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ABSTRACT. Some properties of orientation-preserving surjections with non­
empty set of periodic points are studied. In particular, orientation-preserving 
homeomorphisms of the whole circle S1 are considered. 
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Let S1 denote the unit circle in the complex plane and let u, Ô, z G S4 , then 
there exist unique lA ,^ G (0,1) such that" we27"*1 = 2, we2lTlt2 = u. Define 

u -< w -< z if and only if 0 < t\ < 12 

(see [2]). Some properties of this relation can be found in [3] and [4]. For 

any distinct elements t̂, z G S1 put (u,z) := {w G S1 : u -< w -< 2} , (u,z) := 
j» >• > > 

(u, z) U {u, z} and (w, z) := (u, z) U {u}. Moreover, if u = z set (u, z) := S \ {u}. 
These sets are called arcs. 

Let B C S1 be a set which has at least three elements. We say that a function 
F: B —> S1 preserves the orientation if for any u,w,z G B such that u <w < z 
we have F(u) -< F(w) -< F(z). It can be easily proved that any orientation-
preserving function is an injection and F_1 and FoG preserve the orientation if 
F and G are orientation-preserving maps (see [3]). For any function / : X —> X , 
a point x G X is called a periodic point of / if fk(x) = x for some k G N :— 
{1, 2 , . . . } . By P e r / we denote the set of all periodic points of / . Finally, a set 
of the form {x, / ( # ) , . •. , / n _ 1 ( x ) } , where x G X, fn(x) = x and fl(x) 7̂  fj(x) 
for i,j G N U {0}, i 7̂  j , is called a cycle of order n G N and the number of its 
elements is called a period of x. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 37E10; Secondary 26A18, 39B12. 
Keywords : circle homeomorphism, orientation-preserving map, periodic point, rotation 
number. 
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PAWEL SOLARZ 

Throughout the paper the set {0 , . . . , n — 1}, where n G N, is denoted by Zn. 

L 1 i b r e in [9] studied how a continuous map of the circle having periodic 
points acts on a cycle. He proved that if / is a continuous map of a circle and 

P = {~i , . . . ,pn}j where n > 1, is a cycle such that P D (pk-,Pk+i) — 0 for 
• 

k = 1 , . . . , n — 1 and P H (~n>;Pi) = 0, then f(pk) = IV(/c)> where r(k) — k -f 1 
for k = 1 , . . . , n — 1, r (n) = 1 and 1 < t < n is relatively prime to n. 

Let JF: F? —> B, where B C S1 be an orientation-preserving surjection. In 
this paper we prove the similar result for any non-empty and finite set which is 
an invariant set of F. We also generalize the known fact that every two periodic 
points of an orientation-preserving homeomorphism have the same period (see 
for example [6, p. 16]). Finally, we consider orientation-preserving surjections of 
the whole circle. 

We start with the following observation. 

LEMMA 1. Let A, B be closed subsets ofS1 such that card A > 3 and card B > 3. 
If F: B —> A preserves the orientation and maps B onto A, then F is a home­
omorphism. 

P r o o f . Notice that it is sufficient to show that F is continuous. If there existed 
z G B a cluster point of B such that F were discontinuous at z, we would get 
the existence of a sequence (zn)neN of distinct elements of B \ {z} such that 
lim zn — z and 

n—>oo 

lim F(zn) =: u0 ^ F(z). (1 
n—•oo 

Clearly, u0 G A. Put z0 := F " 1 ^ ) , then by (1) z ^ z0. Without loss of 
generality we may assume that there exists a subsequence (znrn)m N °f (2n)n G N 

such that 

F(znJ e (F(z0),F(z)), m e N. 

Let z* be one of the elements of (znm)rneN' Define 

p := m a x { n m : F(znJ G (F(z*),F(z)), m G N } , 

then F(znrn) G (F(z0),F(z*)) for every n ^ > p. Whence zUrn G (z0,z*) for 

n m > p. On the other hand, z G (z*,z0). But lim znrn - z, so we have 
n—>oo 

a contradiction. ---

For any map / : K —> X such that P e r / ^ 0 and any x G P e r / let n / (x) 
denote the period of x and 

n / := min{n/(x) : x G P e r / } . 
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SOME PROPERTIES OF ORIENTATION-PRESERVING SURJECTIONS ON THE CIRCLE 

THEOREM 1. Let B C S1 be such that cardB > 3 and let F: B —• B be an 
orientation-preserving surjection such that Per F ^ 0. If z0,z\ G Per P. then 
nF(z0) = nF(zi). 

