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A survey of results on density modulo 1 of double

sequences containing algebraic numbers

Roman Urban

Abstract. In this survey article we start from the famous Furstenberg the-
orem on non-lacunary semigroups of integers, and next we present its gen-
eralizations and some related results.

1 Introduction
1.1 Furstenberg’s theorem

Let S be a multiplicative semigroup of integers. The semigroup S is said to be
lacunary if the members {s ∈ S : s > 0} are of the form sk0 , k ∈ N, s0 ∈ N∗.
Otherwise, S is non-lacunary. In 1967 Furstenberg proved the following result

Theorem 1 ([9, Theorem IV.1]). If S is a non-lacunary semigroup of integers and
ξ is an irrational number, then the set {sξ : s ∈ S} is dense modulo 1.

Let 0 6= p, q ∈ Z. We say that p and q are multiplicatively independent if they
are not both integer powers of the same integer, or equivalently the ratio log p/
log q 6∈ Q. For example, p, q relatively prime are multiplicatively independent.

Since the multiplicative semigroup S = 〈p, q〉 generated by multiplicatively
independent p and q is clearly non-lacunary, we get the following

Corollary 1. If p, q > 1 are multiplicatively independent integers then for every
irrational ξ the set

{pnqmξ : n,m ∈ N} (1)

is dense modulo 1.
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Remark 1. It is clear that for ξ ∈ Q the set (1) is finite.

Remark 2. As noted by Furstenberg [9] there exist irrationals ξ such that the set
(1) is not uniformly distributed modulo 1. Let the sequence {2n3m : n,m ∈ N} be
arranged in increasing order as {sn : n ∈ N}. Then snξ is not uniformly distributed
modulo 1 for ξ =

∑
k 6

−nk with nk of sufficiently rapid growth. See [1] for some
quantitative results in this direction.

Remark 3. Effective versions of Furstenberg’s theorem are given in a recent work
by Bourgain et al. [7]. In particular, an estimate on the rate in

{pnqmξ mod 1 : n,m ∈ N} = [0, 1]

in terms of the Diophantine properties of ξ is given.

1.2 Proofs of Furstenberg’s theorem

Furstenberg’s proof is based on disjointness of dynamical systems – the important
notion introduced by Furstenberg in the same paper [9]. Furstenberg’s original
proof is also outlined in [25]. In 1994 Boshernitzan in [6] gave an elementary proof
of Furstenberg’s theorem based on topological dynamics methods. Another possible
approach is through the renewal theorem and is sketched in [10].

2 Generalizations of Furstenberg’s theorem
2.1 ID-semigrous of endomorphisms

In this subsection we focus on the higher dimensional analogues of Theorem 1.

2.1.1 Commutative semigroups

Notice that, in terms of dynamical systems, Furstenberg’s theorem says that the
orbits of the (commutative) semigroup of endomorphisms generated by the mul-
tiplicatively independent integers p and q and acting on the 1-dimensional torus
T = R/Z by

p.ξ = pξ mod 1 and q.ξ = qξ mod 1

are finite or dense, or equivalently, see [6], [12] for details, the only infinite closed p-
and q-invariant subset of T = R/Z is T itself, or that the infinite invariant subset
of T is dense. Clearly, there are many closed infinite p-invariant (or q-invariant)
proper subsets of T. For example, consider T with multiplication by 2 and 3. Then
the Cantor set

C =

{
x =

∞∑

i=1

xi

3i
∈ [0, 1] : xi ∈ {0, 2}

}

is 3-invariant. Hence, Furstenberg’s theorem gives a remarkable rigidity property
of the joint p- and q-action on the 1-dimensional torus1.

1We note that beside this topological rigidity result given by Theorem 1 there is Furstenberg’s
conjecture about measure rigidity.

Conjecture 1 (Furstenberg 1967). Let p, q be two multiplicative independent positive integers.
Any Borel measure µ on T ergodic under the action of the semigroup S = 〈p, q〉 generated by
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The above reformulation of Furstenberg’s theorem suggest a possible gener-
alization. Namely, to consider the semigroups of endomorphisms of the higher
dimensional torus or other compact groups.

