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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , NU MB ER 1 , P AG E S 1 2 1 – 1 3 6

DECENTRALIZED ROBUST TRACKING CONTROL
OF UNCERTAIN LARGE SCALE SYSTEMS WITH
MULTIPLE DELAYS IN THE INTERCONNECTIONS

Hansheng Wu

The problem of the decentralized robust tracking and model following is considered for
a class of uncertain large scale systems including time-varying delays in the interconnec-
tions. On the basis of the Razumikhin-type theorem and the Lyapunov stability theory,
a class of decentralized memoryless local state feedback controllers is proposed for robust
tracking of dynamical signals. It is shown that by employing the proposed decentralized
robust tracking controllers, one can guarantee that the tracking error between each time-
delay subsystem and the corresponding local reference model without time-delay decreases
uniformly asymptotically to zero. In this paper, it is assumed that the time-varying delays
are any continuous and bounded nonnegative functions, and the proposed decentralized
robust tracking controllers are independent of the delays. Therefore, the results obtained
in the paper are applicable to large scale systems without exact knowledge of the delays,
i. e. large systems with perturbed delays.
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1. INTRODUCTION

In the practical control problems, it is important to consider the robust tracking
and model following problem of dynamical systems with significant uncertainties.
Therefore, such a problem has been widely discussed, and some approaches for an
actual system to tracking dynamical signals of a given reference model have been
developed (see, e. g. [6, 11, 15] and the references therein).

It is well known that except for significant uncertainties, some delays are often
encountered in various engineering systems to be controlled, such as chemical pro-
cesses, hydraulic, and rolling mill systems, economic systems, and the existence of
the delays is frequently a source of instability. Therefore, the problem of robust
stabilization of uncertain time-delay systems has received considerable attention of
many researchers, and many solution approaches have been developed (see, e. g.
[7, 12, 19, 20] and the references therein). Furthermore, in [8, 10, 16], the robust
tracking and model following problem for uncertain composite systems with time-
delay is also considered, and some types of robust tracking controllers are proposed.
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In recent years, there also are some works in which the problem of decentralized
robust tracking and model following is considered for uncertain large scale systems.
In [9], for example, the problem of decentralized robust tracking and model following
for large scale interconnected systems with uncertainties is considered, and a class
of continuous (nonlinear) decentralized state feedback controllers is proposed. It is
also shown in [9] that the proposed decentralized robust tracking controllers can
guarantee that the tracking error between each subsystem and the corresponding
local reference model decreases asymptotically to zero. However, because of its
complexity, few efforts were made to consider the decentralized robust tracking and
model following problem of uncertain large scale time-delay systems.

In this paper, we consider the problem of the decentralized robust tracking and
model following for a class of uncertain large scale systems including time-varying
delays in the interconnections. By combining the Razumikhin-type theorem with the
Lyapunov stability theory, we propose a class of decentralized local state feedback
controllers for robust tracking of dynamical signals. We also show that by employing
the proposed decentralized robust tracking controllers, one can guarantee that the
tracking error between each time-delay subsystem and the corresponding local refer-
ence model without time-delay decreases uniformly asymptotically to zero. That is,
we can make it possible that the output of each controlled uncertain time-delay sub-
system tracks exactly the output of the corresponding local reference model without
time-delay.

The paper is organized as follows. In Section 2, the decentralized model following
problem to be tackled is stated and some standard assumptions are introduced. In
Section 3, we propose a class of decentralized memoryless robust tracking controllers.
The paper is concluded in Section 4 with a brief discussion of the results.

2. PROBLEM FORMULATION AND ASSUMPTION

We consider a large scale time-delay system S composed of N interconnected sub-
systems Si, i = 1, 2, · · · , N , described by the following differential equations:

dxi(t)

dt
=

[
Ai + ∆Ai(υi, t)

]
xi(t) +

[
Bi + ∆Bi(ξi, t)

]
ui(t) (1a)

yi(t) = Cixi(t) (1b)

where t ∈ R+ is the time, xi(t) ∈ Rni is the current value of the state, ui(t) ∈ Rmi is
the input (or control) vector, and yi(t) ∈ Rli is the output vector. Each dynamical
subsystem is interconnected as

ui(t) =

N∑

j=1

Aij(ζi, t)xj(t − hij(t)) + wi(νi, t), i = 1, 2, . . . , N. (2)

