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A NEW NYQUIST–BASED TECHNIQUE FOR TUNING
ROBUST DECENTRALIZED CONTROLLERS

Alena Kozáková, Vojtech Veselý and Jakub Osuský

An original Nyquist-based frequency domain robust decentralized controller (DC) design
technique for robust stability and guaranteed nominal performance is proposed, applicable
for continuous-time uncertain systems described by a set of transfer function matrices. To
provide nominal performance, interactions are included in individual design using one se-
lected characteristic locus of the interaction matrix, used to reshape frequency responses
of decoupled subsystems; such modified subsystems are termed “equivalent subsystems”.
Local controllers of equivalent subsystems independently tuned for stability and specified
feasible performance constitute the decentralized controller guaranteeing specified perfor-
mance of the full system. To guarantee robust stability, the M −∆ stability conditions are
derived. Unlike standard robust approaches, the proposed technique considers full nominal
model, thus reducing conservativeness of resulting robust stability conditions. The devel-
oped frequency domain design procedure is graphical, interactive and insightful. A case
study providing a step-by-step robust DC design for the Quadruple Tank Process [8] is
included.

Keywords: multivariable system, decentralized controller, frequency domain, independent
design, robust stability, unstructured uncertainty

AMS Subject Classification: 93D15

1. INTRODUCTION

Most industrial processes are naturally multi-input multi-output (MIMO) plants
arising as interconnection of a finite number of subsystems. Due to interactions
among subsystems, MIMO systems are more difficult to control compared to the
SISO ones. If strong interactions within the plant are to be compensated for then
multivariable controllers are used. However, there may be practical reasons that
make restrictions on controller structure necessary or reasonable. If the controller
is split into several local feedbacks it becomes a decentralized controller. Compared
with centralized full-controller systems the decentralized control (DC) structure
brings about certain performance deterioration; however, this drawback is weighted
against important benefits, e. g. hardware, operation and design simplicity as well
as reliability improvement [19, 20]. Thus, decentralized controllers (DC) and DC de-
sign techniques remain popular among control engineers, in particular the frequency
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domain ones as they provide insightful solutions and link to the classical control
theory.

Major important multivariable frequency-response Nyquist-type design techniques
were developed in the late 60’s and throughout the 70’s: the Inverse-Nyquist Array
(INA) and Direct Nyquist Array (DNA) methods by Rosenbrock and the Sequen-
tial design technique [15]. Almost simultaneously the non-interacting Characteristic
Loci (CL) technique was developed [14]. With the come up of robust frequency do-
main approaches in the 80’s, robust approach to the decentralized controller design
has become very popular and many practice-oriented DC design techniques were
developed.

The DC design proceeds in two main steps: 1) selection of a suitable control con-
figuration (pairing inputs with outputs); 2) design of local controllers for individual
subsystems. The main approaches applicable in Step 2 are the following: sequential
(dependent) design, independent design, detuning methods and overlapping decom-
positions.

When using sequential design [1, 3, 15] local controllers are designed sequentially
as a series controller. Usually, the controller corresponding to a fast loop is designed
first and this loop is then closed before the design proceeds with the next controller.
Thus, the information about “lower level” controllers is directly used as more loops
are closed. If performance of the overall system is not satisfactory, the design proce-
dure repeats with a corrective design. Main drawbacks are lack of failure tolerance
when “lower level” controllers fail, strong dependence of performance on the loop
closing order, and a “trial and error” design process. The method is recommended
if bandwidths of individual loops are different.

If the independent design [2, 9, 19] is applied, interactions between loops are
examined first and sufficient conditions are derived to guarantee robust stability
and performance of the full system, and translated into bounds for individual loops.
Local controllers designed in compliance with these bounds constitute the resulting
decentralized controller. Main advantages with this approach are failure tolerance
and direct design. Main limitation is conservatism of the derived stability and perfor-
mance conditions since information on other controllers is not exploited in individual
controllers design.