Proof . It is well known (see [8]) that if a function / : X —• X is a bijection, 
then every cycle of order n G N is an equivalence class of the following relation 
onX: 

x~fy ^ 3 m , n e N U { 0 } : fn(x) = fm(y). 

Therefore, it is sufficient to consider the case 

{*o, F(zo),..., Fn^-\Zo)} n {Zi,F(Zl),..., Fn-^-l(Zl)} = 0. (2) 

To obtain a contradiction suppose that np(z\) < UF(ZQ). Define 

aie{Zo,F(Zo),...,Fn^-l(Zo)} for i e Z „ F ( 2 o ) 

in the following manner: 

a0 := z0 and Arg — < Arg -------, i G {0, . . . , nF(z0) - 2}. 
a0 a0 

For the convenience put also anF(2o) := a0. By (2), z\ G (a2, az+1) for some 
i G ZnF(Zo). Since F preserves the orientation we have 

Zl =ғnғЫ)(Zl) є (ғn^(ai),Fnғ(^(ai+1)У 

Thus 

( a , , a i + 1 j n ( F n - ( 2 l ) ( a , ) , F n F ( z i ) ( a , + 1 ) ) ^ 0 . (3) 

As nF(z\) < nF(z0) we have F n F ( z i ) ( a z ) ^ a .̂ Consequently, 

(a. ,a i + 1 ) C ( ^ ( ^ ( a O . І ^ ^ W i ) ) -

Prom the fact that a, G ( F n F ( z i ) ( ^ ) , F n F ( z i ) ( a i + 1 ) ) we have 

FnF(Z0)-nF(Zl){ai) e ( r (,) ( f l . ) ) F n F (,) ( f l . + l)j = ^ Oi+7), 

but F n F ( z o ) " n F ( 2 l ) ( a , ) = a, for an j G Z n F ( z o ) , and we have a contradiction. • 

COROLLARY 1. If F: B —• B, where B C S1 is such that cardB > 3. is an 
orientation-preserving surjection such that PerF ^ 0. then 

PerF = {zC B : Fnp(z) = z). 
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Now let F: B —> 29, wheie B C S1 is such that card B > 3, be an 
orientation-preserving surjection with all points periodic and having a fixed 
point. Then the above theorem yields F id/3. This is a generalization of 
the result obtained by W . J a r c z y k for an orientation-pre erving homeomor 
phism of the whole circle (see [7, Theorem 1]). 

The following remark is easy to check 

R e m a r k 1. Let A C X be a non-empty finite set and let / : X —> I b e a m c p 
such that f(A) - A, then A C P e r / . 

Since every two different cycles of a bijection are disjoint sets and since, b> 
Corollary 1, in the case of circle maps they have the same number of elements, 
we have: 

COROLLARY 2. IfF: B —> B, where B C S1 and card B > 3. is an onentatio -
preserving surjection such that F(A) = A for some non-empty and finite A C 23. 
thennp divides card A. 

Now for any set A satisfying the assumptions of Corollary 2 put 

, , 4N card A 
k} (A) :~ . 4 

rip 

Before we write the next lemma notice that gcd(0, k) — k for every k G N. In 
particular gcd(0,1) — 1. 

LEMMA 2. Suppose that B C Sl is such that card B > 3. F: B —> B is an 
orientation-preserving surjection and A C B is a non-empty finite set such that 
F(A) A. Let Oo G A be an arbitrary element and if card A : NA 1 let 
a ,. . . , a/vA_i G A satisfy the following condition: 

Arg ^ i < Arg - - ± i , i G { 0 , . . . , NA - 2}. (5 
a0 a0 

There exists a unique q — q(F) G Z n F such that gcd(q,np) 1 and 

F (ai) = a( z + / C F A)q) ( m o d JVA), i £ %NA- 6) 

P r o o f . It is clear that if nF = 1, then at for i G ZkF(A) are fixed points of F , 
so F (a%) — ai for every i G Zkp(Ay In this case q = q(F) — 0 is the only number 
which has the desired properties. 

