
Commentationes Mathematicae Universitatis Carolinae

Oleg Okunev
On the Lindelöf property of spaces of continuous functions over a Tychonoff
space and its subspaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 50 (2009), No. 4, 629--635

Persistent URL: http://dml.cz/dmlcz/137452

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/137452
http://project.dml.cz


Comment.Math.Univ.Carolin. 50,4 (2009)629–635 629

On the Lindelöf property of spaces of continuous

functions over a Tychonoff space and its subspaces

Oleg Okunev

Abstract. We study relations between the Lindelöf property in the spaces of continuous
functions with the topology of pointwise convergence over a Tychonoff space and over its
subspaces. We prove, in particular, the following: a) if Cp(X) is Lindelöf, Y = X ∪ {p},
and the point p has countable character in Y , then Cp(Y ) is Lindelöf; b) if Y is a cozero
subspace of a Tychonoff space X, then l(Cp(Y )ω) ≤ l(Cp(X)ω) and ext(Cp(Y )ω) ≤
ext(Cp(X)ω).

Keywords: pointwise convergence, Lindelöf property

Classification: 54C35, 54D20

All spaces below are assumed to be Tychonoff (that is, completely regular
Hausdorff). We use terminology and notation as in [Eng].

Given two spaces X and Z, we denote by Cp(X, Z) the space of all continuous
functions from X to Z equipped with the topology of pointwise convergence (that

is, the topology of the subspace of the space ZX of all functions from X to Z
endowed with the Tychonoff product topology). The space Cp(X, R) is denoted
as Cp(X).

If p : X → Y is a continuous mapping, the dual mapping p∗ : Cp(Y, Z) →
Cp(X, Z) is defined by the rule: p∗(f) = f ◦ p for all f ∈ Cp(Y ). The dual
mapping is always continuous, is a homeomorphic embedding if p is onto, and is
a closed embedding if p is quotient; see [Arh2].

A space X is a Kσδ-space if it is an Fσδ-set in βX ; K-analytic spaces are
continuous images of Kσδ-spaces.

In [Buz] Buzyakova raised some questions about the behavior of the Lindelöf
property of the spaces Cp(X) and Cp(X, Y ) for some simple spaces Y under
“slight changes” of the spaces X and Y . In this article we give complete or
partial answers to a few of these questions.

The author acknowledges support from CONACyT (Consejo Nacional de Ciencia y Tec-
noloǵıa de México) research project 61161/2006.
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1. Adding a point of countable character

Proposition 1.1. Let X be a non-pseudocompact space. Then Cp(X) × ωω is

homeomorphic to a closed subspace of Cp(X).

Proof: Since X is not pseudocompact, there is a discrete family {Un : n ∈ ω}
of non-empty open sets in X . Choose a point xn in each Un; then the set D =
{xn : n ∈ ω} is closed and discrete in X . For every n ∈ ω choose a continuous
function from φn : X → [0, 1] so that φn(xn) = 1 and φn(X \ Un) = {0}. For
every f ∈ R

D put

h(f)(x) =
∞
∑

n=1

f(xn)φn(x).

Note that, by the discreteness of the family {Un : n ∈ ω}, in a neighborhood of
every x ∈ X at most one term in the sum in the definition of h(f) is distinct from
zero; clearly, h(f)(xn) = f(xn). It follows that h is a linear extension operator

from Cp(D) = R
D → Cp(X). Since the value of h(f) at a point x ∈ X is

completely and continuously determined by the value of f at at most one point
of D (the one such that x ∈ Ūn, if there is any), h is continuous.
By Proposition 2.1 in [Ar1], the space Cp(X) is homeomorphic to C×Cp(D) =

C×R
ω where C is the subset of Cp(X) consisting of all functions equal to 0 on D.

Thus, we have homeomorphisms Cp(X) = C×R
ω = C×R

ω ×R
ω = Cp(X)×R

ω.
Since ωω is homeomorphic to a closed subspace of R

ω, we get the statement of
the proposition. �

Corollary 1.2. If X is a non-pseudocompact space, Cp(X) is Lindelöf , and Y
is a K-analytic space, then Cp(X)× Y is Lindelöf.