In (1) and (2), for each i ∈ {1, 2, . . . , N}, Ai, Bi, Ci are known constant matrices
of appropriate dimensions. In particular, the matrix Aij(·) stands for the extent of
interconnection between Si and Sj , and are assumed to be continuous in all their ar-
guments; ∆Ai(·), ∆Bi(·) represent the uncertainties of the systems, wi(·) is the exter-
nal disturbance vector, and are also assumed to be continuous in all their arguments.
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Moreover, the uncertain parameters (υi, ξi, ζi, νi) ∈ Ψi ⊂ RLi , i ∈ {1, 2, . . . , N},
are Lebesgue measurable and take values in a known compact bounding set Ωi ; the
time delays hij(t), i, j = 1, 2, . . . , N , are assumed to be any bounded, and continuous
functions, i. e. 0 ≤ hij(t) ≤ h̄ij where h̄ij are any nonnegative constants. Here, the
time-varying delays and their bounds are not required to be known for the system

designer. In this paper, x(·) ∈ Rn denotes
[

x>
1 (·) x>

2 (·) · · · x>
N

(·)
]>

, where
n = n1 + n2 + · · · + n

N
.

The initial condition for each subsystem with time delays is given by

xi(t) = χ
i
(t), t ∈ [t0 − h̄i, t0] (3)

where χi(t) is a continuous function on [t0 − h̄i, t0], and h̄i is defined as follows.

h̄i := max
{

h̄ij , j = 1, 2, . . . , N
}
.

For this class of input-interconnected large scale systems including delayed state
perturbations in the interconnections, we introduce a decentralized local memoryless
state feedback controller ūi(t) given by

ūi(t) = pi(xi(t), t), i = 1, 2, . . . , N (4)

for each subsystem which modifies (2) to

ui(t) = ūi(t) +

N∑

j=1

Aij(ζi, t)xj(t − hij(t)) + wi(νi, t), i = 1, 2, . . . , N (5)

where pi(·) : Rni ×R+ → Rmi is a continuous function which will be proposed later.
On the other hand, for each i ∈ {1, 2, · · · , N}, the reference sign ŷi(t), which

should be followed by the output yi(t) of each subsystem Si, is assumed to be the
output of a reference model Ŝi described by the differential equation of the form:

dx̂i(t)

dt
= Âix̂i(t) + B̂iri(t) (6a)

ŷi(t) = Ĉix̂i(t) (6b)

where x̂i(t) ∈ Rn̂i is the state vector of the reference model, ŷi(t) ∈ Rl̂i is the output
vector of the reference model, ri(t) ∈ Rm̂i is the input vector of the reference model,
and Âi, B̂i, Ĉi are known constant matrices of appropriate dimensions. Here, ŷi(t)

has the same dimension as yi(t), i. e. l̂i = li. Furthermore, in order to guarantee
that the tracking of dynamical signals is practically meaningful, we require that the
model state must be bounded, i. e. for each reference model Ŝi , i ∈ {1, 2, . . . , N},
there exists a finite positive constant Mi such that for all t ≥ t0,

‖x̂i(t)‖ ≤ Mi, i ∈ {1, 2, · · · , N}.

In addition, the input vector of each reference model is similarly assumed to be
bounded, i. e. for all t ≥ t0,

‖ri(t)‖ ≤ r̄i, i ∈ {1, 2, · · · , N}
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where r̄i is any positive constant.
As pointed out in [6], not all models of the form given in (6) can be tracked

by a corresponding subsystem given in (1) with a feedback controller. Similar to
[6], in this paper, the requirement for the developed decentralized local controller
to track the model described by (6) is the existence of the matrices Gi ∈ Rni×n̂i ,
Hi ∈ Rmi×n̂i , Fi ∈ Rmi×m̂i , such that for each i ∈ {1, 2, . . . , N}, the following
matrix algebraic equation holds.




Ai Bi 0

0 0 Bi

Ci 0 0







Gi

Hi

Fi


 =




GiÂi

GiB̂i

Ĉi


 . (7)

For each i ∈ {1, 2, . . . , N}, if a solution cannot be found to satisfy this algebraic
matrix equation, a different model or output matrix Ci must be chosen. In particular,
the approach to finding the solution of the algebraic matrix equation similar to (7)
is also discussed in detail in [1,8].

Now, the question is how to synthesize a decentralized local state feedback con-
troller ūi(t) such that the output yi(t) of each time-delay subsystem follows the
output ŷi(t) of the corresponding reference model without time-delay.