Let np > 2. Fix i G %NA- Therefore, there exist a p G Z n F and an r G Z F 4 
such that 

i kF(A)p + r. 7) 
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We show that 

{at,F(ai),. ..,FnF~ (a-;)} = {a r , a r + f c F ( A ) , . . . , a r + ( n F _i)fc F (^)} . (8) 

Of course, if kF(A) = 1, then NA = nF, r = 0 and (8) holds. Let kF(A) > 1 
and bfc G { a ; , F ( a ; ) , . . . ,FUF~1(ai)} for fc G Z n F be such that 

bo = bnF := ai and Arg — < Arg ——, k G { 0 , . . . , nF - 2}. 
oo 00 

Notice that 

card [ ( J (6fc,bfc+i) n A J = (fcF(A) - l ) n F . (9) 
\ fc=o / 

Suppose that for some fc G Z n F 

card ((bfc, &fc+i)n.A) < kF(A) - 1, 

then for every / G Z n F we have 

card ( F z ((bfc,bfc+i) n j 4 ) ) < fcF(.A) - 1. 

From this and the fact that 
n F —1 

U F'((6fc,6fe+i)n.A) = A \ { b 0 , b i , . . . , b n F _ i } 
t=0 

we have a contradiction. Hence for every fc G Z n F we obtain 

card ((bfcA+i) n j 4 ) > kF(A) - 1. 

From this and (9) it follows that 

card ((bfc,bfc+ i)n^) = kF(A) - 1, fc G Z n F . (10) 

Now fix fc G Z n F . Let j G ZNA be such that bfc = aj. Prom (10) and the 
definition of â  we get 

(bfc,bfc+i) n A = (ay+i ) (mod .Iv^)' • • • > %'+fcF(A)-i) (mod TvA)} • 

Hence 

bfc+l = a(j + kF(A)) (mod 7VA)-

This and the fact that bo = â  give 

bfc = a(i+fcfcF(^)) (mod /vA) for all fc G Z n F . (11) 

Applying (7) to (11) we get 

bfc = a(r+(p+fc)fcF(A)) (mod N A ) , k G Z n F . (12) 

Let k := nF — p, then 0 < fc < nF. Since fcF(A)nF = NA we get 

^fc = bnF-p = tt(r+A/"A) (mod NA) ~ ar-
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Thus by (12), when p > 0 we obtain 

bk+t = d(r+ikF(A)) (mod NA) = ar+ikF(A) f° r Z G { 0 , . . . , riF — 1 - fc} = 2-p-

On the other hand, inequalities r < kF(^4) — 1 and / — k < — 1 for / E Zk imply 

r + (/ + n F - fc)feF(A) < fcF(.A) - 1 + (nF - \)kF(A) - NA - 1. 

Hence 

&/ = a(r+(/+nF_A.)fcF(^4)) ( m o d N A ) = a( r+(z+nF_A;)A .F(A)), / E Zk. 

Finally, 

{bo, • • • ,frnF_i} = {a r , a r + / C F ( ^ ) , . . . , a r + ( n F _i ) /e F (^)} , 

which proves (8). 
By (8) and since nF > 2 we obtain 

F (aA-F(A)p+r) ~ afeF(A)/+r (13) 

for some / E Z n F , I ^ p. 

Now consider two cases: 

(i) / — p > 0. Clearly, I — p < nF. Put g := / — p, thus by (13) 

FXa;) = F(afcF(^)p+r) = akF(A)<j>+q)+r = ai+/CF(74)g = a(^+fcF(^)g) (mod N A ) , 

since i + kF(A)q < NA. 

(ii) / — p < 0. Then 0 < / — p + nF < nF and setting q := / — p + nF we get 

F(a^) = F(akF(A)p+r) = afcF(A)t-feF(A)p+feF(A)P+r 

= a ( ;+ fe F (A) ( t -p ) + .!V,4) (mod NA) ~ a(i+kF(A)q) (modiVA ) ' 

since i + kF(A)(l - p) < NA. 

If there existed another gi E Z r i F , gi ^ g, satisfying (6), we would have gi 
g + dnF for some d E Z \ {0}, which is impossible. 

Our next goal is to show that q defined above is one for all ai,i E Z^vA. For this 
purpose assume that for some j E IJNA •> 3 ^ h there exists a g i E { 1 , . . . , n F — 1} 
such that 

F(aj) = a ( j 4 _ M A ) g i ) ( m o d Ar̂ ). (14) 

There is no loss of generality in assuming that i < j . On the other hand, since 

F(at) = a{i+kF(A)q) (mod NA) 

and F is an orientation-preserving map we get 

F(ai+i) = a^i+kF{A)q) (mod NA) + 1) (mod NA) = a ( i + l + feF(A)(7) (mod 7VA)-

Repeating this argument j — i times we get 

F(aj) = a(j+kF(A)q) (mod ivA). 

