r > I? + 1, and all n 

|^rn| < I-

It is enough to show that, for fixed r, (prn is bounded in n. Let r > 2 be 
fixed. A straightforward calculation shows that 

£fcr + l+n - Xkr+n = (hr + 1) (frn - (hr - 1) (fr-ln-

Hence for any fixed r > I?+l, Xkr+i+n — Xkr+n is bounded and so (frn is bounded 
for all r and n. 

This completes the proof. • 
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A A 

Remark 1. It is now a pertinent question, whether BV0 C BV0, that is whether 
A A 

BV0 = BV0. We are not able to answer this question and it remains open. 

We have: 
A 

THEOREM 2. BV0 is Banach space normed by 

\\x\\ = s u p ^ | < p r n | (2.1 

P r o o f . Because of Theorem 1, (2.1) is meaningful. It is routine verification 
A A 

that BV0 is a normed linear space. To show that BV0 is complete in its norm 

topology, let {x z } ._ be a Cauchy sequence in BV0. Then {xn} _ is a Cauchy 

sequence in C for each n. Therefore xn —• xn (say). Put x = {xn}^0. We now 
A . A 

show that x E BV0 and \\xl — x\\ —> 0. Since | x 2 } is a Cauchy sequence in BV0, 
given e > 0, there exists jY such that for i,j > N, 

^2\(frn (z* ~XJ)\ < ^ 

for all n. Therefore for any M and i, j > N; 

\(frn (xl ~ X3)\ < £ 
M 

EI 
r=0 

for all n. Now taking limit as j —> 00 and then as M —> 00, we get for i > N 

Y^\^rn(xl-x)\ <e (2.2) 

for all n. 
A A 

Thus xl — x E BV0 and therefore by linearity x E BV0. Also (2.2) implies 
that \\x1' - x\\ < e (i > N). 

This completes the proof. • 
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A A 

THEOREM 3. J/liminf _r > 1, BV C BVe. 

P r o o f . Let x G BV. Since lim inf qr > 1, _ r > 1 + (5 for 6 > 0. Now we have 

-i fcr 

, ,, , 1 N y_ (j - fcr-l) (̂ j+n+1 - Zj+n) 
llr(llr + l ) . = f e - ^ + 1 

-, /VГ 

= hr{hr + l) -C І ^ + n + 1 - ^ + n ) 
-»=*—1+1 

^ j (Xj+n+1 - Xj+n) 
r C r _ 

hr (hr + 1) -

- !гr (hr + 1) , .-" J^+í~Xj+n). 
• ^ + 1)j=í r.1+l 

By using property of lacunary sequence, we have 

M M + T ) . .-" ^ i ^ + n + l - ^ + n ) 

1 
ҺГ (ҺГ + 1) 

(feГ + 1) feГ 1 

j = fcr_l + l 

kr kr-1 

_>~ J (Xj+n+l - Яj+n) ~ _>_] І fe+n+l - Xj+n) 

3=1 3=1 

/ir(/lr + i)(fcr + i)fc r ^- 7 { X j + n + 1 ~ X j + n ) 

(fcr-l + 1) fcr-1 1 -PN 1 . , _ , 

hr{hr + l) (fcr-i + ťjfcr-l Z ^ i + n + l Xj+nj 

We now have 

(fcr + 1) fer _ fer / fer + 1 \ fer / fer + 1 

hr (hr + 1) hr \hr + 1/ hr \kr — fer_i + 1 

__1 f 1 ^ _ __r / 1 
" /. r l fer-fcr-l + l ) ~ h~\1_ _£_____. 

r V fcr+i . / r V 1 fcr+i, 
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k 

Since kr < kr + 1 and 1 — fc
r
+1 > O, we háve 

(K + i)kr K í i \ = / i \ / 
hr(hr + l)~hr 1,1-V/ {l-k^J \ 

Since qr > 1 +- o7, we ge t 

1 fcr 1 

Again 

(kr + l)kr fl + ő 
hr (hr + 1) ~~ 

(kr-i + 1) kr-i kr-\ f kr-i + lҲ kr-i f kr-i + 1 

hr (hr + 1) hr \ hr + 1 J hr \kr — kr-i + 1 

kr-l ( _ J _ \ 
hr \ fcr-fcr-l + 1 

kr-l ( 1 \ 

^ \^k-\ 
Since kr-i + 1 < kr + 2 for every r _ N, 1 < , ZA • Hence we obtain 

/ C r _ i -+-1 

(fcr_l + -)fcr-l fcr_! / 1 \ f 1 \ 1 1 
ҺГ (ҺГ + 1) 

< 

n r \ „ r _ i + l L, 
/c r+2 

/cr_i + l 
____ 

Consequently, it can be seen that, for all n and r > 2, 

E 1 -_ -
/lr (/.r + 1) S ( j - ^ - l ) ( x i + „ + l - X , + „ ) 

j = /cr_i + l 

^ (—J E м t r + 1 ) Ь ' ( ^ i - % ; 
J = I 

! ) E - — - — - ] g j ( x j + n + 1 - x J + n ) 

Since each of sums on left converges to any limit uniformly in n, the sum on right 
A 

converges also to any limit uniformly in n. So we get x G BVQ. This completes 
the proof. • 
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