Remark 2.1. For the model following problem of uncertain composite dynamical
systems, some robust state (or output) feedback tracking controllers are presented
in the control literature (see, e. g. [6, 11, 15] for uncertain systems without time-
delay, and [8, 10, 16] for uncertain time-delay systems, and the references therein).
In particular, in a recent paper [9], the model following problem of uncertain large
scale interconnected systems has been discussed. However, few efforts are made
to consider the problem of decentralized robust tracking and model following for
uncertain large scale systems with time-delay, because of its complexity. In this
paper, we will consider the problem of robust tracking and model following for
a class of large scale systems with uncertainties, delayed state perturbations, and
external disturbances, and want to propose decentralized robust tracking controller.

Before proposing our decentralized robust tracking controllers, we introduce for
system (1) the following standard assumptions.

Assumption 2.1. The pairs (Ai, Bi), i = 1, 2, · · · , N , given in system (1) are
completely controllable.

Assumption 2.2. For all (x, t) ∈ Rn×R, there exist some continuous and bounded
matrix functions Ni(·), Ei(·) of appropriate dimensions such that

∆Ai(υi, t) = BiNi(υi, t), i = 1, 2, . . . , N

∆Bi(ξi, t) = BiEi(ξi, t), i = 1, 2, . . . , N.
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Remark 2.2. It is obvious that Assumption 2.2 defines the matching condition
about the uncertainties of the isolated subsystems, and is a rather standard assump-
tion for robust control problem (see, e. g. [1, 2, 6, 8, 9, 10, 11, 13, 14, 16, 17], and
the references therein). For a dynamical system with matched uncertainties, one
can always design some types of state (or output) feedback controllers such that the
stability of the system can be guaranteed. It is well known that these matching con-
ditions restrict the structure of each subsystem by stipulating that all uncertainties
and interconnections should fall into the range space of the control vector Bi. How-
ever, this fact is true for a large class of systems, particularly mechanical systems.

For convenience, we now introduce the following notations which represent the
bounds of the uncertainties and external disturbances.

ρi(t) := max
υi

∥∥Ni(υi, t)
∥∥

κi(t) := max
ξi

∥∥Ei(ξi, t)
∥∥

µi(t) := min
ξi

[
1

2
λmin

(
Ei(ξi, t) + E>

i (ξi, t)
)]

w̃i(t) := max
νi

∥∥wi(νi, t)
∥∥

ρij(t) := max
ζi

∥∥Aij(ζi, t)
∥∥, j = 1, 2, . . . , N

where i ∈ {1, 2, . . . , N}, ‖·‖ is the spectral norm of a matrix, and λmin(·) and λmax(·)
denote the minimum and maximum eigenvalues of the matrix, respectively. Here,
the functions ρi(t), κi(t), µi(t), w̃i(t), ρij(t) are assumed, without loss of generality,
to be uniformly continuous with respect to time.

By employing the notations given above, we introduce for uncertain large scale
system (1) the following standard assumption.

Assumption 2.3. For every t ≥ t0, µi(t) > −1, i ∈ {1, 2, . . . , N}.

Remark 2.3. It is worth pointing out that for the uncertain large scale inter-
connected system described by (1) and (5), Assumption 2.3 is standard. It is well
known that the assumption mentioned in Assumption 2.3 is a necessary condition
for robust stability of uncertain dynamical systems (see, e. g., [6, 8, 9, 10, 15, 16, 18]
and the references relative to robust stabilization of uncertain systems).

On the other hand, it follows from Assumption 2.1 that for any given symmetric
positive definite matrix Qi ∈ Rni×ni , there exists an unique symmetric positive
definite matrix Pi ∈ Rni×ni as the solution of the algebraic Riccati equation of the
form

A>
i Pi + PiAi − ηiPiBiB

>
i Pi = −Qi, i = 1, 2, . . . , N (8)

where ηi, i ∈ {1, 2, . . . , N} is any given positive constant. Moreover, we introduce
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the following notations:

σi :=
√

λmax(Pi)/λmin(Pi), i = 1, 2, . . . , N

which will be used in the control law proposed later.

In the remainder of this section, we introduce for time-delay system the following
lemma (see, e. g. Theorem 4.3 of [5], Chapter 5]) which will be used in the subsequent
sections.

Lemma 2.1. (Hale [4], Hale and Lunel [5]) Consider the retarded functional
differential equation

dx(t)

dt
= f(t, xt) (9)

with the initial condition

x(t) = ψ(t), t ∈ [t0 − h̄, t0].

