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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , N U MBE R 6 , P AG E S 9 6 0 – 9 7 1

GOODNESS–OF–FIT TESTS
FOR PARAMETRIC REGRESSION MODELS
BASED ON EMPIRICAL CHARACTERISTIC FUNCTIONS

Marie Hušková and Simos G. Meintanis

Dedicated to the memory of Sándor Csörgő

Test procedures are constructed for testing the goodness-of-fit in parametric regression
models. The test statistic is in the form of an L2 distance between the empirical character-
istic function of the residuals in a parametric regression fit and the corresponding empirical
characteristic function of the residuals in a non-parametric regression fit. The asymptotic
null distribution as well as the behavior of the test statistic under contiguous alternatives
is investigated. Theoretical results are accompanied by a simulation study.
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1. INTRODUCTION

Assume the general model

Y = m(X) + σ(X)ε, (1.1)

where m(·) and σ(·) denote a unspecified function of the regressor X and an unspeci-
fied variance function, respectively, and the error ε is assumed to have a distribution
function (DF) F , with mean zero and unit variance. The error ε and the regressor
X are assumed to be independent.

On the basis of independent observations {Yj , Xj}, j = 1, 2, . . . , n, we wish to
test the null hypothesis

H0 : m(·) = m(·, ϑ), for some ϑ ∈ Θ ⊆ Rp,

where m(X,ϑ) denotes a specified regression function of the regressor X.
Write ej = Yj − m̂(Xj) for the residuals resulting from a non-parametric fit m̂(·)

and σ̂2
nj := σ̂2

n(Xj), for the corresponding estimate of the variance σ2(·). Also let

uj = Yj −m(Xj , ϑ̂n), where ϑ̂n is an estimator of ϑ0, be the residuals corresponding
to a parametric fit suggested by the null hypothesis H0.
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There exist a variety of tests for the null hypothesis H0. Some of them are based
on a distance between a nonparametric and the parametric fit corresponding to the
null hypothesis, while others use only the parametric regression fit and reject the
null hypothesis if the quality of this fit is not good. Works of this nature include
Eubank et al. [4], Härdle and Mammen [7], Stute et al. [15], and Whang [18]. There
are also many tests which are moment-based, often utilizing the distance between
two variance estimators; see for instance Li and Wang [12], Fan and Huang [5] and
Dette [3].

Since regression estimation, either in the nonparametric setting or in the context
of parametric regression, induces a corresponding estimate of the residual DF, it
is only natural to consider a classical test statistic, such as those based on the
empirical DF, which measure the distance between a pair of empirical DF’s; namely,
one empirical DF is constructed based on the nonparametric residuals while the other
incorporates the parametric residuals corresponding to a parametric fit. Thus the
procedure is reminiscent of a two-sample test. In fact van Keilegom et al. [16] have
considered this possibility, and constructed Kolmogorov–Smirnov and Cramér–von
Mises type statistics for testing a parametric regression model.

The present work is in the spirit of van Keilegom et al. [16], but in view of the
uniqueness of the characteristic function (CF), instead of using the empirical DF we
employ the empirical CF. Specifically, the proposed test statistic incorporates the
empirical CF

φn(t) =
1

n

n∑

j=1

eitbej and ϕn(t) =
1

n

n∑

j=1

eitbuj ,

of the standardized residuals êj = ej/σ̂nj and ûj = uj/σ̂nj , j = 1, 2, . . . , n, and takes
the form

Tn,w = n

∫ ∞

−∞
|φn(t) − ϕn(t)|2w(t) dt, (1.2)

where w(·) denotes a weight function which is assumed to satisfy

w(t) = w(−t) ≥ 0 and 0 <

∫ ∞

−∞
w(t) dt < ∞. (1.3)

Rejection of the null hypothesis is for large values of Tn,w.

Motivation for using the empirical CF stems from earlier studies suggesting that
nonparametric procedures based on the empirical CF may prove competitive to
corresponding methods based on the empirical DF; cf. Hušková and Meintanis [9],
Meintanis [13], Bondell [2], Bilodeau and Lafaye de Micheaux [1], Gupta et al. [6],
Henze et al. [8], and Kankainen and Ushakov [11].

Although w(t) figuring in (1.2), may be any weight function satisfying (1.3),
priority is given to functions that render the corresponding test statistic in closed
form. In order to identify such functions notice that starting from (1.2) and after
straightforward algebra one arrives at
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Tn,w =
1

n

n∑

j,k=1

{Iw (êj − êk) + Iw (ûj − ûk) − 2Iw (êj − ûk)} , (1.4)

where

Iw(β) =

∫ ∞

−∞
cos(βt)w(t) dt.