This and (14) lead to q — q\. 
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It remains to prove that gcd(q,np) = 1- Suppose, contrary to our claim, 
that gcd(q,np) = d > 1. Hence there exist Pi,P2 G N such that q = p\d and 
nF = P2d. This and (6) yield 

^ P 2 (an) = akF(A)qp2 (mod NA) — aNAPi (mod NA) = a 0 , 

a contradiction. • 

Now we turn to the case B = S1. In view of Lemma 1 every orientation-
preserving function mapping S1 onto S1 is a homeomorphism. Therefore, we 
recall the basic definitions and notations for homeomorphisms of the circle. 

Let F: S1 —> S1 be an orientation-preserving homeomorphism, then there 
exists a homeomorphism / : K. —> R, unique up to translation by an integer, 
such that F (e2nix) = e 2 7 r i / ^ and / ( x + 1) = / ( x ) + l for all x G R. The function 
/ is called a lift of F (see [5]). Moreover, the number a(F) G (0,1) defined as 

a(F) := lim - ^ - - (mod 1), x E l , 
n — • o o 77, 

always exists and does not depend on x and / . This number is called the rotation 
number of F and is rational if and only if F has a periodic point (see for example 

[1], [5])-
Notice that if A is a cycle of order n ^ of F, Lemma 2 gives the following: 

COROLLARY 3. Let F: S1 —> S1 be an orientation-preserving surjection such 
thatPerF ^ 0. If z G PerF and bk G {z, F(z),..., F7lF~1(z)} fork G Znp are 
such that 

bo -= z 

and if nF>2 Arg ^ < Arg-%-i , k G { 0 , . . . , n F - 2}, ' 
bo bo 

then 
F(bk) = b(fc+g) ( m o d n _ ) , k G Z n F , (16) 

where q = q(F). 

The next lemma is a consequence of Corollary 3 and of the definition of the 
rotation number. 

LEMMA 3 . If F: S1 —> S1 is an orientation-preserving surjection with 
PevF ^ 0. Then a(F) = -£-, where q = q(F). 

P r o o f . Fix z ePevF and define bk G {z, F(z),... , F n ^ " 1 ( z ) } for k G Z n F by 
(15). Obviously, if up = 1, then q = 0 and bo = z is a fixed point of F. Hence 
a(F) = 0. Suppose that n F > 1, thus since gcd(0, k) = k for k G N, we have 
g > 1. Let xo G (0,1) be such that e2lT1Xo = b0. There exist X i , . . . , x n F _ i G 
(xrj, -Co + 1) such that 
x0 < xi < '•• < xnF-i < x0 + l and e27T'1Xk = 6fc, fc G { 1 , . . . , n F - l } . (17) 
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Put 

xk:=Xk-nF + l, k G N, k>nF, (18) 

and 

xk := xk+nF - 1, k G Z \ (N U {0}). (19 

Let / : R —> R be a strictly increasing lift of F. By (16) and (17) we get 

e2«if(x0) = F ( e 2 . i x 0 ) = F ( 6 Q ) = ^ ( m o d nF) = b g = e 2 . i x g < 

Hence f(xo) = xq + l for some integer I. Put / : = / — /, then 

/ ( x 0 ) =xq. 

Fix k G { 1 , . . . , n^ — 1} and observe that since / is a strictly increasing lift of F 
and Xk G (xo, xo + 1) we obtain 

xq = / (xo) < f(xk) < / ( x 0 + 1) = / ( x 0 ) + 1 = xq + 1. (20) 

On the other hand, (17) and (16) lead to 

e2«/(~*) = F ( f c f e ) = b{k+q) ( m o d n p ) = e 2 W « ( f c + „ (mod „F). 

Hence we get 

f(xk) = X(k+q) (mod n F ) + d 

for some integer d. Notice that (k + q) (mod nF) = (k + q — mnF) for an 
m G {0,1} as k + q < 2nF - 1. Therefore, by (19) 

f(xk) = Xk+q + d-m. 

Inserting the above equality to (20) we obtain 

Xq < Xk+q + d - m < Xq + 1. 