Proof: Every K-analytic space is an image of ωω under a compact-valued upper
semicontinuous mapping (see e.g. [RJ]). Hence, by Proposition 1.1, Cp(X) × K
is an image under a compact-valued upper semicontinuous mapping of a closed
subspace of Cp(X). The statement of the corollary now follows from the well-
known fact that compact-valued upper semicontinuous mappings do not raise the
Lindelöf number. �

Corollary 1.3. Let X be a non-pseudocompact space such that Cp(X) is Lin-
delöf, and P an Fσδ-subspace of Cp(X). Then P is Lindelöf.

Proof: Let P =
⋂

n∈ω

⋃

m∈ω Fnm where each Fnm is a closed set in Cp(X).
Then P is the image under the projection onto Cp(X) of the closed subset

B = {(f, φ) : ∀n ∈ ω f ∈ Fnφ(n)}

of Cp(X)× ωω. �

The next theorem provides a positive answer to Question 3.1 in [Buz].
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Theorem 1.4. Let Y = X ∪ {p} and assume that the point p has countable
character in Y . If Cp(X) is Lindelöf, then Cp(Y ) is Lindelöf.

Proof: If p is an isolated point in Y , then Cp(Y ) = Cp(X) × R, and Cp(Y ) is
Lindelöf. So assume that p is not isolated. Then X is not pseudocompact, by the
well-known fact that a pseudocompact space is Gδ-dense in any its extension.
Let C0 = {f ∈ Cp(Y ) : f(p) = 0}. Then Cp(Y ) is homeomorphic to C0×R (by

virtue of the homeomorphism f 7→ (f − f(p), f(p)) for every f ∈ Cp(Y )). There-
fore, it suffices to show that C0 is Lindelöf. The restriction mapping r : Cp(Y )→
Cp(X) embeds C0 homeomorphically into Cp(X), so we need to show that the sub-
space C = r(C0) of Cp(X) is Lindelöf. Clearly, C = {f ∈ Cp(X) : limx→p f(x) =
0}.
Let {Vn : n ∈ ω} be a countable open base for p in Y , and let Un = Vn ∩ X ,

n ∈ ω. Then

C = {f ∈ Cp(X) : ∀n ∈ ω ∃m ∈ ω ∀x ∈ Um |f(x)| ≤ 1/(n+ 1)}.

Thus,

C =
⋂

n∈ω

⋃

m∈ω

⋂

x∈Um

{f ∈ Cp(X) : |f(x)| ≤ 1/(n+ 1)}

is an Fσδ-set in Cp(X), hence is Lindelöf by Corollary 1.3. �

Theorem 1.4 may be slightly generalized:

Theorem 1.5. Let Y = X ∪ K where K is a metrizable compact space, X is
dense in Y , K ∩ X = ∅, and χ(K, Y ) ≤ ω. If Cp(X) is Lindelöf, then Cp(Y ) is
Lindelöf.

Proof: Since K is compact metrizable, there is a continuous linear extension
operator h : Cp(K) → Cp(Y ) [Ar1], so by Proposition 2.1 in [Ar1], Cp(Y ) is
homeomorphic to C0×Cp(K) where C0 is the set of all functions in Cp(Y ) whose
restrictions to K are zero.
Let Z = Y/K be the quotient space, q : Y → Z the natural mapping, and

{p} = q(K). SinceK is compact, q is a perfect mapping, the space Z is Tychonoff,
and since the character ofK in Y is countable, the character of p in Z is countable.
Furthermore, X = q−1(q(Z \{p})), so q|X is a perfect bijection from X to Z \{p}.
Thus, Z \ {p} is homeomorphic to X . By Theorem 1.4, Cp(Z) is Lindelöf.
The dual mapping q∗ : Cp(Z) → Cp(Y ) is a closed embedding and C0 is con-

tained in q∗(Cp(Z)). Since C0 is closed in Cp(Y ), it is homeomorphic to a closed
subspace of Cp(Z). By the density of X in Y , X is not pseudocompact (except
the trivial case K = ∅). The space Cp(K) is K-analytic (in fact, a Kσδ-space, see
[Arh2]), so by Corollary 1.2, Cp(Z)× Cp(K) is Lindelöf. Since C0 is homeomor-
phic to a closed set in Cp(Z), C0 × Cp(K) is Lindelöf, and Cp(Y ) is Lindelöf.

�
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Theorem 1.5 does not hold if we only require that K be an Eberlein compact
space. Indeed, if Y is the one-point compactification of a Mrówka space, then
it is the union of a countable discrete subspace X and the compact space K
homeomorphic to the one-point compactification of a discrete space, which is an
Eberlein compact space; K has countable character in Y , because its complement
is countable (so it is a Gδ-set) and Y is compact. That Cp(Y ) for such Y cannot
be Lindelöf was proved in [Pol].
On the other hand, a statement similar to Theorem 1.5 holds, with a similar

proof, if we require the existence of an extension operator.