Suppose that the functions γi(·), i = 1, 2, 3, are of K-class. If there is a continuous
function V (·) : [t0 − h̄, ∞) × Rn → R+ such that

i) for any t ∈ [t0 − h̄, ∞) and x ∈ Rn,

γ1(‖x‖) ≤ V (t, x) ≤ γ2(‖x‖);

ii) there is a continuous non-decreasing function p(s) > s for s > 0, such that

dV (t, x)

dt
≤ −γ3(‖x‖)

if for any ξ ∈ [t − h̄, t] and t ≥ t0,

V (ξ, x(ξ)) < p[V (t, x(t)],

then the solutions to (9) are uniformly asymptotically stable.

3. DECENTRALIZED ROBUST TRACKING CONTROLLERS

In this section, we propose a class of decentralized local memoryless state feedback
controllers which can guarantee that the output yi(t) of each time-delay subsystem
follows the output ŷi(t) of the corresponding local reference model without time-
delay and the tracking error decreases asymptotically to zero. For this, let the
tracking error between each subsystem and the corresponding local reference model
be defined as

ei(t) = yi(t) − ŷi(t), i ∈ {1, 2, . . . , N} (10)
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then the decentralized state feedback tracking control laws can be constructed as

ūi(t) = Hix̂i(t) + Firi(t) + p̃i(t), i ∈ {1, 2, . . . , N} (11)

where Hi ∈ Rmi×n̂i and Fi ∈ Rmi×m̂i are assumed to satisfy the matrix equation
described by (7), and p̃i(t) is auxiliary control function which will be given later.

Here, we first define for each subsystem a new state vector zi(t), called the aux-
iliary state, as follows:

zi(t) := xi(t) − Gix̂i(t) (12)

where Gi ∈ Rni×n̂i is still assumed to satisfy matrix equation (7).

From (7) and (12) we can obtain the relationship between the tracking error ei(t)
and the auxiliary state vector zi(t) as follows.

ei(t) = Cizi(t), i ∈ {1, 2, . . . , N}. (13)

Then, from (13) we can obtain that for any i ∈ {1, 2, . . . , N}, ‖ei(t)‖ ≤ ‖Ci‖ ‖zi(t)‖.
Since ‖Ci‖ < ∞, it follows that for any i ∈ {1, 2, . . . , N},

∥∥zi(t)
∥∥ → 0 implies

∥∥ei(t)
∥∥ → 0.

Therefore, it is sufficient to only consider the stability of zi(t), i = 1, 2, . . . , N .

For each subsystem, applying (11) to (1a) and (5) yields an auxiliary subsystem
Ŝi, i ∈ {1, 2, . . . , N}, of the form:

dzi(t)

dt
=

[
Ai + ∆Ai(υi, t)

]
zi(t) +

[
Bi + ∆Bi(ξi, t)

]
p̃i(t)

+
[
Bi + ∆Bi(ξi, t)

] N∑

j=1

Aij(ζi, t)zj(t − hij(t))

+gi(υi, ξi, ζi, νi, ri, x̂i, t) (14)

where

gi(υi, ξi, ζi, νi, ri, x̂i, t) :=
[
∆Ai(υi, t)Gi + ∆Bi(ξi, t)Hi

]
x̂i(t) + ∆Bi(ξi, t)Firi(t)

+
[
Bi + ∆Bi(ξi, t)

]




N∑

j=1

Aij(ζi, t)Gj x̂j(t − hij(t)) + wi(νi, t)



 . (15)

Then, by making use of the matching condition (see Assumption 2.2), (15) can
be readily reduced to

gi(υi, ξi, ζi, νi, ri, x̂i, t) = Bifi(υi, ξi, ζi, νi, ri, x̂i, t) (16)

where

fi(υi, ξi, ζi, νi, ri, x̂i, t) :=
[
Ni(υi, t)Gi + Ei(ξi, t)Hi

]
x̂i(t) + Ei(ξi, t)Firi(t)

+
[
Ii + Ei(ξi, t)

]




N∑

j=1

Aij(ζi, t)Gj x̂j(t − hij(t)) + wi(νi, t)



 . (17)
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Furthermore, we introduce for (17) the following notation.

βi(t) := max
{∥∥fi(υi, ξi, ζi, νi, ri, x̂i, t)

∥∥ : (υi, ξi, ζi, νi) ∈ Ψi,

∥∥ri(t)
∥∥ ≤ r̄i,

∥∥x̂i(t)
∥∥ ≤ Mi, t ∈ R+

}
.

Here, the function βi(t), i ∈ {1, 2, . . . , N}, is still assumed to be uniformly continuous
with respect to time.