Using detuning methods [13, 17], local controllers are tuned first ignoring interac-
tions from individual loops. Interactions are considered in the next step when each
controller is detuned using an appropriate interaction measure until some stability
criterion is met (typical example is the Ziegler–Nichols tuning formula plus a detun-
ing factor evaluated from RGA). This method only provides reasonable preliminary
controller settings with guaranteed closed-loop stability.

Use of overlapping decompositions to design robust decentralized controller for
uncertain interconnected systems was introduced in [4]. Based on overlapping de-
compositions and expansions, a robustness bound in form of a single frequency-
dependent scalar function accounting for neglected interactions between subsystems,
uncertainties in interactions and subsystem models is developed, and further used
to design local controllers. Satisfying a simple condition which involves this function
guarantees closed-loop robust stability under decentralized controller. Recently this
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approach has also been extended for time delay systems [5]. Decentralized LQF/LTR
controller design can be found in [6, 7].

In this paper an original Nyquist-based frequency domain robust decentralized
controller (DC) design technique for robust stability and guaranteed nominal perfor-
mance is proposed, applicable for continuous-time uncertain systems described by a
set of transfer function matrices. To guarantee nominal performance the idea pro-
posed in [10, 11] is developed. According to it, the effect of interactions on the full
system is assessed first, using characteristic loci (CL’s) of the matrix of interactions;
the CL’s are then used to reshape frequency responses of decoupled subsystems thus
generating the so-called equivalent subsystems. For the equivalent subsystems, local
controllers are designed according to the independent design approach using any
frequency-domain design procedure. Resulting local controllers guarantee fulfilment
of performance requirements imposed on the full nominal system. To guarantee
robust stability over the specified operating range of the plant, the M-∆ stability
conditions are used; their fulfilment is achieved by modification of control parame-
ters. Unlike standard robust approaches, the proposed technique allows to consider
full nominal model, thus reducing conservativeness of resulting robust stability con-
ditions. The developed frequency domain design procedure is graphical, interactive
and insightful. Theoretical conclusions are supported by simple examples.

The paper is organized as follows: Preliminaries for the development of the pro-
posed design technique and Problem formulation are in Section 2. Main results
including the proposed design procedure along with simple illustrative examples are
presented in Section 3. A Case study providing a step-by-step robust DC design for
the quadruple tank process [8] is in Section 4. Conclusions are drawn at the end of
the paper.

2. PRELIMINARIES AND PROBLEM FORMULATION

Consider a MIMO system described by a transfer function matrix G(s) ∈ Rm×m

and a decentralized controller R(s) ∈ Rm×m in the standard feedback configuration
(Figure 1):

Fig. 1. Standard feedback configuration.

where w, u, y, e, d are respectively vectors of reference, control, output, control error
and disturbance of compatible dimensions.
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When designing a controller, the major source of difficulty is the plant model
uncertainty brought about by identification/modelling errors; a control system is
robust if it is insensitive to the differences between the actual plant and its model
used to design the controller. To deal with an uncertain plant a suitable uncertainty
model is to be selected and instead of a single model, the behavior of a whole class
of models is to be considered. A simple uncertainty model is obtained in terms
of unstructured uncertainty, i. e. a full complex perturbation matrix with the same
dimensions as the plant. Four single perturbation forms are commonly used, [19, 20]:

• additive (‘a’),

• multiplicative input (‘i’),

• multiplicative output (‘o’) ones and

• their inverse counterparts are used for uncertainty associated with plant poles
located in the closed right half-plane .

Denote G(s) any member of a set of a possible plants Π, G0(s) the nominal model
used to design the controller, σM (·) the maximum singular value of (·) and lk(s), k =
a, i, o, ia the scalar weights on a normalized perturbation ∆(s) ∈ Rm×m, σM (∆) ≤ 1.
Individual perturbation forms generate related families of plants Πk, k = a, i, o, ia
as follows:

• Additive uncertainty

Πa : G(s) = G0(s) + la(s)∆(s) (1)

la(s) = max
G(s)∈Πa

σM [G(s) − G0(s)].

