D. Basile; Angelo Bella
About remainders in compactifications of homogeneous spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 50 (2009), No. 4, 607--613

Persistent URL: http://dml.cz/dmlcz/137450

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz
About remainders in compactifications of homogeneous spaces

D. Basile, A. Bella

Abstract. We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space \(X \), every remainder of \(X \) is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel’skii cannot be extended to homogeneous spaces.

Keywords: remainders in compactifications, homogeneous spaces

Classification: 54A25, 54D35, 54D40, 54E52

1. Introduction

Remainders in compactifications of topological spaces have been a popular topic in the last few years; this is basically due to the fact that topological groups are much more sensitive to the properties of their remainders than topological spaces in general. For instance, Arhangel’skii has recently proved two dichotomy theorems about remainders in compactifications of topological groups (see [2] and [3]):

Theorem A. Every remainder of a topological group is either Lindelöf or pseudocompact.

Theorem B. Every remainder of a topological group is either \(\sigma \)-compact or Baire.

In this note we shall concentrate our attention on remainders in compactifications of homogeneous spaces. Clearly, this is the natural step towards a possible extension of Arhangel’skii’s results. We obtain a further dichotomy by showing that every remainder of a homogeneous space is either realcompact and meager or Baire. Such a dichotomy seems weaker than the previous ones but there is a good reason for this: none of the Arhangel’skii’s dichotomy theorems can be generalized to the case of homogeneous spaces. We shall prove this in Section 3 by constructing one counterexample for both results. In the last part we will provide some upper bounds for the cardinality of a homogeneous space whose remainder is a countable union of metrizable spaces.
2. Preliminary results

By ‘space’ we always mean a Tychonoff topological space. Recall that a space is Baire if the intersection of a sequence of open and dense subsets is a dense subset; we say that a space is meager if it can be represented as the union of a sequence of nowhere dense subsets. For all undefined notions we refer to [7].

We will sometimes refer to a classical and well-known result which is due to Henriksen and Isbell: a space X is of countable type if and only if some (every) of its remainders is Lindel"of (see [9]). Recall that a space X is of countable type if for every compact subset $H \subseteq X$ there exists a compact subset $K \subseteq X$ such that $H \subseteq K$ and K has countable character in X. Similarly, we say that a space X is of point-countable type if for every $x \in X$ there exists a compact subset $K \subseteq X$ such that $x \in K$ and K has countable character in X.

However, we will often use the following characterization of spaces of point-countable type: a space X is of point-countable type if and only if for some (every) compactification γX of X, the space X can be represented as the union of a family of G_δ-subsets of γX (see for instance [1] or [7, Exercise 3.5.G(a)]).

The first theorem generalizes somehow the necessary condition of the Henriksen-Isbell theorem.

Theorem 2.1. Let X be a nowhere locally compact space. If X is of point-countable type, every remainder of X is realcompact.

Proof: Fix any compactification γX of X. As X is nowhere locally compact, γX is a compactification of the remainder $Y = \gamma X \setminus X$ as well. Since X is of point-countable type, it can be represented as the union of a family of G_δ-subsets of γX. Of course we may assume these G_δ-subsets to be closed. This implies that for every point $x \in X$ there exists a continuous function $f : \gamma X \to I$ such that $f(x) = 0$ and $f(y) > 0$, for every $y \in Y$. Since $\gamma X \leq \beta Y$, we have that the Čech-Stone compactification βY of Y has the same property, thus Y is realcompact by [7, Theorem 3.11.10].

It is not clear to us whether the converse of the preceding theorem is true. However, the requirement that a single remainder is realcompact is definitely not strong enough to force the space to be of point-countable type. Below we describe a nowhere locally compact space which is not of point-countable type but which has a realcompact remainder.

Example 2.2. Let Y be the discrete space of cardinality ω_1 and let ωY be its one point compactification. Consider the realcompact, nowhere locally compact space Y^{ω_1} and let $Z = (\omega Y)^{\omega_1}$. The space $X = Z \setminus Y^{\omega_1}$ is dense in Z and it is clearly nowhere locally compact; moreover it is G_δ-dense in Z. This implies that X cannot contain G_δ-subsets of Z. Hence X is not of point-countable type.
3. A dichotomy theorem and a counterexample

Lemma 3.1. Let X be a space and γX a compactification of X. If the remainder $Y = \gamma X \setminus X$ is not Baire, there is a non-empty G_δ-subset of γX that is contained in X.