Now, we give the auxiliary control function p̃i(t) as follows.

p̃i(t) = pi1(zi(t), t) + pi2(zi(t), t), i = 1, 2, . . . , N (18a)

where pi1(·) and pi2(·) are given by the following functions:

pi1(zi(t), t) = − 1

2
ki1(t)B

>
i Pizi(t), (18b)

pi2(zi(t), t) = − ki2(t)B
>
i Pizi(t)∥∥B>

i Pizi(t)
∥∥ βi(t) + εi

∥∥zi(t)
∥∥2 (18c)

and where the control gain functions ki1(t) and ki2(t) are given by

ki1(t) =
ηi + δ2

i ρ2
i (t) + (1 + κi(t))

2
∑N

j=1 α2
jρ

2
ij(t)

1 + µi(t)
(18d)

ki2(t) =
β2

i (t)

1 + µi(t)
(18e)

where εi, δi, αj , are positive constants, and δi, αj , are selected such that the following
conditions are satisfied.

1

δ2
i

+
σ2

i N

α2
i

< λmin(Qi) − 2εi. (18f)

Here, εi has been chosen such that 0 < 2εi < λmin(Qi).

Remark 3.1. For any i ∈ {1, 2, . . . , N}, the decentralized memoryless state feed-
back controller described by (18) consists of two parts, p̃i1(·) and p̃i2(·). Here, p̃i1(·)
is linear in the auxiliary state, and p̃i2(·) is continuous (nonlinear) controller which
is employed to compensate for the uncertain gi(·) including external disturbance to
produce an asymptotic stability results for tracking error ei(t) between uncertain
large scale time-delay subsystem and the local reference model.

Remark 3.2. It has been assumed that the matrix functions Ni(·), Ei(·), wi(·),
Aij(·) are continuous in all their arguments. In addition, their bounds ρi(t), κi(t),
µi(t), w̃i(t), ρij(t), as well as βi(t) are also assumed to be uniformly continuous with
respect to time. Thus, it is obvious that the nonlinear auxiliary control function
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p̃i2(zi(t), t) described by (18c) is uniformly continuous in with respect to time.
Moreover, by noting that for any (zi, t) ∈ Rni × R+,

∥∥B>
i Pizi(t)

∥∥ βi(t) ≤
∥∥B>

i Pizi(t)
∥∥ βi(t) + εi

∥∥zi(t)
∥∥2

we can obtain from (18c) that for any (zi, t) ∈ Rni × R+,

∥∥∥p̃i2(zi(t), t)
∥∥∥ ≤ βi(t)

1 + µi(t)

which shows the boundedness of the function p̃i2(zi, t). Therefore, it can be con-
cluded that the auxiliary control function described by (18) is uniformly continuous
with respect to time, and and uniformly bounded with respect to zi.

Remark 3.3. It is worth pointing out that at the origin zi = 0 , both numerator
and denominator of the control described by (18c) vanish. This implies that the
existence of the solutions to the closed-loop auxiliary subsystem given in (14) and
(18) may not be guaranteed at the origin zi = 0 in the usual sense. However, by
employing the method similar to the one presented in [18], we can easily prove that
the right-hand side of the closed-loop auxiliary subsystem given in (14) and (18) is
upper semicontinuous on (z, t) ∈ Rn × R+ . Therefore, as a generalized dynamical
system (GDS), the existence of the solutions to the closed-loop auxiliary subsystem
can be well guaranteed. This implies that the limit of control (18c) as zi approaches
zero exists.

Thus, we can obtain the following theorem which shows that by employing the
auxiliary controller described in (18), one can guarantee the uniform asymptotic sta-
bility of the auxiliary subsystems, described by (14), in the presence of the uncertain
parameters and multiple delayed state perturbations in the interconnections.

Theorem 3.1. Consider the auxiliary subsystems, described in (14). Suppose that
Assumptions 2.1 to 2.3 are satisfied. Then, by employing the auxiliary decentralized
state feedback controllers given in (18), one can guarantee the uniform asymptotic
stability of each auxiliary subsystem. That is, for any t ∈ R+,

lim
t→∞

∥∥∥zi(t)
∥∥∥ = 0, i = 1, 2, . . . , N.

P r o o f . Applying the controller given in (18) to (14) yields the following closed-loop
auxiliary subsystems.

dzi(t)

dt
=

[
Ai − 1

2
ki1(t)BiB

>
i Pi

]
zi(t) + ∆Ai(υi, t)zi(t)

− 1

2
ki1(t)∆Bi(ξi, t)B

>
i Pizi(t)

+
[

Bi + ∆Bi(ξi, t)
]
pi2(zi(t), t)
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+
[
Bi + ∆Bi(ξi, t)

] N∑

j=1

Aij(ζi, t)zj(t − hij(t))

+gi(υi, ξi, ζi, νi, ri, x̂i, t). (19)

For each nominal subsystem (i. e. the subsystem in the absence of the uncer-
tain parameters, delayed state perturbations, and interconnections) of closed-loop
auxiliary subsystem (19), we first define a positive definite function of the form

Vi(zi(t), t) = z>
i (t)Pizi(t), (20)

where Pi ∈ Rni×ni is the solution of algebraic Riccati equation (8).