Following [2], [3] we have the following

Definition 1. We say that the semigroup Σ of endomorphisms of a compact group
G has the ID-property, or that Σ is an ID-semigroup, if the only infinite closed
Σ-invariant2 subset of G is G itself.3

According to Definition 1, Furstenberg’s theorem says that the semigroup S =
〈p, q〉 ⊂ N generated by two multiplicatively independent integers p, q and acting
on T is an ID-semigroup.

Generalization of Furstenberg’s theorem to Td was given by Berend in 1983. He
gave necessary and sufficient conditions in arithmetical terms for a commutative
semigroup of Td to have the ID-property in the following theorem.

Theorem 2 (Berend, [2, Theorem 2.1]). A commutative semigroup Σ of endo-
morphisms of Td has the ID-property if and only if the following hold:

(i) There exists an endomorphism σ ∈ Σ such that the characteristic polynomial
fσn of σn is irreducible over Z for every positive integer n.

(ii) For every common eigenvector v of Σ there exists an endomorphism σv ∈ Σ
whose eigenvalue in the direction of v is of norm greater than 1.

(iii) The semigroup Σ contains a pair of multiplicatively independent endomor-
phisms4.

In [3] Berend extended the above result to other compact Abelian groups. In
particular, he gave necessary and sufficient conditions that guarantee that a given
semigroup of endomorphisms of an a-adic solenoid Ωd

a is an ID-semigroup [3, The-
orem II.1].

2.1.2 Non-commutative semigroups

Recently some generalizations for non-commutative semigroup of endomorphisms
acting on Td have been obtained in [18], [19], [11], [12], [10]. For example Muchnik
proved in [18] that if the semigroup Σ of SL(d,Z) is Zariski dense in SL(d,R), then
Σ acting on Td has the ID-property. In the next paper [19] from 2005 Muchnik
generalized the results of Berend [2] proving the following

p and q is either Lebesgue measure or an atomic measure supported on finitely many rational
points.

More about this and related topics can be found in a survey article [15]
2Recall that that a subset A ⊂ G is said to be Σ-invariant if ΣA ⊂ A.
3ID stands for infinite invariant is dense.
4We say, as we do in the case of integer numbers, that two endomorphisms σ and τ are

multiplicatively dependent if there exist integers m and n, not simultaneously equal to 0, such
that σm = τn. Otherwise, we say that σ and τ are multiplicatively independent. We note
that Berend used a slightly different terminology. Namely, rationally independent instead of
multiplicatively independent.
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Theorem 3 (Muchnik, [19, Theorem 1.1]). Let Σ be a semigroup of invertible
d × d matrices acting naturally on Td and Qd. Let G be a group generated by Σ.
The semigroup Σ is an ID-semigroup if and only if the following conditions are
satisfied:

(1) Σ acts strongly irreducibly on Qd, i.e., every subgroup H of G of finite index
acts irreducibly on Qd.

(2) The group G is not cyclic-by-finite.

(3) For every G-invariant subspace V ⊂ Cd, S|V is an unbounded semigroup in
End(V ).

Muchnik’s proof extends the arguments of Berend to the non-commutative setting.
Guivarc’h and Starkov [11] proved an important part of Muchnik’s result using
different methods (matricial analogues of the renewal theorem). For other results
in this direction see also [12], [10].

2.2 Non-integer p and q

There is a natural question what happens if we replace integers p, q in Furstenberg’s
theorem by, say, algebraic numbers. This problem was considered by Berend in [5].
To state his result we need to introduce some notation.

Let K be a real algebraic number field (i.e., finite extension of Q) and S a
subsemigroup of its multiplicative group K∗. According to [5], the semigroup S
is said to be DM1 if Sξ is dense modulo 1 for every ξ 6= 0, and almost DM1 if
Sξ is dense modulo 1 for every ξ 6∈ K. We say that two numbers λ and µ are
multiplicatively dependent if there are integers m and n, not both of which are 0,
such that λm = µn, and multiplicatively independent otherwise. The semigroup
S is said to be one-parameter if all its elements are integer powers of a single
number; weakly one-parameter if any two of its elements are rationally dependent,
andmulti-parameter otherwise. If [K : Q] = m, we denote by PS(K) the semigroup
consisting of all Pisot or Salem numbers5 of degree m. For a subset A ⊂ K, we
denote by Q(A) the subfield of K obtained by adjoining A to Q. Then we have the
following

Theorem 4 (Berend, [3, Theorem 2.1]). Let K be a real algebraic number field
and S a multi-parameter subsemigroup of K∗ ∩ [−1, 1]c with Q(S) = K. Then S is
almost DM1. If, moreover, S 6⊂ PS(K), then S is DM1.