Since 0 < k < nF it follows that 0 < Xk+q — xq < 1, hence -1 < d — m < 1, 
but d — m G Z, so d — m = 0. Finally, 

f(xk) = xk+q, keZnF. (21) 

Now let k G Z \ Z n F , then k = pnF + r for some p G Z and r G Z n F . Using this 
notation (18), (19) and (21) we get 

f(xk) = f(xpnp+r) = f(xr +P) = f(xr) +P = Xr+q + p = Xr+pnF+q = Xk+q-

Thus we have proved 

f(xk) = XA;+9, fc G Z. 
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From this and (18) we have 

PF(xo) =xqnF =x0 + q, 

Consequently, 

fjnF (x0) = xqjnF =x0+- jq, j G N, 

which in view of the definition of the rotation number gives a(F) = ~~- • 

From now on suppose that F: S1 —> S1 is an orientation-preserving sur-
jection such that 0 ^ P e r F ^ S1. Since P e r F = {z G S1 : FnF(z) = z) it 
is a closed subset of S1 and it follows that S1 \ Per F is a sum of non-empty, 
pairwise disjoint open arcs. Denote this family by £%F. Therefore, 

S1\PerF= [j I. 
ie&F 

LEMMA 4. Let F: S1 — • S1 be an orientation-preserving surjection such that 
0 ^ P e r F ^ S1 and let I G SSF. Then either 

\j(FinF(z),F(i+^nF(z))=I, z e l (22) 

or 

\J^i+1^nF(z),FinF(z)^=I, z e l . (23) 
ѓЄZ 

Moreover, (z, FnF (z)) C I for every z el or (FnF(z), z) C I for every z e I. 

P r o o f . Fix I e S8F and z G I. Then FnF(z) G FnF(I) = I and FnF(z) jk z. 
Suppose that 

(z,FnF(z)) C I. (24) 

Hence 

/FlnF(z),F^1^nF(z)) CI for leZ (25) 

and in consequence 
• 

\J^FlnF(z),F(-l+1^F(z)) cl. 

To show the opposite inclusion suppose that I : = (a,b), where a,b t P e r F and 
notice that (24) yields 

lim FnnF(z) = b (26) 
n—>oo 

and 

lim F~nnF(z) = a. (27) 
n—>oo 
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Now fix v G / . From (25), (26) and (27) it follows that there exists a k G Z such 
that 

UG / ^ ^ ( z ) , ^ ^ 1 ^ ^ ) ) . 

Consequently, 

/ C [ J / > ' n F ( z ) , F ( / + 1 ) r ^ ( z ) 

and (22) is proved. Applying similar arguments to the case (FUF(z),z) C / we 
get (23). 

To prove the second assertion suppose that (z,Fnp(z)) C / . Now let u G / . 
Notice that if u = Fnpl(z) for some / G Z the assertion follows from (25). 
Otherwise, by (22) we get 

| J (FnFl(z),FnF^+1)(z)) = I\{FnFl(z) : I G Z} 

Thus it follows that there exists a jf G Z such that 

« e ( r " ( 2 ) , F " p ( j + I > ( 2 ) ) . (28 

Hence 

F " F ( « ) G ( F n F ( i + 1 ) ( . 2 ) , F n F ( i + 2 ) ( z ) ) . 

This and (28) lead to 

(u,FnF^+1\z)) C ( F " ^ ' ( Z ) , F " F ( J ' + 1 ) ( 2 ) ) C / 

and 

(Fn^j+1\z),FnF(u)) C {FnF^+l\z),FnF^+2\z)) C / . 

Finally, since FnF^+1)(z) G / we get (u, Fn F(H)) C / . • 

LEMMA 5. /e£ F: S1 —> S1 be an orientation-preserving surjection such that 

0 / P e r F / S1 and let I G 3BF. If (z,FnF(z)) C / (respectively, (FnF(z),z) 

C / ; foraz e I, then (zuF
7lF(z1)) C F (/) (respectively, (FnF(zl),z1) C K (/) 

for all Z! eF(I). 
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P r o o f . For the proof suppose that for some z £ J, F fulfils the condition 

(z,FnF(z)) CL 

Fix z\ £ F(T). Since F is a surjection it follows that there exists a z0 £ I 
such that F(z0) = z\. As F preserves the orientation and since Lemma 4 yields 

(z0,F
nF(z0)) CI we get 

(zuFnF(Zl)) = F ((z0,F
nF(z0))) C F (I), 

which ends the proof. • 

We finish with some properties of orientation-preserving surjections with 
a finite and non-empty set of periodic points. Therefore, from now on we impose 
on F the following general condition: 

(Hi) F: S1 —• S1 is an orientation-preserving surjection such that 

0 < NF := card Per F < oo. 