Let zi(t) be the solution of the closed-loop auxiliary subsystems described by
(19) for t ≥ t0; and let the Lyapunov function, described by (20), of the nominal
subsystem be a candidate of the Lyapunov function of subsystem (19). Then, we
can obtain that for any t ≥ t0,

dVi(zit, t)

dt
= z>

i (t)
[
A>

i Pi + PiAi − ki1(t)PiBiB
>
i Pi

]
zi(t)

+2z>
i (t)Pi∆Ai(υi, t)zi(t)

−ki1(t)z
>
i (t)Pi∆Bi(ξi, t)B

>
i Pizi(t)

+2z>
i (t)Pi

[
Bi + ∆Bi(ξi, t)

]
pi2(zi(t), t)

+2z>
i (t)Pi

[
Bi + ∆Bi(ξi, t)

] N∑

j=1

Aij(ζi, t)zj(t − hij(t))

+2z>
i (t)Pigi(υi, ξi, ζi, νi, ri, x̂i, t). (21)

From Assumption 2.2, (16), and (18), we can obtain that for any t ≥ t0,

dVi(zit, t)

dt
= z>

i (t)
[
A>

i Pi + PiAi − ki1(t)PiBiB
>
i Pi

]
zi(t)

+2z>
i (t)PiBiNi(υi, t)zi(t)

−ki1(t)z
>
i (t)PiBi

[
1

2

(
Ei(ξi, t) + E>

i (ξi, t)
)]

B>
i Pizi(t)

−
2ki2(t)z

>
i (t)PiBi

[
Ii + Ei(ξi, t)

]
B>

i Pizi(t)
∥∥B>

i Pizi(t)
∥∥βi(t) + εi

∥∥zi(t)
∥∥2

+2z>
i (t)PiBi

[
Ii + Ei(ξi, t)

] N∑

j=1

Aij(ζi, t)zj(t − hij(t))

+2z>
i (t)PiBifi(υi, ξi, ζi, νi, ri, x̂i, t)

≤ z>
i (t)

[
A>

i Pi + PiAi − ki1(t)
(
1 + µi(t)

)
PiBiB

>
i Pi

]
zi(t)
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+2ρi(t)
∥∥B>

i Pizi(t)
∥∥∥∥zi(t)

∥∥

− 2ki2(t)
(
1 + µi(t)

)
z>
i (t)PiBiB

>
i Pizi(t)∥∥B>

i Pizi(t)
∥∥βi(t) + εi

∥∥zi(t)
∥∥2

+2
(
1 + κi(t)

) N∑

j=1

ρij(t)
∥∥B>

i Pizi(t)
∥∥ ∥∥zj(t − hij(t))

∥∥

+2βi(t)
∥∥B>

i Pizi(t)
∥∥ . (22)

Then, from (8), (18d), and (18e) we can further obtain that for any t ≥ t0,

dVi(zit, t)

dt
≤ −z>

i (t)Qizi(t)

−
(

δ2
i ρ2

i (t) + (1 + κi(t))
2

N∑

j=1

α2
jρ

2
ij(t)

)
∥∥B>

i Pizi(t)
∥∥2

+2ρi(t)
∥∥B>

i Pizi(t)
∥∥∥∥zi(t)

∥∥

− 2β2
i (t)

∥∥B>
i Pizi(t)

∥∥2

∥∥B>
i Pizi(t)

∥∥ βi(t) + εi

∥∥zi(t)
∥∥2 + 2βi(t)

∥∥B>
i Pizi(t)

∥∥

+2
(
1 + κi(t)

) N∑

j=1

ρij(t)
∥∥B>

i Pizi(t)
∥∥ ∥∥zj(t − hij(t))

∥∥

= −z>
i (t)Qizi(t) − (1 + κi(t))

2
N∑

j=1

α2
jρ

2
ij(t)

∥∥B>
i Pizi(t)

∥∥2

−δ2
i ρ2

i (t)
∥∥B>

i Pizi(t)
∥∥2

+ 2ρi(t)
∥∥B>

i Pizi(t)
∥∥∥∥zi(t)