Theorem 1.6. Let Y = X ∪ K where K is an Eberlein compact space, X is

dense in Y , K ∩ X = ∅, and χ(K, Y ) ≤ ω. If Cp(X) is Lindelöf, and there is a
continuous extension operator h : Cp(K)→ Cp(Y ), then Cp(Y ) is Lindelöf.

2. Spaces of functions on cozero sets

In [Buz], Buzyakova proved that If X is zero-dimensional compact, Cp(X)
is Lindelöf, and p is a point of countable character in X , then Cp(X \ {p}) is
Lindelöf , and asks if the same holds for every compact space, or for any space X .
In this section we prove some statements in this direction, which generalize the

theorem of Buzyakova.

Theorem 2.1. Let X be a space such that Cp(X)
ω is Lindelöf, and Y a cozero

set in X . Then Cp(Y )
ω is Lindelöf.

Proof: Let h : X → [0, 1] be a continuous function such that Y = h−1((0, 1]).
For each n ∈ ω put Fn = h−1([1/(n+ 1), 1]) and F = X \ Y . Clearly, F and

Fn, n ∈ ω, are zero sets, Fn ⊂ IntFn+1, and Y =
⋃

{Fn : n ∈ ω}.
Put

P = {G ∈ Cp(X)
ω : G(n)|Fn = G(m)|Fn for all m, n ∈ ω, m ≥ n}.

Then
P =

⋂

n∈ω

⋂

m≥n

⋂

x∈Fn

{G ∈ Cp(X)
ω : G(m)(x) = G(n)(x)},

so P is closed in Cp(X)
ω, and Pω is Lindelöf.

Define T : P → R
Y by the rule:

T (G)(x) = G(n)(x) if x ∈ Fn.

Obviously, T is well-defined. Let G ∈ P and x ∈ Y . Then x ∈ Fn for some
n, and x ∈ IntFn+1. Since T (G)|Fn+1 = G(n + 1)|Fn+1, T (G) coincides with
the continuous function G(n+1) in the neighborhood Fn+1 of x, and therefore is
continuous at x. Thus, G is continuous on Y , and we have proved T (P ) ⊂ Cp(Y ).
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Let us verify the inverse inclusion. Let f ∈ Cp(Y ). Fix a continuous function
θ : [0, 1] → [0, 1] so that θ(1) = 1 and θ([0, 1/2]) = {0}. For every n ∈ ω fix a
continuous function hn : X → [0, 1] so that hn(Fn) ⊂ {1} and hn(F ) ⊂ {0}, and
let sn(x) = θ ◦ hn. Then sn : X → [0, 1] is continuous, sn(Fn) ⊂ {1}, and sn is
zero in a neighborhood of F . It follows that the function gn : X → R defined by
the rule

gn(x) =

{

f(x)sn(x) if x ∈ Y,

0 if x ∈ F

is continuous onX , and coincides with f on Fn. Thus, f = T (G) whereG(n) = gn

for all n ∈ ω. This finishes the proof that T (P ) = Cp(Y ).

Finally, let us verify that T is continuous. For an open set W in R and x ∈ Y
denote O(x, W ) = {f ∈ Cp(Y ) : f(x) ∈ W}. The sets O(x, W ) form an open
subbase for the topology of Cp(Y ), so it suffices to verify that their preimages
under T are open in P . So fix x and W ; find an m ∈ ω so that x ∈ Fm. Then
x ∈ Fn for all n ≥ m, so G(n)(x) = G(m)(x) for all G ∈ P and n ≥ m. We have
therefore

T−1(O(x, W )) = {G ∈ P : G(m)(x) ∈ W}

= P ∩ {H ∈ Cp(X)
ω : H(m)(x) ∈ W},

an open set in P .

Thus, Cp(Y ) is a continuous image of the set P , whence Cp(Y )
ω is Lindelöf.

�

The condition “Cp(X)
ω is Lindelöf” appears much stronger than “Cp(X) is

Lindelöf”; however, as far as the author knows by the moment, whether the
two conditions are equivalent is an open problem, both for compact spaces X
and in the general case. In some particular cases, however, it is known that the
two conditions are equivalent. Thus, R. Pol showed in [Pol] that if X is zero-
dimensional compact and Cp(X) is Lindelöf, then Cp(X)

ω is Lindelöf. We can
slightly improve this statement.