• Multiplicative input uncertainty

Πi : G(s) = G0(s)[I + li(s)∆(s)] (2)

li(s) = max
G(s)∈Πi

σM{G0(s)
−1[G(s) − G0(s)]}.

• Multiplicative output uncertainty

Πo : G(s) = [I + lo(s)∆(s)]G0(s) (3)

lo(s) = max
G(s)∈Πo

σM{[G(s) − G0(s)]G0(s)
−1}.

• Inverse-additive type uncertainty

Πia : G(s) = (I + liaG0(s)∆(s))−1G0(s) (4)

lia = max
G(s)∈Πia

σM{G−1(s)(G(s) − G0(s))G0(s)
−1).
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Fig. 2. Standard feedback configuration with additive uncertainty.

Closed-loop with uncertain plant represented by means of additive uncertainty (1)
is in Figure 2.
Block diagram for other uncertainty types are derived similarly. Each such block
diagram can be easily put into the M − ∆ structure (Figure 3).

Fig. 3. M − ∆ structure.

If the nominal closed-loop system is stable then M is stable and ∆ is a stable
uncertainty which can destabilize the system. The following theorem establishes
conditions on M so that the M − ∆ closed-loop system is stable [20].

Theorem 1. (Robust stability for unstructured uncertainty) Assume that the
nominal closed-loop system M(s) is stable and the uncertainty ∆(s) is stable. Then
the M − ∆ system in Figure 3 is stable for all uncertainty models ∆(s) satisfying
σM (∆) ≤ 1 if and only if

σM (M(s)) < 1, ∀ω. (5)

For individual uncertainty forms the corresponding matrices Mk, k = a, i, o, ia are
as follows:

Ma(s) = −la(s)[I + R(s)G0(s)]
−1R(s)

Mi(s) = −li(s)[I + R(s)G0(s)]
−1R(s)G0(s) (6)

Mo(s) = −lo(s)G0(s)R(s)[I + G0(s)R(s)]−1

Mia(s) = lia(s)(I + G0(s)R(s))−1G0(s).
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Stability of the closed-loop with the nominal model (nominal stability) can be ex-
amined using the Generalized Nyquist stability theorem [14, 20]. The multivariable
stability theory relies on the concept of the system return difference [3]

F (s) = [I + Q(s)] (7)

where F (s) ∈ Rm×m is the system return-difference matrix, Q(s) = G(s)R(s) ∈
Rm×m is the open loop transfer function matrix for the system in Figure 1.

Following standard notation is used throughout the paper. The Nyquist D-
contour in the complex plane consists of the imaginary axis s = jω and an infinite
semi-circle into the right-half plane avoiding locations where Q(s) has jω -axis poles
by making small indentations to the right-half plane around these points; Nyquist
plot of a complex function g(s) is the image of the Nyquist D-contour under g(s);
N [k, g(s)] denotes the number of anticlockwise encirclements of the point (k, j0) by
the Nyquist plot of g(s). Characteristic functions of Q(s) are the set of m algebraic
functions qi(s), i = 1, 2, . . . ,m defined as [14]

det[qi(s)I − Q(s)] = 0 i = 1, 2, . . . ,m. (8)

Characteristic loci (CL) are the set of loci in the complex plane traced out by the
characteristic functions of Q(s), ∀ s ∈ D. The closed-loop characteristic polynomial
expressed in terms of characteristic functions of Q(s) reads as follows

det F (s) = det[I + Q(s)] =
m∏

i=1

[1 + qi(s)]. (9)

Theorem 2. (Generalized Nyquist Stability Theorem) The closed-loop system in
Figure 1 is stable if and only if

det F (s) 6= 0 ∀ s ∈ D

N [0, detF (s)] =
∑m

i=1 N{0, [1 + qi(s)]} = nq

(10)

where F (s) = (I + Q(s)) and nq is the number of unstable poles of Q(s).

Problem Formulation. Consider an uncertain system with m subsystems given
by a nominal model and the model uncertainty described by (1), (2) and (3). Let the
nominal model G0(s) can be split into the diagonal part (representing mathematical
models of decoupled subsystems) and the off-diagonal part (representing interactions
between subsystems)

G0(s) = Gd(s) + Gm(s) (11)

where Gd(s) = diag{G0(s)}m×m and Gm(s) = G0(s) − Gd(s).