The proof of the above theorem is based on the construction of an appropriate
dynamical system of some a-adic solenoid. Then the necessary and sufficient con-
ditions for the semigroup of endomorphisms of the solenoid to be ID-semigroup,
obtained by Berend in [3], are used.

5A Pisot number is a real algebraic integer θ greater than 1 whose other conjugates θ2, . . . , θn
satisfy the inequalities |θ2| < 1, . . . , |θn| < 1.

A Salem number is a real algebraic integer θ greater than 1 whose other conjugates θ2, . . . , θn
satisfy the inequalities |θj | ≤ 1, 2 ≤ j ≤ n, with equality for at least one j.
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2.3 Sums of the expressions of the form (1)

Furstenberg also conjectured, that the set of the form {(pm + qn)ξ : m,n ∈ N} is
dense modulo 1. As far as we know, this conjecture is still open, however there are
some results concerning related questions. For example, Kra in her paper [14] was
dealing with the expressions of the form

k∑

i=1

pni q
m
i ξi,

where pi, qi are multiplicatively independent integers. The main result of [14] is
the following

Theorem 5 (Kra, [14, Theorem 1.2 and Corollary 2.2]). Let pi, qi ∈ N be multi-
plicatively independent with 1 < pi < qi for i = 1, . . . , k, k ∈ N, (pi, qi) 6= (pj , qj)
for i 6= j, and p1 ≤ p2 ≤ . . . ≤ pk. Then for distinct ξ1, . . . , ξk ∈ [0, 1] with at least
one ξi 6∈ Q the set

{
k∑

i=1

pni q
m
i ξi : n,m ∈ N}

is dense modulo 1.
Furthermore, let rm be any sequence of real numbers and ξ 6∈ Q. Then, the set

{pm1 qn1 ξ + rm : m,n ∈ N} (2)

is dense modulo 1.

The proof given in [14] is based on topological dynamics methods and Furstenberg’s
theorem plays a crucial role there. For an alternate proof of the first part of Kra’s
result via measure theoretic methods see [16].

Sets of the form (2) with integers replaced by algebraic numbers are considered
in Sect. 3.4.

3 Expressions containing algebraic numbers
Inspired by Kra’s Theorem 5 and Berend’s result – Theorem 4, we stated in [20]
the following conjecture.

Conjecture 2 ([20]). If the pairs λi, µi are multiplicatively independent real alge-
braic numbers with absolute values greater than 1 and the pairs λi, µi and λj , µj

are different for i 6= j, then for any real numbers ξ1, . . . , ξk with at least one
ξj 6∈ Q(

⋃k
i=1{λi, µi}) the set

{
k∑

i=1

λn
i µ

m
i ξi : n,m ∈ N}

is dense modulo 1.

In the next subsections we are going to present some results around this conjecture
and obtained by author in a series of papers [20], [22], [23].
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3.1 Algebraic integer case

In [20] we proved a results which can be considered as the first step toward the
proof of Conjecture 2. Namely, using some topological dynamics methods in the
spirit of Berend [5] and Kra [14], we proved the following.6

Theorem 6 ([20, Theorem 1.6]). Let λ1, µ1 and λ2, µ2 be two distinct pairs of
multiplicatively independent real algebraic integers of degree 2. Assume that

(i) |λi|, |µ1| > 1, i = 1, 2, and the absolute values of their conjugates, λ̃i, µ̃i are
also greater than 1.

(ii) µi = gi(λi), for some gi ∈ Z[x], i = 1, 2.

(iii) In each pair (λi, µi) there is at least one element with the property that for
every n ∈ N, its n-th power is irrational.