∥∥

− 2β2
i (t)

∥∥B>
i Pizi(t)

∥∥2

∥∥B>
i Pizi(t)

∥∥ βi(t) + εi

∥∥zi(t)
∥∥2 + 2βi(t)

∥∥B>
i Pizi(t)

∥∥

+2
(
1 + κi(t)

) N∑

j=1

ρij(t)
∥∥B>

i Pizi(t)
∥∥ ∥∥zj(t − hij(t))

∥∥

= −z>
i (t)Qizi(t) − (1 + κi(t))

2
N∑

j=1

α2
jρ

2
ij(t)

∥∥B>
i Pizi(t)

∥∥2

−
[
δiρi(t)

∥∥B>
i Pizi(t)

∥∥ − 1

δi

∥∥zi(t)
∥∥
]2

+
1

δ2
i

∥∥zi(t)
∥∥2

+2

∥∥B>
i Pizi(t)

∥∥βi(t) · εi

∥∥zi(t)
∥∥2

∥∥B>
i Pizi(t)

∥∥ βi(t) + εi

∥∥zi(t)
∥∥2
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+2
(
1 + κi(t)

) N∑

j=1

ρij(t)
∥∥B>

i Pizi(t)
∥∥ ∥∥zj(t − hij(t))

∥∥

≤ −z>
i (t)Qizi(t) +

1

δ2
i

∥∥zi(t)
∥∥2

−(1 + κi(t))
2

N∑

j=1

α2
jρ

2
ij(t)

∥∥B>
i Pizi(t)

∥∥2

+2

∥∥B>
i Pizi(t)

∥∥βi(t) · εi

∥∥zi(t)
∥∥2

∥∥B>
i Pizi(t)

∥∥ βi(t) + εi

∥∥zi(t)
∥∥2

+2
(
1 + κi(t)

) N∑

j=1

ρij(t)
∥∥B>

i Pizi(t)
∥∥ ∥∥zj(t − hij(t))

∥∥. (23)

Therefore, it follows from (23) and from the inequality

0 ≤ ab

a + b
≤ a, ∀ a, b > 0

that for any t ≥ t0,

dVi(zit, t)

dt
≤ −z>

i (t)Qizi(t) +

(
2εi +

1

δ2
i

) ∥∥zi(t)
∥∥2

−(1 + κi(t))
2

N∑

j=1

α2
jρ

2
ij(t)

∥∥B>
i Pizi(t)

∥∥2

+2
(
1 + κi(t)

) N∑

j=1

ρij(t)
∥∥B>

i Pizi(t)
∥∥ ∥∥zj(t − hij(t))

∥∥. (24)

In the light of the Razumikhin-type theorem (see, e. g. Lemma 2.1), for each
subsystem we assume that, for any positive number qi > 1, the following inequality
holds.

Vi(zi(ξ), ξ) < q2
i Vi(zi(t), t), ξ ∈ [t − h̄i, t]

where i ∈ {1, 2, . . . , N}. Then, it follows from (20) and the property of the matrix
Pi that ∥∥zi(ξ)

∥∥ < qiσi

∥∥zi(t)
∥∥, ξ ∈ [t − h̄i, t]. (25)

By substituting (25) into (24) we can obtain that for any t ≥ t0,

dVi(zit, t)

dt
≤ −z>

i (t)Qizi(t) +

(
2εi +

1

δ2
i

) ∥∥zi(t)
∥∥2

−(1 + κi(t))
2

N∑

j=1

α2
jρ

2
ij(t)

∥∥B>
i Pizi(t)

∥∥2
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+2
(
1 + κi(t)

) N∑

j=1

qjσjρij(t)
∥∥B>

i Pizi(t)
∥∥ ∥∥zj(t)

∥∥

≤ −λmin (Qi)
∥∥zi(t)

∥∥2
+

(
2εi +

1

δ2
i

) ∥∥zi(t)
∥∥2

+
N∑

j=1

(
qjσj

)2

α2
j

∥∥zj(t)
∥∥2

. (26)

Letting

V (zt, t) :=
N∑

i=1

Vi(zit, t)

form (26) we obtain that for any t ≥ t0,

dV (zt, t)

dt
≤ −

N∑

i=1

(
λmin (Qi) − 2εi − 1

δ2
i

)∥∥zi(t)
∥∥2

+
N∑

i=1

N
(
qiσi

)2

α2
i

∥∥zi(t)
∥∥2

. (27)