A decentralized controller

R(s) = diag{Ri(s)}m×m, det R(s) 6= 0 ∀ s ∈ D (12)

is to be designed with Ri(s) being transfer function of the ith local controller. The
designed controller has to guarantee stability of the whole family of plants specified
by (1), (2), (3) or (4) (i. e. robust stability, RS) and a specified performance of the
nominal model (nominal performance, NP).
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3. DECENTRALIZED CONTROLLER DESIGN FOR NOMINAL
PERFORMANCE AND ROBUST STABILITY

3.1. Decentralized controller design for nominal performance

The proposed DC design technique evolves from factorization of the closed-loop
characteristic polynomial in terms of the split nominal system (11) under the decen-
tralized controller (12)

det F (s) = det{I + [Gd(s) + Gm(s)]R(s)} (13)

= det[R(s)−1 + Gd(s) + Gm(s)] det R(s).

Existence of R(s)−1 is implied by the assumption (12) that detR(s) 6= 0. Denote

F1(s) = R(s)−1 + Gd(s) + Gm(s). (14)

With respect to (13) – (14) the necessary and sufficient stability conditions of Theo-
rem 2 modify as follows.

Corollary 1. The closed-loop comprising the nominal system G0(s) and the de-
centralized controller (12) is stable if and only if

det F1(s) 6= 0 ∀ s ∈ D (15)

N [0, detF1(s)] + N [0, det R(s)] = nq. (16)

The first two terms in (14) are diagonal matrices comprising information on the
dynamics of decoupled subsystems. Denote

P (s) = R(s)−1 + Gd(s) (17)

where P (s) = diag{pi(s)}m×m is a matrix that changes with R(s) and conversely,
by specifying P (s) through R(s)−1 it is possible to affect performance of individual
subsystems (including stability). A simple manipulation of (17) yields

I + R(s)[Gd(s) − P (s)] = I + R(s)Geq(s) = 0 (18)

where

Geq = Gd(s) − P (s) = diag{Gi(s) − pi(s)}m×m = diag{Geq
i }m×m (19)

is a diagonal matrix of equivalent subsystems. For individual subsystems, (18) yields

1 + Ri(s)G
eq
i (s) = 0 i = 1, 2, . . . ,m (20)

which are the m equivalent characteristic equations.
Substituting (17) into (14) we obtain

det F1(s) = det[P (s) + Gm(s)]. (21)

In the context of the independent design philosophy, the design parameters pi(s), i =
1, 2, . . . ,m represent the bounds for individual designs. To be able to provide closed-
loop stability of the full system using a DC controller, pi(s), i = 1, 2, . . . ,m are to
be chosen so as to appropriately cope with the interactions Gm(s).
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3.1.1. Development of conditions for nominal stability and performance

According to (8), characteristic functions gi(s) of Gm(s) are defined as follows

det[gi(s)I − Gm(s)] = 0 i = 1, 2, . . . ,m. (22)

Substituting for P (s) = pi(s)I in (21) and equating to zero yields

det[pi(s)I + Gm(s)] = 0 i = 1, 2, . . . ,m. (23)

Hence the pi(s) satisfying (23) are actually the m characteristic functions of [−Gm(s)].
If the diagonal entries of P (s) are identical and equal to any of the characteristic

functions of [−Gm(s)] then the following reasoning can be made (assuming that
(10) b) holds):

1. If P (s) = −gk(s)I where fixed k ∈ {1, 2, . . . ,m} then

det F1(s) =

m∏

i=1

[−gk(s) + gi(s)] = 0 ∀ s ∈ D. (24)

In this case the closed-loop system is at the limit of instability; the equivalent
subsystems generated by the selected gk(s) are

Geq
ik (s) = Gi(s) + gk(s) i − 1, 2, . . . ,m. (25)