(iv) There exist k, l, k′, l′ ∈ N such that

min{|λ2|k|µ2|l, |λ̃2|k|µ̃2|l} > max{|λ1|k|µ1|l, |λ̃1|k|µ̃1|l} (3)

and

min{|λ1|k
′ |µ1|l

′
, |λ̃1|k

′ |µ̃1|l
′} > max{|λ2|k

′ |µ2|l
′
, |λ̃2|k

′ |µ̃2|l
′}. (4)

Then for any real numbers ξ1, ξ2 with at least one ξi 6= 0, there exists a natural
number κ such that the set

{λn
1µ

m
1 κξ1 + λn

2µ
m
2 κξ2 : n,m ∈ N}

is dense modulo 1.

Remark 4. Equivalently, Theorem 6 says that for every ξ1, ξ2, with at least one ξi
non-zero, there exists a natural number κ such that the set

{λn
1µ

m
1 ξ1 + λn

2µ
m
2 ξ2 : n,m ∈ N} (5)

is dense modulo 1/κ.

It is not difficult to check that the following inequalities

|λ2| > |λ̃2| > |λ1| > |λ̃1| > 1 and |µ1| > |µ̃1| > |µ2| > |µ̃2| > 1

imply (3) and (4). Hence, it is not difficult to construct examples:

(
√
23 + 1)n(

√
23 + 2)mξ1 + (

√
61 + 1)n(

√
61− 6)mξ2.

In [24] it is shown that the condition µi ∈ Z(λi) can be removed by imposing
appropriate conditions on the norms of conjugates of λi, µi and the degree of the
algebraic numbers λn

i µ
m
i . In particular, the following theorem is proved.

Denote N0 = N ∪ {0}.
6In the proof of [20, Theorem 1.6] there is an incorrect statement. First of all, gXac

α on p. 227
should be defined as Jκ,κXac

α , i.e., with κ = ι. Then it is claimed that the set π1(S) is Σ1-
invariant. However, it is not, and so we can not apply the ergodic argument to conclude that
π1(S) = T. What we only know is that for every pair (ξ1, ξ2) there exists a natural number κ
such that κπ1(S) = T. See Sect. 3.2 for details.
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Theorem 7 ([24]). Let λ1, µ1 and λ2, µ2 be two distinct pairs of multiplicatively
independent algebraic integers of degree 2, with absolute values greater than 1,
such that the absolute values of their conjugates, λ̃1, µ̃1, λ̃2, µ̃2, are also greater
than 1. Assume that the following conditions are satisfied:

(i) for every n,m ∈ N, degQ λn
i µ

m
i = 4,

(ii) |λi| > |λ̃i| > 1 and |µi| > |µ̃i| > 1, i = 1, 2,

(iii) there exist (α, β), (α′, β′) ∈ N2
0 \ {(0, 0)}, and two positive integers k, l, k 6= l

such that

|λ̃2µ̃2|α|λ̃k
2 µ̃

l
2|β > |λ1µ1|α|λk

1µ
l
1|β

and

|λ̃1µ̃1|α
′ |λ̃k

1 µ̃
l
1|β

′
> |λ2µ2|α

′ |λk
2µ

l
2|β

′
.

Then for any pair of real numbers ξ1, ξ2, with at least one ξi non-zero, the set (7)
is dense modulo 1.

Remark 5. In order to check that given λi, µi satisfy condition (i) one can use
Dubickas’ result [8] which gives necessary and sufficient conditions (and also a
simple sufficient condition) under which two algebraic numbers α and β over a
field k satisfy degk(αβ) = degk α degk β.

As an example illustrating Theorem 7 we can take

(
√
7 + 1)n(3

√
3 + 1)mξ1 + (100

√
5 + 3)n(2

√
2 + 1)mξ2.

The case of algebraic numbers (not necessarily algebraic integers) is also studied
in [24]. See Theorem 9 in Sect. 3.3 below.

3.2 Sketch of the proof of Theorem 6

The idea of the proof is to construct, using the companion matrices associated with
λi’s, an appropriate semigroup M of endomorphisms of the d-dimensional torus,
for some d > 1. Then we have to chose a special point α in Td such that looking at
the coordinates of the orbit Mα we can recognize the expression we are interested
in. The next step is to prove that the orbit is large in some sense and that this
implies density modulo 1 of our expression.