Proof: Let $\{U_n : n \in \omega\}$ be a family of dense open subsets of Y such that $\bigcap \{U_n : n \in \omega\}$ is not dense in Y and for every $n \in \omega$, let V_n be the maximal open subset of γX satisfying $U_n = Y \cap V_n$, that is, V_n is just the union of all open sets $V \subseteq \gamma X$ such that $U_n = Y \cap V$.

Observe that each V_n is dense in γX because any non-empty open set $W \subseteq \gamma X$ is either contained in V_n or satisfies the condition $W \cap Y \neq \emptyset$. It then follows that the set $G = \bigcap \{V_n : n \in \omega\}$ is dense in γX, because γX is Baire. If W is a non-empty open subset of γX satisfying $W \cap \bigcap \{U_n : n \in \omega\} = \emptyset$, then $W \cap G$ is a G_δ-subset in γX and $W \cap G \subseteq X$.

The failure of the Baire property is equivalent to the existence of some non-empty open meager subset. On the other hand, in the lattice of open sets meagerness is preserved only downward and so the property of being meager for the whole space is in general strictly stronger than not being Baire.

The next result, which is our dichotomy, shows, among other things, that this is not the case for remainders of homogeneous spaces.

Theorem 3.2. The remainder of a homogeneous space is either Baire or meager and realcompact.

Proof: Let X be a homogeneous space and γX a compactification of X. Assume that the remainder $Y = \gamma X \setminus X$ is not Baire. First of all, observe that X cannot be locally compact, therefore Y is dense in γX. With the same notation adopted in the proof of Lemma 3.1, we see that there exists a non-empty open set $W \subseteq \gamma X$ and a G_δ-subset $G = \bigcap \{V_n : n \in \omega\} \subseteq \gamma X$ such that $W \cap G$ is dense in W and $W \cap G \subseteq X$. Clearly, $W \cap G$ is Čech-complete.

Since, by homogeneity, every non-empty open subset of X intersects a homeomorphic copy of $\gamma X \cap X$, we see that every non-empty open set $U \subseteq X$ contains a non-empty open set with a dense Čech-complete subspace. Let \mathcal{U} be a maximal pairwise disjoint family of open sets in X having a dense Čech-complete subspace. The previous assertion guarantees that $\bigcup \mathcal{U}$ is dense in X. For any $U \in \mathcal{U}$, let Z_U be a dense Čech-complete subspace of U and V_U an open subset of γX such that $U = V_U \cap X$.

Since Z_U is dense in V_U and a Čech-complete space is a G_δ-subset in all of its compactifications (see [7, Theorem 3.9.1]), we conclude that Z_U is also a G_δ-subset in V_U. As X is dense in γX, the family $\{V_U : U \in \mathcal{U}\}$ consists of pairwise disjoint subsets and this in turn ensures that the set $Z = \bigcup \{Z_U : U \in \mathcal{U}\}$ is a G_δ-subset in $\bigcup \{V_U : U \in \mathcal{U}\}$, and hence in γX. Therefore, $\gamma X \setminus Z$ is a countable union of closed subsets with empty interior. Since Y is dense in γX and $Y \subseteq \gamma X \setminus Z$, we conclude that Y is meager.
By Theorem 2.1, to prove that \(Y \) is realcompact it suffices to prove that \(X \) is of point-countable type. Fix a homeomorphism \(h: X \to X \) and consider the subspace \(h(Z) \) of \(X \). It is easy to see from the construction of \(Z \) that \(h(Z) \) is a \(G_\delta \)-subset of \(\gamma X \). Since the space \(X \) is homogeneous it follows that \(X \) is the union of \(G_\delta \)-subsets of \(\gamma X \). This implies that \(X \) is of point-countable type. \(\square \)

The question arises whether the two Arhangel'skii's dichotomy theorems can be fully extended to the class of homogeneous spaces. The answer is no in both cases, as we show in the next example.

We describe a homogeneous space of point-countable type but not of countable type which has a dense Čech-complete subspace. Homogeneous spaces of point-countable but not of countable type were presented in [4], however the following is basically [5, Theorem 5.5].

Example 3.3. Consider the Cantor set \(2^\omega \), the space \(\omega_1+2 \) endowed with the order topology, and topologize the set \(X = 2^\omega \times (\omega_1+2) \) as follows: basic open neighbourhoods of points of the form \((t, \alpha)\), where \(t \in 2^\omega \) and \(\alpha \in \omega_1+1 \), are of the form \(\{t\} \times U \), where \(U \) is an open subset of \(\omega_1+1 \) and \(\alpha \in U \). Basic open neighbourhoods of points of the form \((t, \omega_1+1)\), are given by:

\[
V(t) = V \times (\omega_1+2) \setminus (\{t\} \times (\omega_1+1)),
\]

where \(V \) is an open neighbourhood of \(t \) in \(2^\omega \).