Therefore, with computational simplicity in mind, we suggest w(t) = e−γ|t| and

w(t) = e−γt2 , γ > 0 as weight functions. In fact these functions lead to interesting
limit statistic as γ → ∞. To see this let w(t) = e−γ|t| in (1.4) and after some
manipulation write the resulting test statistic, say Tn,γ , as

Tn,γ =

∫ ∞

0

g(t)e−γ|t| dt,

where

g(t) = 2n
{
[Cn(t) − Un(t)]2 + [Sn(t) − Vn(t)]2

}
,

with Cn(t)=n−1
∑n

j=1 cos(têj), Un(t)=n−1
∑n

j=1 cos(tûj), Sn(t)=n−1
∑n

j=1 sin(têj),

and Vn(t) = n−1
∑n

j=1 sin(tûj) being the real and imaginary parts of φn(t) and

ϕn(t), respectively. Using the expansions cos(x) = 1 − x2/2 + o(x2) and sin(x) =
x − x3/6 + o(x3) one obtains

g(t) = 2n
(
¯̂e − ¯̂u

)2
t2 + o(t2), t → 0 a.s.,

where ¯̂e = n−1
∑n

j=1 êj , ¯̂u = n−1
∑n

j=1 ûj . Consequently an Abelian theorem for
Laplace transforms (see Zayed [19]), § 5.11) gives

lim
γ→∞

γ3Tn,γ = 4n
(
¯̂e − ¯̂u

)2
a.s.

Hence by letting γ → ∞, the test statistic is reduced to a comparison between the
sample means of the residuals, properly standardized. An analogous argument with
w(t) = e−γt2 yields the limit statistic

lim
γ→∞

γ3/2Tn,γ = n

√
π

2

(
¯̂e − ¯̂u

)2
a.s.

2. ASYMPTOTIC RESULTS

Asymptotic theory, both under H0 and under alternatives, is facilitated by the fol-
lowing representation for the test statistic:

Tn,w =

∫ ∞

−∞
Z2

n(t)w(t) dt, (2.1)
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where

Zn(t) =
1√
n

n∑

j=1

{cos (têj) + sin (têj) − cos (tûj) − sin (tûj)} . (2.2)

The results on the limit behavior of the test statistics Tn,w are presented here
together with basic discussion.

We start with the assumptions on the model. We assume that (X1, Y1), . . . , (Xn, Yn)
are independent identically distributed (i.i.d.) random vectors such that

Yj = m(Xj) + σ(Xj)εj , j = 1, . . . , n, (2.3)

where ε1, . . . , εn, X1, . . . , Xn, m(.) and σ(.) satisfy:

(A.1) Let ε1, . . . , εn be i.i.d. random variables with zero mean, unit variance and
E ε4

j < ∞ and characteristic function ϕ(t), t ∈ R.

(A.2) On the real and imaginary parts of ϕ(t) denoted by C(t) and S(t), we assume
that the first partial derivatives w.r.t. t exist. Specifically, the first derivatives
C ′(t) and S′(t) w.r.t. t are bounded and continuous for all t.

(A.3) X1, . . . , Xn are i.i.d. on [0, 1] with common positive continuous density fX .

(A.4) Let (ε1, . . . , εn) and (X1, . . . , Xn) be independent.

(A.5) Let m be a function on [0, 1] with Lipschitz first derivative.

(A.6) Let σ(x), x ∈ [0, 1] be positive on [0, 1] with Lipschitz first derivative.

(A.7) The weight function w is nonnegative and symmetric, and

∫ ∞

−∞
t4w(t) dt < ∞.

Our procedure depends on the estimators of unknown parameters m(.) and σ(.).
Here are the assumptions related to the kernel K(·) and the bandwidth h = hn

involved in the estimation of m(.) and σ(.).

(A.8) Let K be a symmetric twice continuously differentiable density on [−1, 1] with
K(−1) = K(1) = 0.

(A.9) Let {hn} be a sequence of the bandwidth such that limn→∞ nh2
n = ∞ and

limn→∞ nh3+δ
n = 0 for some δ > 0.

We use the following estimators of the density function fX(.) of Xj ’s, the regression
function m(.) and the variance function σ2(.):

f̂X(x) =
1

nh

n∑

j=1

K((Xj − x)/h), x ∈ [0, 1], (2.4)
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m̂n(x) =
1

nhf̂X(x)

n∑

j=1

K((Xj − x)/h)Yj , x ∈ [0, 1], (2.5)

σ̂2
n(x) =

1

nhf̂X(x)

n∑

j=1

K((Xj − x)/h)(Yj − m̂n(x))2, x ∈ [0, 1]. (2.6)

As an estimator of ϑ we use the least squares estimator ϑ̂n defined as a solution
of minimization problem

min
ϑ∈Θ

n∑

j=1

(
Yj − m(Xj , ϑ)

)2
.

The properties of these estimators were studied, e. g. by Wu [21], White [19, 20],
Seber and Wild [17]. We apply here the properties derived in van Keilegom et
al. [16].

We use the following notation

Bϑ =
{

E
(∂m(X1, ϑ)

∂ϑr

∂m(X1, ϑ)

∂ϑs

)}
r,s=1,...,p

,

b(x, ϑ) =
(∂m(x, ϑ)

∂ϑ1
, . . . ,

∂m(x, ϑ)

∂ϑp

)T

and

D(x, ϑ) =
(∂2m(x, ϑ)

∂ϑs∂ϑv

)
s,v=1,...,p

.