3.2.1 Companion matrices

Let ν > 1 be a real algebraic integer of degree 2 with minimal (monic) polynomial
Pν ∈ Z[x], Pν(x) = x2 + c1x+ c0. A companion matrix of Pν or ν is the matrix of
the form

σν =

(
0 1

−c0 −c1

)
. (6)
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3.2.2 Construction of the semigroups Σ1, Σ2 and M

We associate with λi, the companion matrices σi = σλi and with µi we associate
matrices τi = gi(σi). For i = 1, 2, we denote by Σi = 〈σi, τi〉 the semigroups
generated by σi and τi. Using Theorem 4 we see that assumptions (i)–(iii) imply,
that the semigroups Σ1 and Σ2 are commutative ID-semigroups of endomorphisms
of T2. (Commutativity follows from condition (ii).) We put Mσ =

(
σ1 0
0 σ2

)
and

Mτ =
(
τ1 0
0 τ2

)
. The semigroup M of endomorphisms of T2 × T2 is the semigroup

〈Mσ,Mτ 〉 generated by matrices Mσ and Mτ . Clearly, M is not an ID-semigroup
due to reducibility.

3.2.3 The orbit Mα

Let Xα = Mα be the orbit of the point α = (α1, α2) under the action of M. Taking
as α1 and α2 the common eigenvectors of the semigroups Σ1 and Σ2, respectively,
α1 = ξ1(1, λ1) and α2 = ξ2(1, λ2), we get

Xα = {(λn
1µ

m
1 ξ1, λ

n+1
1 µm

1 ξ1, λ
n
2µ

m
2 ξ2, λ

n+1
2 µm

2 ξ2) : n,m ∈ N}.

Let Xac
α denote the set of accumulation points of Xα. Clearly, Xα and Xac

α are M -
invariant. Furthermore, Xac

α is closed and one can prove that that Xac
α is infinite.

Moreover, [20, Proposition 5.7] with the same assumptions as in Theorem 6, if
(0, 0) ∈ Xac

α then one of the following holds:

(1) The point (0, 0) is isolated in Xac
α .

(2) The set Xac
α contains the whole T2 × {0} or {0} × T2.

In the prove of the above statement assumptions (3) and (4) are used. The next
step is to show that there is a non-isolated rational point p/κ in Xac

α . The fact
that Σ1 and Σ2 are ID-semigroups plays the crucial role at this step. Hence,
by the above dichotomy applied to κXac

α (what is justified since only invariance
is important in the proof) we have that (2) holds and we conclude that the set
S := {x + y : (x, y) ∈ κXac

α } is equal to the whole T2. Therefore, comparing this
with the first and third coordinate of κXα in T2 × T2 we obtain the result taking
projection of S = T2 onto the first coordinate.

Remark 6. We believe that under the assumptions of Theorem 6 the set (5) is in
fact dense modulo 1 (i.e., κ = 1). However, in order to prove such a statement a
much better understanding of the closed subsets of T2, invariant under the action
of the semigroup M, is required. Specifically, if we knew that under the above
assumptions the closure of the orbit Xα, contains (0, 0) then we would have that
for every ξ, with at least one ξi irrational, κ = 1. However, this seems to be a
difficult problem as very little is known about reducible actions of linear semigroups
on tori. In particular, description of the closed invariant sets and orbit closures is
not known even in the “simplest” case of the semigroup of endomorphisms of T2

generated by the following two matrices
(
2 0
0 2

)
and

(
3 0
0 3

)
. Only some partial results

are available in literature, [14], [17].
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3.3 Extension to algebraic numbers

In [22] we removed the assumption that λi and µi are algebraic integers.

Theorem 8 ([22, Theorem 1.5]). Let λ1, µ1 and λ2, µ2 be two distinct pairs of
multiplicatively independent algebraic numbers of degree 2. Assume that

(i) |λi|, |µ1| > 1, i = 1, 2, and the absolute values of their conjugates, λ̃i, µ̃i are
also greater than 1.

(ii) µi = gi(λi), for some gi ∈ Q[x], i = 1, 2.

(iii) At least one element in each pair λi, µi has all non-negative powers irrational.

Let S = {∞, p1, p2, . . . , ps}, where for k = 1, . . . , s, pk ≥ 2 are the primes appearing
in the denominators of coefficients of g1, g2 ∈ Q[x], and the minimal polynomials
Pλ1 , Pλ2 ∈ Q[x] of λ1, and λ2, respectively.

