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Short remark on Fibonacci-Wieferich primes 

Jiří Klaška 

Abstract. This paper has been inspired by the endeavour of a large number 
of mathematicians to discover a Fibonacci-Wieferich prime. An exhaustive 
computer search has not been successful up to the present even though there 
exists a conjecture that there are infinitely many such primes. This conjecture 
is based on the assumption that the probability that a prime p is Fibonacci-
Wieferich is equal to 1/p. According to our computational results and some 
theoretical considerations, another form of probability can be assumed. This 
observation leads us to interesting consequences. 

1 Introduction 
A prime p is called a Fibonacci-Wieferich prime if 

Fp_(p/b)=0(modp2) (1) 

where Fn denotes the n-th Fibonacci number defined by Fn+2 = Fn+i + Fn with 
Pb = 0, Pi = 1, and (a/b) denotes the Legendere symbol of a and 6. Fibonacci-
Wieferich primes are mostly studied in relation to the first case of Fermat's last 
theorem. In 1992, Zhi-Hong Sun and Zhi-Wei Sun [8] showed that, if p \ xyz and 
xp + yp = zp, then (1) is valid. Fibonacci-Wieferich primes are sometimes refered 
to as Wall-Sun-Sun primes. See [1]. 

Reducing Fn modulo m, we obtain the sequence (Fn mod m)n
<L1, which is 

periodic. A positive integer k(m) is called the period of a Fibonacci sequence 
modulo m if it is the smallest positive integer for which F^m) = 0 (mod m) and 
Fk(m)+i = 1 (mod m). For a fixed prime p, D. D. Wall [9, Theorem 5] has proved 
that, if k(p) = k(ps) ^ k(ps+1), then k(pf) = p*-sfc(p) for t > s. Wall asked 
whether k(p) = k(p2) is always impossible. This is still an open question. It is well 
known (see e.g. [3]) that k(p) = k(p2) if and only if p satisfyies (1). Consequently, 
no Fibonacci-Wieferich prime p is known. Fibonacci-Wieferich primes were studied 
by many authors. From an extensive list of references let us recall at least the 
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papers [3],[4], [7] and [10]. The problem of finding Fibonacci-Wieferich primes is 
in close analogy to the problem of finding Wieferich primes. See [1]. In 2007, R. 
Mcintosh and E. L. Roettger [6] showed that there is no Fibonacci-Wieferich prime 
p for p < 2 x 10 1 4. On the other hand, by statistical considerations 

[1, p.447], in an interval [x,y], there are expected to be 

£ ^ « l n ( l n y / l n x ) (2) 
x<p<y 

Fibonacci-Wieferich primes. By (2), this means that, in the interval [2,2 x 1014], we 
can expect about 3.86 Fibonacci-Wieferich primes. The results presented in this 
paper suggest that, for the number of Fibonacci-Wieferich primes in an interval 
[x, y], a formula different from (2) is more likely to be valid. As we see, there exist 
two kinds of primes and, for each of these, the estimate is principialy different. 

2 Basic observations 
Let Lp be the splitting field of the Fibonacci characteristic polynomial f(x) over 
the field of p-adic numbers Qp and a,/? be the roots of f(x) in Lp. Denote by Op 

the ring of integers of Lp. As the discriminant of f(x) is equal to 5, it follows that, 
for p ^ 5, Lp/Qp does not ramify and so the maximal ideal of Op is generated 
by p. Put q = \Op/(p)\. Then q = pl where t = [Lp : Qp] G {1,2}. If f(x) is 
irreducible over Qp , then Op/(p) is a field with p2 elements and Op/(p

2) is a ring 
with p4 elements. If f(x) is not irreducible over Qp , then Op/(p) is a field with p 
elements and Op/(p

2) has p2 elements. For a unit £ G Op, we denote by ordp*(£) 
the least positive rational integer h such that £h = 1 (mod pl). Let us now recall 
some results derived in [5]. 