2. If P (s − α) = −gk(s − α)I, fixed k ∈ {1, 2, . . . ,m}, then

det F1(s − α) =

m∏

i=1

[−gk(s − α) + gi(s − α)] = 0 ∀ s ∈ D. (26)

In this case the closed-loop system would be at the limit of instability “shifted
to −α”, i. e. having just poles with Re s ≤ −α; thus its degree of stability is α
and the equivalent subsystems generated by the selected gk(s − α) are

Geq
ik (s − α) = Gi(s − α) + gk(s − α) i = 1, 2, . . . ,m. (27)

3. If P (s − α) = −gk(s − α)I fixed k ∈ {1, 2, . . . ,m}, 0 ≤ α ≤ αm, where αm

denotes the maximum achievable degree of stability for the given plant under
a decentralized controller (it may depend on plant dynamics and/or existing
fixed modes of system) then the following inequality holds

detF1k =
m∏

i=1

[−gk(s − α) + gi(s)] =
m∏

i=1

rik(s) 6= 0 ∀ s ∈ D. (28)

Note that for any α1 : 0 ≤ α1 ≤ αm the characteristic loci gi(s − α1) and
gk(s − αm) must not intersect.

Hence by suitably choosing gk(s−α) it is possible to specify the required closed-loop
performance under the decentralized controller in terms of the degree of stability.
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Definition 1. Consider a fixed k ∈ {1, 2, . . . ,m} and α > 0. The characteristic
locus gk(s − α) of the matrix Gm(s − α) will be called a proper characteristic locus
if it satisfies conditions (24), (26) and (28). The set of all proper characteristic loci
will be denoted PS .

Lemma 1. The closed-loop in Figure 1 comprising nominal system G0(s) and a
decentralized controller R(s) (12) is stable if and only if the following conditions are
satisfied ∀ s ∈ D, α ≥ 0

1. gk(s − α) ∈ PS , fixed k ∈ {1, 2, . . . ,m};

2. all equivalent characteristic polynomials CLCPeq
i = 1 + Ri(s) Geq

i (s), i =
1, 2, . . . ,m have roots with Re(s) ≤ −α;

3. N [0, det F (s − α)] = nqα where F (s − α) = I + G(s − α) R(s − α) and nqα is
the number of open loop poles with Re s > −α.

P r o o f o f L emma 1 is evident from previous considerations.

3.1.2. Illustrative examples

Following simple examples illustrate applicability of the above theoretical results.
To design local controllers for equivalent subsystems any frequency domain method
of SISO controller design can be used. Here, a modification of the Neymark D-
partition method was applied [16]. Commonly, D-partition is applied as a conformal
mapping of s = jω, ω ∈ 〈−∞, ∞〉 onto the plane of parameters of the closed
loop characteristic polynomial (CLCP); in our case the two-dimensional space of PI
controller parameters is considered, i. e. the (r0, r1) plane if considering parallel form
of the PI controller R(s) = r0 + r1

s . The proposed modification consists in mapping
s = −α + jω, ω ∈ 〈0, ωmax〉, α ∈ 〈0, αm〉 onto the (r0, r1) plane of individual
equivalent closed loop characteristic polynomials CLCPeq

i , i = 1, . . . ,m yielding a
family of Dα-plots for each. Local controller parameters chosen from the Dα-plot
specific for some feasible α guarantee the same degree of stability α for the full
system under the designed decentralized controller; it is necessary to note that if
using point-by-point calculation of individual Dα-plots it may not be feasible to
recognize singular lines and properly identify regions corresponding to individual
degrees of stability (“α stability regions”).

Example 1. (stable subsystems/stable interactions) Consider a MIMO system
described by [ 1

(s+1)(s+a)
0.5

0.7s+b

0.8
0.5s+c

1.3
(1.2s+1)(1.4s+1)

]
(29)

with a = 0.5, b = 1, c = 1.
CL’s of Gm(s − α) plotted for α ∈ {0.0, 0.1, 0.2, 0.3, 0.4} are in Figures 4 – 5; for

the controller design procedure, the CL g2(s − α) has been chosen. To check its
properness, it remains to verify condition (28). Corresponding curves are plotted
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in Figure 6, whereby the “large” curve verifies the lumped condition (28), the two
“small” curves correspond to the individual factors. Obviously, g2(s − α) ∈ PS .