Assume further that

(iv) there exist k, l, k′, l′ ∈ N such that

min
p∈S

(min{|λ2|kp|µ2|lp, |λ̃2|kp|µ̃2|lp}) > max
p∈S

(max{|λ1|kp|µ1|lp, |λ̃1|kp|µ̃1|lp})

and

min
p∈S

(min{|λ1|k
′

p |µ1|l
′
p , |λ̃1|k

′
p |µ̃1|l

′
p }) > max

p∈S
(max{|λ2|k

′
p |µ2|l

′
p , |λ̃2|k

′
p |µ̃2|l

′
p }),

where | · |p is the p-adic norm, whereas | · |∞ stands for the usual absolute
value, and

min{|λi|p, |µi|p, |λ̃i|p, |µ̃i|p : i = 1, 2, p ∈ S} > 1.

Then for any pair of real numbers ξ1, ξ2, with at least one ξi non-zero, there exists
a natural number κ such that the set

{λn
1µ

m
1 κξ1 + λn

2µ
m
2 κξ2 : n,m ∈ N}

is dense modulo 1.7

As an example, consider the following expression8

(
1710√

2
+

1

3 · 5 · 7

)n(
11 · 1710√

2
+

11

3 · 5 · 7 +
171000

73 · 53 · 26 · 34
)m

+

+

(
17100

32 · 23 ·
√
5
+

1

72 · 52
)n(

11 · 17100
32 · 23 ·

√
5
+

11

72 · 52 + 13

)m

.

By Theorem 8 there is κ ∈ N such that the above set is dense modulo 1/κ.

7The statement in [22] is with κ = 1 although what is really proved is the statement given
here. This is due to the same mistake as described in the footnote on p. 36.

8In [5, Proposition 4.2] it is proved that for λ and µ which are effectively given complex
algebraic numbers (which is clearly the case here) it is possible effectively to decide whether or
not they are multiplicatively independent.
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Remark 7. An appropriate version of the above theorem in the case when not all
of λi, µi are of degree 2, namely degree 1 of some numbers is allowed, is also given
in [22].

Although the proof of Theorem 8 is more complicated than in the case of algebraic
integers, the main steps remain the same. As before, we define σi = σλi

and
τi = g(σi), where σλi are companion matrices. The main difference comes from
the fact that the companion matrices σλi associated with λi, i = 1, 2 have rational
coefficients. Therefore, we need to introduce some other compact group which will
play the role of T2×T2. Let a be the product of all primes dividing the denominator
of some entry of σ1, σ2, τ1, τ2. Similarly to [5], we consider the product of a-adic
solenoids9 Ω2

a × Ω2
a.

For i = 1, 2, we denote by Σi = 〈σi, τi〉 the semigroups generated by σi and τi.
Using [3, Theorem II.1], we check that Σ1 and Σ2 are commutative ID-semigroups
of Ω2

a. The semigroup M acting on Ω2
a × Ω2

a is defined similarly. Now, the role of
the rational points in T2 × T2 play the torsion points in Ω2

a × Ω2
a.

In [24] the following theorem, which does not assume commutativity µi ∈ Q(λi)
is proved.

Theorem 9 ([24]). Let λ1, µ1 and λ2, µ2 be two distinct pairs of multiplicatively
independent real algebraic numbers of degree 2, with absolute values greater than
1, such that the absolute values of their conjugates, λ̃1, µ̃1, λ̃2, µ̃2, are also greater
than 1. Assume that

(i) for every n,m ∈ N, degQ λn
i µ

m
i = 4.

Let p1, p2, . . . , ps ≥ 2 be the primes appearing in the denominators of coefficients
of the minimal polynomials Pλi , Pµi ,∈ Q[x] of λi and µi, i = 1, 2. We set S =
{∞, p1, p2, . . . , ps}. Assume further that the following conditions are satisfied:

(ii) |λi|∞ > |λ̃i|∞ > 1 and |µi|∞ > |µ̃i|∞ > 1, i = 1, 2,

(iii) there exist (α, β), (α′, β′) ∈ N2
0 \ {(0, 0)}, and two positive integers k, l, k 6= l

such that

min

(
min

p∈S\{∞}
|λ2µ2|αp |λk

2µ
l
2|βp , |λ̃2µ̃2|α∞|λ̃k

2 µ̃
l
2|β∞
)