Lemma 2.1. For any prime p ^ 5, we have 
(i) k(pf) = lcm(ordp*(a),ordp.(/?)) for any t G N. 
(ii) ordpt(a) = ordpt(/3) or ordpt(a) = 2ordpt(/3) or 2ordpt(a) = ordp*(/3). 
(iii) k(p) =fi k(p2) if and only if OTdp2(a) = 0 (mod p) and ordp2(/3) = 

0 (mod p). 
(iv) ordp2(a) = 0 (mod p) if and only if ordp2(/3) = 0 (mod p). 

From (iii) and (iv), it now follows that p is a Fibonacci-Wieferich prime if and 
only if 

ordp2(a) ^ 0 (mod p) and ordp2(/?) ^ 0 (mod p). (3) 

Let I denote the set of all primes for which f(x) is irreducible over Qp and 
I(x) be the number of all p G / , p < x. Similary, let L denote the set of all primes 
p for which f(x) is factorized over Q p into linear factors and L(x) be the number 
of all p G L, p < x. Clearly, J D L = 0 and J U L is the set of all primes. Hence, 
I(x) + L(x) = TT(X) where ir(x) is the number of all primes p not exceding x. 

The following beautiful characterization of the sets J and L is known. See [9, 
Theorems 6 and 7]. 

Lemma 2.2. For the sets J and L, we have: 
(i) pel if and only if p = 2,5 or p = 3 (mod 10) or p — 7 (mod 10). 
(ii) p G L if and only if p = 1 (mod 10) or p = 9 (mod 10). 
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Theorem 2.3. Let q = p-LP:<Qpl. Then, in the multiplicative group [Op/(p
2)]x, there 

exist exactly q — 1 elements £ satisfying £ 9 - 1 = 1 (modp2). 

Proof: If £ i , . . . , e q is a complete residue system of Op/(p), then £* + pej where 
i, j E { 1 , . . . ,9} is a complete residue system of Op/(p

2). Clearly, £i + pej is 
a unit in Op/(p

2) if and only if E\ ^ 0. It follows that [Op/(p
2)]x has (q — l)q 

elements. Consequently, [Op/(p
2)]x = Gx H where G is a group of order q — 1 and 

H is a group of order q. For any [it, v] G G x H, we have [w, t ; ] 9 - 1 = [ l , u - 1 ] . This 
implies that [it,i?]9_1 = [1,1] if and only if v = 1 and u is arbitrary. As u can be 
chosen in q — 1 ways, there exist exactly q — 1 elements £ G [Op/(p2)]x satisfying 
cf*-1 EEl(modp2) . • 

By Theorem 2.3, the number of £ e [Op/(p
2)]x satisfying ^ _ 1 = 1 (mod p2) 

strongly depends on the form of the factorization of f(x) over Qp. Put Q(p) = 
{£ G [Op/(p

2)]x; £ 9 _ 1 = 1 (mod p2)}. Clearly, Q(p) is a subgroup of order q — 1 of 
[Op /(p2)]x . Let a, /? be the roots of f(x) in Op and let a2, /32 be the images of a, /? 
in [Op/(p2)]x • By (3), we have a2 G Q(p) if and only if (32 G Q(p)- Moreover, the 
Viete equation a2f32 = —1 implies that (32 = —a^1 in [Op/(p

2)]x. 

Remark 2.4. In my opinion, the results of Theorem 2.3 rather indicate that the 
probability P of inclusion {a2,(32} C Q(p) is equal to 

For this reason, the sum in (2) should be replaced by 

£ I, where {« = - * ^ G ' / (5) 

Of course, one knows in advance which of the cases {a2,(32} C Q(p) and {a2,/?2} 2 
Q(p) will occur as the roots a2,(32 are uniquely determined for any prime p. 

3 Statistical consequences 
Let us now consider the series 

„ v ^ l l l l l l l 

p2 4 9 25 49 169 289 

and 

„ v - л l l l l l l l ,„. 
S = Y,-V = Г l + Ï9 + 29 + И + 4Ï + 59 + - - (7) 

p Є L ^ 

Since YJ p 6 / 4, < £ p 4, = £p(2), we have 

Lemma 3.1. The series R converges. 