Fig. 4. Characteristic loci g1(s − α).

Fig. 5. Characteristic loci g2(s − α).

Nyquist plots of equivalent subsystems generated by g2(s − α) according to (25)
are in Figures 7 – 8. The Dα-plots of individual equivalent subsystems in the (r0, r1)
plane plotted for α ∈ {0.0, 0.1, 0.2, 0.3, 0.4} are in Figures 9 – 10 (zoomed on regions
of feasible controller parameters).

Resulting local PI controllers constituting the decentralized controller R(s) =
diag{Ri(s)}2×2 were designed for α = 0.3.

R1(s) = 0.691 +
0.300

s
R2(s) = 0.782 +

0.388

s
.

Closed-loop stability and performance have been verified by calculating closed loop
poles and checking the encirclement condition 3 of Lemma 1 for detF (s − 0.3).
Closed-loop poles of the full system under the designed controller are

Λ = {−0.3;−0.32±0.672j;−0.3958;−0.4109; −0.7057±0.5443j; −1.3538;−2.3017}.
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Fig. 6. Verification of condition (28) for g2(s − α), α = {0, 0.3}.

Fig. 7. Nyquist plots of equivalent subsystems Geq
12(s − α).

Fig. 8. Nyquist plots of equivalent subsystems Geq
22(s − α).
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Fig. 9. Dα-plots for Geq
12(s − α).

Fig. 10. Dα-plots for Geq
22(s − α).

Fig. 11. Nyquist plot of det F (s − 0.3).
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Poles of G(s) are the poles of its individual entries, i. e. {−0.5;−0.7143;−0.833;−1.0;
−1.429;−2}; R(s) has a double pole in s = 0, hence nq,0.3 = 2 and nq = 0.

The closed loop system under the DC will be stable with a guaranteed degree of
stability α = 0.3 if N [0, detF (s − 0.3)] = nq,0.3 = 2 and N [0, detF (s)] = nq = 0.
Nyquist plot of detF (s − 0.3) in Figure 11 proves that the required closed-loop
performance in terms of the degree of stability has been achieved (the point marked
by asterisk corresponds to ω → ±∞).

Example 2. (Unstable subsystem, stable interactions) Consider G(s) in (29) with
a = −0.5, b = 1, c = 1, i. e. the 1st subsystem is unstable and the interactions are
stable with the same Gm(s) as in Example 1; hence characteristic loci of Gm(s)
and verification of the CL properness condition (28) are in Figures 4 – 6. From
the Dα-plots of individual equivalent subsystems in Figures 12 – 13 plotted for α ∈
{0.0, 0.1, 0.2, 0.3, 0.4} it is evident that the maximum achievable degree of stability is
αm = 0.1 (if α > 0.1 the values r1 for Geq

12(s−α) are negative and hence unfeasible).

Fig. 12. Dα-plots for the Geq
12(s − α).

Fig. 13. Dα-plots for the Geq
22(s − α).

Local PI controllers designed for α = 0.1 are as follows

R1(s) = 0.55 +
0.011

s
R2(s) = 1.194 +

0.582

s
.
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Closed-loop poles are

Λ = {−0.14;−0.2479 ± 0.2672j; −0.3188 ± 0.6872j; −0.4714; −1.3136;−2.417}.

Poles of G(s) are now {0.5;−0.7143; −0.833; −1.0;−1.429;−2} and R(s) has a double
pole in s = 0; hence nq,0.1 = 3 and nq = 1. The closed loop system under the DC is
stable with guaranteed degree of stability α = 0.1 if N [0, detF (s−0.1)] = nq,0.1 = 3
and N [0, det F (s) = nq = 1. Corresponding Nyquist plots in Figure 14 (for the sake
of clarity plotted just for ω > 0, hence encirclements of [0, 0j] are to be doubled)
confirm achieving of the required closed-loop performance in terms of the degree of
stability α = 0.1.