It is easy to verify that the space \(X \) is compact and zero-dimensional. We now let \(Y = X \setminus (2^\omega \times \{\omega_1\}) \). The subspace \(Y \) is dense in \(X \) and it is easy to see from the construction that it is first-countable. Observe that the remainder \(X \setminus Y \) of \(Y \) is homeomorphic to the discrete space of cardinality \(2^\omega \), which is not Lindelöf. Therefore, by the Henriksen-Isbell theorem, the space \(Y \) is not of countable type. So, the space \(Y^\omega \) is not of countable type, while it is of point-countable type since it is even first-countable. In particular, since \(Y \) is first-countable and zero-dimensional, it follows from a result by Dow and Pearl (see [6]) that \(Y^\omega \) is homogeneous.

Consider now the dense subspace \(Z \) of \(Y \) given by \(2^\omega \times \omega_1 \). Since \(\omega_1 \) is a locally compact space, it follows that \(Z \) is locally compact as well, and then it is Čech-complete. Therefore we have that \(Z^\omega \) is dense in \(Y^\omega \) and it is Čech-complete. This completes the proof.

The special properties of the space in the above example, together with the Henriksen-Isbell theorem and the proof of Theorem 3.2, imply that for any compactification \(\gamma Y^\omega \) of \(Y^\omega \) the remainder \(\gamma Y^\omega \setminus Y^\omega \) is a non-Lindelöf meager space. In particular this remainder is neither Baire nor Lindelöf. Since pseudocompactness implies Bairness and \(\sigma \)-compactness implies Lindelöfness, this clearly shows the impossibility to extent the two Arhangel’skii’s dichotomy theorems to homogeneous spaces.

However, it is reasonable to ask whether in Theorem 3.2 we can substitute the Baire property with the pseudocompactness property, i.e., we could ask:
Question 3.4. Let X be a homogeneous space and let γX be a compactification of X. Is it true that the remainder $\gamma X \setminus X$ is either pseudocompact or realcompact and meager?

A successful step in this direction could be to prove Lemma 3.1 under the assumption that the remainder is not pseudocompact; unfortunately we were not able to prove that, even under the assumption that the space X is homogeneous. If X is a topological group, things change radically. This is stated in the following result which is due to Arhangel’skii; it is an immediate corollary of [3, Lemma 2.1 and Lemma 2.2].

Proposition 3.5. Let G be a topological group and let γG be a compactification of G. If the remainder $\gamma G \setminus G$ is not pseudocompact, the space G is of point-countable type.

Observe that a Baire space can have a G_δ-point without a countable base of neighbourhoods, while any pseudocompact space is first-countable at any G_δ-point. More generally, in a pseudocompact space any compact G_δ-subset has a countable base of neighbourhoods. As a sort of partial answer to Question 3.4, we can prove the following:

Theorem 3.6. Let X be a homogeneous space and γX a compactification of X. If C is a compact G_δ-subset in the remainder $Y = \gamma X \setminus X$, then either C is first-countable in Y or Y is realcompact.

Proof: Assume that C is not first-countable in Y and let $\{U_n : n \in \omega\}$ be a family of open sets in Y such that $\bigcap\{U_n : n \in \omega\} = C$. By induction, for any $n \in \omega$ we may find an open set V_n in γX such that $C \subseteq V_{n+1} \subseteq \overline{V}_{n+1} \subseteq V_n \subseteq U_n \cup X$. The set $F = \bigcap\{V_n : n \in \omega\}$ is a closed G_δ-subset of γX and $F \cap Y = C$. Of course, we cannot have $F = C$ because this would imply that C would have a countable local base in γX, and a fortiori in Y. So $F \neq C$, hence $F \setminus C$ is a non-empty G_δ-subset in γX which actually lies in X. Clearly, $F \setminus C$ contains a non-empty closed G_δ-subset K of γX. By compactness, K has a countable local base in γX and so even in X. The homogeneity of X ensures that X can be covered by compact sets of countable character, and the regularity of γX implies in turn that each of these compact sets has countable character in γX. So, we see that X is actually covered by a family of G_δ-subsets of γX. By the remark we made at the beginning of Section 2, we get that X is a space of point-countable type and, by Theorem 2.1, this suffices to conclude that Y is realcompact.