Theorem 2.2. Let X be a σ-compact zero-dimensional space. If Cp(X) is Lin-
delöf, then Cp(X)

ω is Lindelöf.

Proof: Since the Cantor cube 2ω is homeomorphic to a closed subspace of R, the
space Cp(X, 2ω) is homeomorphic to a closed subspace of Cp(X), and therefore is
Lindelöf. We have Cp(X, 2ω) = Cp(X, 2)ω, so Cp(X, 2)ω is Lindelöf. Since X is
zero-dimensional, Cp(X, 2) separates points and closed sets of X . It follows that

the diagonal product Φ = ∆Cp(X, 2): X → R
Cp(X,2) is an embedding; obviously,

Φ(X) ⊂ Cp(Cp(X, 2)). Thus, X is homeomorphic to a σ-compact subspace of
Cp(Y ) where Y = Cp(X, 2). Then X × ω is σ-compact and homeomorphic to
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a subspace of Cp(Y
+) = Cp(Y ) × R, where Y + is the space obtained by adding

an isolated point to Y . The space (Y +)ω is Lindelöf: Y + is a continuous image
of Y × 2, so (Y +)ω is a continuous image of Y ω × 2ω. By Corollary 2.8 in [Oku],
Cp(X)

ω = Cp(X × ω) is Lindelöf. �

Corollary 2.3. Let X be a zero-dimensional σ-compact space such that Cp(X)
is Lindelöf. Then for every cozero set Y in X , Cp(Y ) is Lindelöf.

This corollary can also be deduced directly from Theorem 2.2 and Corollary 2.8
in [Oku], using the observation that a cozero set in a σ-compact space is σ-
compact.

Corollary 2.4. Let X be a zero-dimensional σ-compact space such that Cp(X)
is Lindelöf. Then for every compact Gδ-set K in X , Cp(X \ K) is Lindelöf.

The proof of Theorem 2.1 actually gives the following statement:

Theorem 2.5. Let Y be a cozero set in X . Then Cp(Y ) is a continuous image
of a closed subset of Cp(X)

ω.

We now can deduce various other corollaries, related to classes of spaces invari-
ant with respect to countable powers, closed subspaces, and continuous images.

Corollary 2.6. If Cp(X) is a Lindelöf Σ-space, and Y a cozero set in X , then
Cp(Y ) is a Lindelöf Σ-space.

Corollary 2.7. If Cp(X) is a K-analytic space, and Y a cozero set in X , then
Cp(Y ) is a K-analytic space.

Corollary 2.8. If Y is a cozero subspace of X , then l(Cp(Y )
ω) ≤ l(Cp(X)

ω)
and ext(Cp(Y )

ω) ≤ ext(Cp(X)
ω).

Corollary 2.9. If Cp(X) is a LΣ(≤ ω)-space, and Y a cozero set in X , then
Cp(Y ) is an LΣ(≤ ω)-space.

(See [KOS] for definition and basic properties of LΣ(≤ ω)-spaces.)

And, generally,

Corollary 2.10. Let P be a class of spaces invariant with respect to countable
powers, closed subspaces and continuous images. If Cp(X) ∈ P , and Y is a cozero
set in X , then Cp(Y ) ∈ P .

A similar argument applies to the spaces Cp(X, I) where I = [0, 1]:

Theorem 2.11. Let Y be a cozero set in X . Then Cp(Y, I) is a continuous image
of a closed subset of Cp(X, I)ω.
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3. Some open problems

Question 3.1. Let X be a pseudocompact space such that Cp(X) is Lindelöf.
Must the product Cp(X)× ωω be Lindelöf?

Question 3.2. Let Y = X ∪ K where K is a metrizable compact space, X is
dense in Y , χ(K, Y ) ≤ ω, and Cp(X) is Lindelöf. Must Cp(Y ) be Lindelöf?

The question here is if we can omit the condition “X∩K = ∅” in Theorem 1.5.
If we assume that Cp(X)

ω is Lindelöf and that X \ K is dense in Y , the answer
is “yes” by Theorems 1.5 and 2.1.

Question 3.3. Let X be a space such that Cp(X)
ω is Lindelöf, and Y an open

Fσ-subspace of X . Must Cp(Y ) be Lindelöf?

Note that for normal spaces X an affirmative answer to this question follows
from Theorem 2.1.
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