Fig. 14. Nyquist plot of det F (s).

Fig. 15. Nyquist plot of det F (s − 0.1).

Lemma 1 and the above examples show that the required performance in terms of
the degree of stability α achieved for individual equivalent subsystems guarantee
achieving of that degree of stability for the full closed-loop system.

Using the proposed design philosophy, local controllers for equivalent subsystems
can be designed using any frequency-domain controller design method for SISO sys-
tems. For example, according to Lemma 1 and using Nyquist plots of equivalent
subsystems with α = 0, local controllers guaranteeing performance of equivalent
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subsystems in terms of phase and gain margins can be obtained. However, inter-
pretation of various performance measures (other than degree of stability) achieved
in equivalent subsystems in terms of performance measure of the full closed-loop
system is subject of ongoing research.

3.2. Decentralized controller design for robust stability

Let the possible realizations of the uncertain plant G(s) be given as a set of N
transfer function matrices corresponding to N different operating points, hence

Gk(s) = {Gk
ij(s)}m×m k = 1, 2, . . . , N (30)

with
Gk

ij(s) =
yk

i (s)

uk
j (s)

i, j = 1, 2, . . . ,m

where yk
i (s) is the ith output and uk

j (s) is the jth input of the plant in the kth
operating point.

In this case, individual perturbation forms and related families of plants Πk, k =
a, i, o, ia are obtained using relations (1), (2) and (3) modified as follows:

• Additive uncertainty

Πa : G(s) = G0(s) + la(s)∆(s) (31)

la(s) = max
k

σM{Gk(s) − G0(s)}. (32)

• Multiplicative input uncertainty

Πi : G(s) = G0(s)[I + li(s)∆(s)] (33)

li(s) = max
k

σM{G0(s)
−1[Gk(s) − G0(s)]}. (34)

• Multiplicative output uncertainty

Πo : G(s) = [I + lo(s)∆(s)]G0(s) (35)

lo(s) = max
k

σM{[Gk(s) − G0(s)]G0(s)
−1}. (36)

• Inverse additive uncertainty

Πia : G(s) = (I + liaG0(s)∆(s))−1G0(s) (37)

lia = max
k

σM{(Gk(s))−1(s)(Gk(s) − G0(s))G0(s)
−1). (38)

To examine robust stability, conditions (5) and the relations (6) are applied in a
usual way.

The resulting robust controller design procedure has the following main steps.
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1. Choice of nominal model G0(s) = Gd(s) + Gm(s), computation and plotting
uncertainty bounds lk, k = a, i, o, ia according to (31), (33), (35) or (37).

2. Design of local controllers Ri(s)
δi

, i = 1, 2, . . . ,m for equivalent subsystems with
δi = 1, i = 1, . . . ,m according to Lemma 1. The decentralized controller has
the form

R(s) =




R1(s)
δ1

0 0

0 · · · 0

0 0 Rm(s)
δm




3. Verification of the robust stability condition (5). If satisfied, the design proce-
dure stops, otherwise the design procedure repeats to find δi which have the
most beneficial effect on the robust stability condition improvement. Usually,
δi, i = 1, 2, . . . ,m is increased and the procedure repeats with step 2.

Remark. Finding δi, i = 1, 2, . . . ,m is performed in m steps. In each step a
single δi is increased while the other δ′s remain unchanged, and the robust stabil-
ity condition is verified. The single δk, k ∈ {1, 2, . . . ,m} which contributes to the
robust stability improvement in the most significant way, is then chosen to modify
parameters of the local controller Rk(s).

4. CASE STUDY

The quadruple tank laboratory process consists of four tanks [8]. Its linearized
dynamics can be described by a transfer function matrix

G(s) =




3.7γ1

62s+1
3.7(1−γ2)

(23s+1)(62s+1)

4.7(1−γ1)
(30s+1)(90s+1)

4.7γ2

90s+1




where γ1, γ2 ∈ (0, 1). The system is minimum phase if 1 < γ1 + γ2 < 2.