4. About homogeneous spaces having a remainder that is the union of metrizable subspaces

In this last section we provide some upper bounds for the cardinality of a homogeneous space whose remainder is the union of countably many metrizable spaces.
Theorem 4.1. Let X be a homogeneous space and γX a compactification of X. If the remainder $Y = \gamma X \setminus X$ is the union of countably many metrizable subspaces, then either X is of point-countable type or $\pi\chi(X) = \omega$.

Proof: If X is not of point-countable type, the last paragraph of the proof of Theorem 3.2 implies that Y is a Baire space. As Y is the union of countably many (metrizable) subspaces, there exists one of them, call it Z, that is not nowhere dense in Y, i.e., there exists a non-empty open set $V \subseteq Y$ such that $Z \cap V$ is dense in V. Let U be an open subset of γX such that $U \cap Y = V$. Since X is not of point-countable type, it is nowhere locally compact, therefore Y is dense in γX. Then the subset $A = U \cap Z$ is dense in U. The last assertion implies that each point of A has a countable base in U (see [11, 2.7(a)]) and therefore in γX.

Let us denote by B the ω-closure of A (in γX), that is $B = \bigcup \{\overline{S}^{\gamma X} : S \subseteq A \& |S| \leq \omega\}$. We claim that we cannot have $B \subseteq Y$. Indeed, if we assume $B \subseteq Y$, we have that the countably compact subspace B is the union of countably many metrizable subspaces. Since a metrizable space is a D-space it follows from a result by Gerlits, Juháasz and Szentmiklóssy (see [8]), that B is compact. This implies that $U \subseteq \overline{A} = B$, which is a contradiction with the fact that X is dense in γX.

So $B \cap X \neq \emptyset$, and we may consequently fix a point $x \in X$ and a subset $C \subseteq A$ such that $|C| \leq \omega$ and $x \in \overline{C}$. The fact that γX is first-countable at each point of C ensures that x has a countable π-base in γX and therefore also in X, since X is dense in γX. As X is homogeneous we have that $\pi\chi(X) = \omega$. \hfill \square

Corollary 4.2. Let X be a homogeneous space and γX a compactification of X. If the remainder $\gamma X \setminus X$ is the union of countably many metrizable subspaces, then either X is of point-countable type or $|X| \leq 2^{\pi\chi(X)\cdot c(X)}$.

Proof: To get the desired inequality it is enough to refer to the formula $|X| \leq 2^{\pi\chi(X)\cdot c(X)}$, which is due to Ismail ([10]), and then apply the preceding theorem. \hfill \square

Theorem 4.3. Let X be a homogeneous space and γX a compactification of X. If the remainder $\gamma X \setminus X$ is the union of countably many metrizable subspaces, then either γX can be mapped onto $I^{c(X)^+}$ or $|X| \leq 2^{c(X)}$.

Proof: Assume that γX cannot be mapped onto $I^{c(X)^+}$. Then, from a result by Šapirovskiï (see [12]), we have that the set A of points at which the space γX has π-character not exceeding $c(X)$ is dense in γX. If C is a countable subset of A and $p \in \overline{C}$ it is easy to see that the π-character of γX at p does not exceed $c(X)$; therefore $p \in A$, and this shows that A is ω-bounded (in γX).

We claim that $A \cap X \neq \emptyset$. This is clearly true if X is open in γX, i.e., if X is locally compact. So, assume that X is not locally compact. By the same argument of the preceding theorem we cannot have that $A \subseteq \gamma X \setminus X$, otherwise A would be compact and hence closed in γX. This would imply $A = \gamma X \setminus X$, which is a contradiction with the fact that X is not locally compact. So $A \cap X \neq \emptyset$.

\hfill \square
Since the space γX has π-character not exceeding $c(X)$ at some point x of X, and since X is dense in γX we have that also X has π-character not exceeding $c(X)$ at x. The homogeneity of X and the Ismail formula $|X| \leq 2^{\pi X(X) \cdot c(X)}$, imply that $|X| \leq 2^{c(X)}$. □

Notice that the cardinality of a homogeneous space is, in general, not bounded by $2^{c(X)}$. For instance, we may consider the (even) topological group $X = \Sigma 2^{c^+}$. Observe at first that $|X| \geq c^+$. Moreover, the space 2^{c^+} is c.c.c. and since X is dense in 2^{c^+}, the space X is c.c.c. as well.

Acknowledgment. The authors wish to thank G.J. Ridderbos for his suggestions and the referee for the careful reading.

References

Email: basile@dmi.unict.it
Email: bella@dmi.unict.it

(Received March 1, 2009, revised October 20, 2009)