24 Jiří Klaška 

Remark 3.2. The convergence of Cp(2) = zLp ^ is logarithmic and therefore ex­
tremely slow. The estimate Cp(2) = 0.45224- • • comes from Euler (1748). On the 
other hand, we have 0.42151 • • • < J2pt^° ^ - Computing yields 

i ? = E i = 0 - 4 3 6 4 8 - - -
peip 

(8) 

which is a good match with 0.42151 • • • < YlPei ^ < 0.45224 

The probability P of finding a Fibonacci-Wieferich prime ending with digits 3 
or 7 will virtually not increase as the search set becomes larger. Consequently, the 
existence of a Fibonacci-Wieferich prime p G J, p > 2 x 10 1 4 is very improbable. 
As the following lemma is valid by Dirichlet's theorem on primes in arithmetic 
progression, for a prime that ends with 1 or 9, the situation is more optimistic. 

Lemma 3.3. The series S diverges. 

Remark 3.4. It is well known (see e.g. [2, p.57]) that 

P<X 

p=l (mod k) Ф(k) 
1п1пх + А(к, I) + ОЦЪхх)-1) 

where <j> is the Euler function. From (9) it follows that 

^ " s S - ^ l n ( l n i / / l n x ) 
-*—-' p 

peLn[x,y] p€[x,y] 

Moreover, for I(x) and L(x), we have 

p 

ж->oo L{X) 

(9) 

(10) 

(11) 

p<x 
Put S(x) = J2 K A certain idea of the above functions can be obtained from Table 

pЄL 

X I(x) L(x) ҡ(x) I(x) : L(x) S(x) 
Ю

2 
15 10 25 1.50000 0.30599 

Ю
3 

90 78 168 1.15384 0.49500 

Ю
4 

620 609 1229 1.01806 0.63822 

lû5 4815 4777 9592 1.00795 0.74875 
Ю

6 
39288 39210 78498 1.00198 0.83970 

Ю
7 

332443 332136 664579 1.00092 0.91673 

Ю
8 

2880971 2880484 5761455 1.00016 0.98342 

Table 1. 

From the results derived, it seems to be worthwile to direct attention only to the 
primes ending with the digits 1 or 9. In this case, to decide whether p is a Fibonacci-
Wieferich prime, we can use some of the criteria derived in [5, Theorem 2.11]. 
The main advantage of such criteria is that they do not involve calculating with 



Short remark on Fibonacci-Wieferich primes 25 

Fibonacci numbers but rather with the solution of the congruence f(x) = 0 (mod p). 
We have 

Theorem 3.5. Letp = 1 (mod 10) orp = 9 (mod 10). Further, let a be any solution 
of f(x) = 0 (mod p) and let f be a derivative of the Fibonacci characteristic 
polynomial f. Then the following statements are equivalent: 

(i) p is Fibonacci- Wieferich vrime, 
(ii)a2v-aP- 1 = 0 (mod p2), 
(Hi) f(a) + (a? - a)f'(a) = 0 (mod p2). 

Proof: If p = 1 (mod 10) or p = 9 (mod 10), then by Lemma 2.2, part (ii), we have 
p G L and \Op/(p)\ = p. The equivalence of (i),(ii), and (iii) is now a straightforward 
consequence of [5, Theorem 2.11]. • 

Anyone searching for a Fibonacci-Wieferich prime using a computer is facing 
an immediate problem of completing the search of the interval [2 x 1014,1015]. By 
(9), theoretically, there should be about 0.02 Fibonacci-Wieferich primes within 
this interval ending with 1 or 9. In the following interval [1015,1016] then, there 
should be about 0.03 primes. Even though the odds are not much favourable, there 
is still hope that a Fibonacci-Wieferich prime will be discovered. 
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