A decentralized PI controller is to be designed guaranteeing:

1. robust stability over the whole operating range specified by three working points
WPi, i = 1, 2, 3 chosen from inside of the “minimum phase” region;

2. specified nominal performance.

WP1 : γ1 = 0.4; γ2 = 0.8 G1(s) =

[ 1.48
62s+1

0.74
(23s+1)(62s+1)

2.82
(30s+1)(90s+1)

3.76
90s+1

]

WP2 : γ1 = 0.8; γ2 = 0.4 G2(s) =

[ 2.96
62s+1

2.22
(23s+1)(62s+1)

0.94
(30s+1)(90s+1)

1.88
90s+1

]

WP3 : γ1 = 0.8; γ2 = 0.8 G3(s) =

[ 2.96
62s+1

0.74
(23s+1)(62s+1)

0.94
(30s+1)(90s+1)

3.76
90s+1

]
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The nominal model obtained as a mean value parameter model (corresponding to
γ1 = 0.6667; γ2 = 0.6667) is

G0(s) =

[ 2.4667
62s+1

1.2333
(23s+1)(62s+1)

1.5667
(30s+1)(90s+1)

3.1333
90s+1

]

Characteristic loci g2(s − α) plotted for α ∈ {0; 0.005; 0.007; 0.009; 0.011; 0.013} are
in Figure 16.

Fig. 16. Characteristic loci g2(s − α).

The Dα-plots of individual equivalent subsystems plotted for α ∈ {0; 0.005; 0.007;
0.009; 0.011; 0.013} in the (r0, r1) plane are in Figures 17 – 18.

Fig. 17. Dα-plots for the Geq
12(s − α), α ∈ {0; 0.005; 0.007; 0.009}.

The decentralized controller has been designed for α = 0.009. The resulting local
controllers are

R1(s) = 0.18 +
0.01734

s
R2(s) = 0.3 +

0.02306

s
.

Closed-loop poles are

Λ = {−0.009 ± 0.0304j; −0.011;−0.017 ± 0.01571j; −0.025;−0.0448}.
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Fig. 18. Dα-plots for the Geq
22(s − α), α ∈ {0; 0.005; 0.007; 0.009}.

Nominal closed-loop step responses and step responses in the three working points
are in Figures 19 – 22 (in all cases, step change in the 1st reference occurs in 0 s, step
change in the 2nd reference in 150 s).

Fig. 19. Nominal closed-loop step response.

Verification of the robust stability condition (4) for three uncertainty types is in
Figure 23 for δ1 = δ2 = 1.

The designed decentralized PI controller guarantees the prescribed degree of sta-
bility α = 0.009 for the mean value parameter nominal model, and stability over the
whole operating range of the plant specified by the three working points.

5. CONCLUSION

In this paper a novel frequency-domain approach to the decentralized controller de-
sign for performance and robust stability has been proposed. Its main advantage
consists in that the plant interactions are included in the design of local controllers
so as to achieve required closed-loop performance of the full system (in this pa-
per the required performance was specified in terms of the degree of stability).
Local controllers are designed using the independent design approach applied for



A New Nyquist-Based Technique for Tuning Robust Decentralized Controllers 81

Fig. 20. Closed-loop step response for WP1.

Fig. 21. Closed-loop step response for WP2.

Fig. 22. Closed-loop step response for WP3.
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Fig. 23. Verification of the robust stability condition σM (Mk(jω), k = a, i, o.

the equivalent subsystems that are actually Nyquist plots of individual decoupled
subsystems modified using a selected characteristic locus of the plant interaction
matrix. Local controllers designed for equivalent subsystems guarantee fulfilment
of performance requirements imposed on the full system without any performance
deterioration brought about by the effect of interactions. To guarantee robust sta-
bility, the M − ∆ stability conditions are used. Unlike standard robust approaches,
the proposed technique considers full nominal model thus reducing conservativeness
of resulting robust stability conditions. The developed frequency domain design pro-
cedure is graphical, interactive and insightful. Theoretical results are supported by
several examples and a case study.
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