> max

(
max

p∈S\{∞}
|λ1µ1|αp |λk

1µ
l
1|βp , |λ1µ1|α∞|λk

1µ
l
1|β∞
)

9Let a = p1p2 . . . ps, wher pi are different primes. Consider Z[1/a] as a topological group with

the discrete topology. The dual group Ẑ[1/a] of Z[1/a] is called an a-adic solenoid and we denote
it by Ωa. The compact abelian group Ωd

a may be considered as a quotient group of the additive
group Rd × Qd

p1
× . . .× Qd

ps by a discrete subgroup B = {(b,−b, . . . ,−b| {z }
s

) : b ∈ Z[1/a]d}. That is,

Ωd
a = Rd × Qd

p1
× . . .× Qd

ps/B. (For more details on solenoids see [13].)
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and

min

(
min

p∈S\{∞}
|λ1µ1|α

′
p |λk

1µ
l
1|β

′
p , |λ̃1µ̃1|α

′
∞|λ̃k

1 µ̃
l
1|β

′
∞

)

> max

(
max

p∈S\{∞}
|λ2µ2|α

′
p |λk

2µ
l
2|β

′
p , |λ2µ2|α

′
∞|λk

2µ
l
2|β

′
∞

)
,

(iv) |λi|p = |λ̃i|p > 1 and |µi|p = |µ̃i|p > 1, for p ∈ S \ {∞},
where | · |p is the p-adic norm, whereas | · |∞ stands for the usual absolute value.

Then for any pair of real numbers ξ1, ξ2, with at least one ξi non-zero, there
exists a natural number κ such that the set

{λn
1µ

m
1 κξ1 + λn

2µ
m
2 κξ2 : n,m ∈ N} (7)

is dense modulo 1.

As a result we are able to consider more general expressions containing algebraic
numbers than those given by Theorem 8. For example, Theorem 9 implies that the
following double-sequence10

(
7
√
2 +

1

2 · 3 · 5 · 7

)n(
72√
5
+

1

23 · 32 · 52 · 72
)m

+

(
75
√
3 +

1

211 · 311 · 511 · 711
)n(

7√
7
+

1

2 · 3 · 5 · 7

)m

, n,m ∈ N

is dense modulo 1/κ for some κ.

3.4 Other expressions

The following theorem is a generalization of the second part of Theorem 5.

Theorem 10 ([23, Theorem 1.3]). Let λ, µ be a pair of multiplicatively indepen-
dent real algebraic numbers, with their conjugates λ = λ1, λ2, . . . , λd and µ =
µ1, µ2, . . . , µr, such that µ ∈ Q(λ), i.e., µ = g(λ) for some g ∈ Q[x].

Assume that λ has the property that for every n ∈ N, λn has the same degree
over Q as λ.

Let S = {∞, p1, p2, . . . , ps}, where pk ≥ 2, 1 ≤ k ≤ s, are the primes appearing
in the denominators of the coefficients of g ∈ Q[x] and the minimal polynomial
Pλ ∈ Q[x] of λ.

Assume further that

min
p∈S

min
1≤i≤d

|λi|p > 1 and min
p∈S

min
1≤j≤r

|µj |p > 1.

10In order check that these pairs of algebraic numbers are multiplicatively independent we can
use the following

Lemma 1 ([24]). Let p, q > 1 be the square-free numbers and a, b, c, d ∈ Q. If p 6= q then c
√
p+ a

and d
√
q + b are multiplicatively independent.

See also footnote on p. 39.
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Then, for any non-zero ξ and any sequence of real numbers rm, the set

{µmλnξ + rm : m,n ∈ N}

is dense modulo 1.

Theorem 10 for algebraic integers was proved in [21].

Theorem 11. [23, Theorem 1.4] Let λ, µ be a pair of multiplicatively independent
real algebraic numbers satisfying conditions of Theorem 10. Then, for any non-zero
ξ and any two real numbers r, β, the set

{µmλnξ + rm+nβ : m,n ∈ N} (8)

are dense modulo 1.

The sets of the form (8) with λ and µ ∈ N have been considered by Berend in [4].
In [23] we generalized his proof to the setting of algebraic numbers.

In the proofs of the above theorems topological dynamics methods (ergodicity
and topological transitivity) together with an elementary algebraic numbers theory
are used.
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