It is obvious from the definition of V (zt, t) that, if an inequality of the form

dVi(zit, t)

dt
≤ −

(
λmin (Qi) − 2εi − 1

δ2
i

− N
(
qiσi

)2

α2
i

)
∥∥zi(t)

∥∥2
(28)

holds for any i ∈ {1, 2, . . . , N}, the inequality described by (27) is also satisfied.
Therefore, from (28), for each i ∈ {1, 2, . . . , N}, one can obtain that for any t ≥ t0,

dVi(zit, t)

dt
≤ −γi(qi)

∥∥zi(t)
∥∥2

, i = 1, 2, . . . , N (29)

where γi(qi) is defined by

γi(qi) := λmin (Qi) − 2εi −
[

1

δ2
i

+

(
qiσi

)2
N

α2
i

]
. (30)

If the parameters δi and αi, i = 1, 2, . . . , N , are selected such that (18f) is satisfied,
then a sufficiently small q∗

i > 1 exists such that γi(q
∗
i ) > 0, i ∈ {1, 2, . . . , N}. Thus,

according to Lemma 2.1, each closed-loop auxiliary subsystem Ŝi, i ∈ {1, 2, . . . , N},
described by (14) and (18), is uniformly asymptotically stable. That is, the auxiliary
state zi(t), i ∈ {1, 2, . . . , N}, tends asymptotically to zero. ¤

Thus, from Theorem 3.1 we can obtain the following theorem which shows that by
employing the decentralized local memoryless state feedback controllers described in
(11) with (18), one can guarantee the zero-tracking errors between each subsystem
with time-delay and the local reference model without time-delay.
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Theorem 3.2. Consider the model following problem of uncertain large scale sys-
tem (1) with (5) satisfying Assumptions 2.1 to 2.3. Then, by using the decentralized
local memoryless state feedback controllers ūi(t) described in (11) with (18), one can
guarantee that the tracking error ei(t), i ∈ {1, 2, . . . , N}, between each subsystem
and local reference model, decreases uniformly asymptotically to zero.

P r o o f . From Theorem 3.1, we have shown that each closed-loop auxiliary subsys-
tem described by (14) with (18) is uniformly asymptotically stable. That is, for the
auxiliary state zi(t) of each subsystem, we can obtain that

lim
t→∞

‖zi(t)‖ = 0 i ∈ {1, 2, . . . , N}.

Then, it can easily be obtained from the relationship between ei(t) and zi(t), i. e.
ei(t) = Cizi(t), that each local tracking error ei(t), i ∈ {1, 2, . . . , N}, also decreases
uniformly asymptotically to zero. ¤

Remark 3.4. Similar to [6], we can give a procedure for constructing the decen-
tralized state feedback controller described by (11) with (18) as follows.

(i) Find the solutions Gi, Hi, Fi of algebraic matrix equation (7). If no solution
exists, then a different choice of the local reference model or the output matrix
Ci must be made.

(ii) Solve, for any given positive constant ηi and positive definite matrix Qi, alge-
braic Riccati equation (8) for Pi, i ∈ {1, 2, . . . , N}.

(iii) Evaluate the bounds of the uncertain Ni(·), Ei(·), wi(·), Aij(·), to obtain ρi(·),
κi(·), µi(·), w̃i(·), ρij(·), as well as βi(·).

(iv) Select a set of the control parameters εi, δi, αi, such that the inequality de-
scribed by (18f) holds.

(v) Form the decentralized memoryless state feedback tracking controller described
by (11) with (18).

4. CONCLUDING REMARKS

The problem of the decentralized robust tracking and model following has been
considered for a class of uncertain large scale systems including time-varying delays
in the interconnections. A class of decentralized memoryless local state feedback
controllers has been proposed for robust tracking of dynamical signals. In the light of
the auxiliary control functions, the proposed decentralized robust tracking controller
consists of two parts, i. e. linear and nonlinear. The nonlinear controller is continuous
and bounded, and is used to compensate for the uncertainty including the external
disturbance of the systems to produce an asymptotic tracking result. That is, by
employing the proposed decentralized robust tracking controllers, one can guarantee
that the tracking error between each time-delay subsystem and the corresponding
local reference model decreases uniformly asymptotically to zero.
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Moreover, since the time-varying delays have been assumed to be any continuous
and bounded nonnegative functions, and the proposed decentralized robust tracking
controllers are independent of the delays, the results obtained in the paper are
applicable to large scale systems without exact knowledge of the delays, i. e. large
systems with perturbed delays. Therefore, our results may be expected to have some
applications to practical decentralized robust tracking and model following problems
of uncertain large scale time-delay systems.

(Received March 7, 2008.)
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