Notice that if a function F satisfies (Hi), then 

NF 
kF:=kF(PerF) = — 

nF 

is a number of cycles of F|perE and nF is a number of elements in each such 
a cycle. In this case, for the convenience, we enumerate the arcs of the family 
3§F, i-e. for a fixed z £ P e r F define a* £ P e r F for i £ Z/NF in the following 
way: 

a0 := z 

andif i V F > i let Arg -?i < Arg ^±-- , i £ { 0 , . . . , NF - 2}. ( 2 9 ) 

a0 a0 

Set moreover ajyF := a0 and define 

Ii := ( a i , a i + i ) for i £ Z / V F . (30) 

Notice that if F fulfils (Hi), then 

jvF-i 

5 1 \PerF= (J U. 
i=0 

Now for a given homeomorphism F : S*1 —• S1 satisfying (Hi) we may define 
two types of arcs of the family 3§F • 
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DEF IN IT ION 1. Let F: S1 —> S1 satisfy (Hi). Put 

Z+(F) := { i e ZNF : (z,FnF(z)) C h for all z G / ; } 

and 

Z " ( F ) := [i G ZJVF : ( F n F ( z ) , z ) C h for all z G / i ) , 

where li for i G ZNF is the family defined by (29) and (30). 

Prom Lemma 4 it follows that Z+(F) U Z~(F) = Z N F . 

Example. Let / : (0,1) —> (0,1) be defined as follows 

For every x G R put f(x) := / ( x —F(x)) + F(x) , where E(x) denotes the integer 
part of x. Then / : R —> R is a strictly increasing homeomorphism such that 
f(x + 1) = f(x) + 1 for x G R. Moreover, for every x G (0, \) we have 

/ ( x ) > x and / ( X ) G ( 0 , ± ) 

and for every x G (^, l ) we have 

/ ( x ) < x and / (x ) € ( § , l ) . 

Therefore, ( x , / ( x ) ) c (0, \) for x G (0, ±) a n d ( / ( x ) , x ) c (± , l ) for x G ( ± , l ) . 
Let F : 5 —•» S1 be a homeomorphism defined by 

F(e2™) : = e 2 7 r i / ( x ) , x G R. 

Then nF = 1, NF = 2 and P e r F = {-1 ,1} . Put a0 := 1 and a1 := - 1 , then 
>• > 

^o — (flo>fli) and li = (ai ,ao). Fix 2 G Jo- There exists a unique x G (0, ^) 
such that z = e27rix. Notice that 

(z,F(z)) = ( e 2 -* : t G (x , / (x ) )} C {eMt : t G (0 ,±)} = j 0 . 

Thus 0 G Z+(F). Similarly we get that 1 G Z~(F). Hence Z+(F ) = {0} and 
Z - ( F ) = {1}. 

From Lemma 2 and the fact that F(I) G S8F for any / E ^ w e obtain: 

THEOREM 2. Suppose that F fulfils (Hi), then 

F(Ii) = I(i+kFq) (mod jVF), i G Z/YF, (31) 

where q = c/(F) and I{ for i G Z;vF are defined by (29) and (30). 
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As a consequence of Theorem 2 and Lemma 5 we get: 

COROLLARY 4. Let F satisfy (Hi) and let i G Z/vF. Then i G Z+(F) iff 
(i + kFq) (mod NF) G Z+(F). 

Notice that Theorem 2 lets us classify the orientation-preserving homeomor-
phisms with non-empty and finite set of periodic points in the following way: 

DEF IN ITION 2. Let n G N and q G Z n be such that gcd (c/,n) = 1. By «^9,n 

denote the set of all maps F: S1 —> S1 satisfying (Hi) and such that q(F) = q 
and nF — n. 

By Lemma 2 we get: 

Remark 2. If F satisfies (Hi), then there exists a unique pair (q,n) such that 
n G N, q G Z n , gcd(r/, n) = 1 and F G «0*«-,n. 

We finish with some characterization of the family &q,n. 

THEOREM 3. Lei n G N and a. G Z n satis/H gcd(c/,n) = 1. Then F G ^ , n i/ 
and On/H if F satisfies (Hi) and a ( F ) = -2-. 

P r o o f . Let us observe that the necessary condition follows from Definition 2 
and Lemma 3. To prove the sufficient condition assume that F satisfies (Hi), 
a(F) = ^ and F ^ ^ > n . By Remark 2 there exists a unique pair (q',nf) such 
that n' G N, a7 G Z n / , gcd(g / ,n /) = 1, (g,n) ^ (q',nf) and F G ^ , n / . Using 
the first part of the theorem we obtain a(F) = V Therefore, - = % and 
consequently, since gcd((7,n) = gcd(g / ,n /) = 1 we get q = q' and n = nr, which 
contradicts our assumption. • 
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