Concerning the assumptions on m(·, ϑ) we use those considered in van Keilegom et
al. [16]):

(A.10) Θ is a compact subspace of Rp, the true value of parameter ϑ0 is an interior
point of Θ.

(A.11) m(x, ϑ) is twice differentiable with respect to ϑ0 for all x. There is an
integrable function H(·) such that m2(x, θ) ≤ H(x) for all θ and all x. For all
ε > 0, inf ||θ−θ0||≥ε E (m(X1, θ) − m(X1, θ0))

2 > 0.

(A.12) E
(
||b(X1, ϑ0)||2

)
< ∞, E

(
||D(X1, ϑ0)||2

)
< ∞ and Bϑ0 is non-singular.

(A.13) ||m(x, ϑ0) − m(x, ϑ1)|| + ||b(x, ϑ0) − b(x, ϑ1)|| +||D(x, ϑ0) − D(x, ϑ1)|| ≤
h(x)||ϑ1 − ϑ0|| for all ϑ1 ∈ Θ with Eh2(X1) < ∞.

Theorem 1. Let assumptions (A.1) – (A.13) be satisfied. Then under H0, as
n → ∞,

Tn,w
d→ Z2

ϑ0

∫
(t(C(t) − S(t)))2w(t) dt,
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where Zϑ0 is a normally distributed random variable with zero mean and variance

varZϑ0 = E
(
1 − σ(X1)b

T (X1, ϑ0) B−1
ϑ0

E(σ(X1)
−1b(X1, ϑ0)

)2

.

P r o o f . It is postponed to Section 5. ¤

Next we present the result under the local alternatives:

H1 : m(x) = m(x, ϑ0) +
1√
n

r(x), x ∈ [0, 1] (2.7)

where r(.) satisfies:

E r2(X1) < ∞, E
(
|r(X1)| ||bT (X1, ϑ0)|| ||Bϑ0 ||

)
< ∞. (2.8)

Theorem 2. Let assumptions (A.1) – (A.13) and (2.8) be satisfied. Then under
H1, as n → ∞,

Tn,w
d→ (Zϑ0 + d)2

∫
(t(C(t) − S(t)))2w(t) dt,

where Zϑ0 defined in Theorem 1 and

d = −E
(
σ(X1)

−1bT (X1, ϑ0)
)

B−1
ϑ0

E
(
r(X1)b(X1, ϑ0)

)
+ E

(
σ(X1)

−1r(X1)
)
.

P r o o f . It is postponed to Section 5. ¤

The explicit form of the limit distribution of Tn,w is unknown even under the null
hypothesis. It depends on the hypothetical distribution of the error terms and also
on the density fX of Xi’s, the functions m(.) and σ(.) It does not depend on the
kernel K(.) and the bandwidth hn. But this is in accordance with the results of van
Keilegom et al. [16] for the procedures based on the empirical DF. Therefore the
limit distribution does not provide an approximation for the critical values. However,
a special parametric bootstrap which is discussed later can be used to provide these
critical values.
Notice that no smoothness of the distribution function of εi’s is assumed.

3. SIMULATION RESULTS

In this section the performance of the proposed test statistic is investigated in finite
samples. We consider y = m(x)+σ(x)ε, with m(x) = ϑx, σ(x) = |x| and ε ∼ N(0, 1),
as our reference model under the null hypothesis H0, and Trg(ϑ) : m(x) = sin(πϑx),
Sqt(ϑ) : m(x) = ϑ

√
x, Exp(ϑ) : m(x) = ϑeϑx, and Log(ϑ) : m(x) = ϑ log(x), as

alternatives. The design points Xj , j = 1, 2, . . . , n, are taken as i.i.d. following the
uniform distribution on (0, 1).
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3.1. Test statistics

We consider the proposed test with w(t) = e−γ|t|, denoted by T
(1)
γ , and with

w(t) = e−γt2 , denoted by T
(2)
γ . The corresponding test statistics may be computed

from (1.4) using Iw(β) = 2γ/(β2 +γ2), and Iw(β) =
√

π/γe−β2/4γ , respectively. For
comparison purposes, results on a Kolmogorov–Smirnov (KS) type, and a Cramér–
von Mises type statistic (CM), are also reported. These tests utilize the discrepancy
between the empirical DF of the nonparametric standardized residuals and the cor-
responding empirical DF of the parametric standardized residuals, and are defined
by

KS =
√

n sup
y

|F
be(y) − F

bu(y)|,

and

CM = n

∫
[F

be(y) − F
bu(y)]

2
dF

be(y),

where F
be denotes the empirical DF based on êj = ej/σ̂nj and F

bu denotes the empir-
ical DF based on ûj = uj/σ̂nj , j = 1, 2, . . . , n. For all test statistics, non-parametric
estimation of m(·) employed the Gaussian kernel with bandwidth h. We carried out
the tests with fixed h := h0, where h0 = 0.5 (resp. h0 = 0.8) was used for the
CF and CM statistics (resp. for the KS statistic). These choices are by no means
unique, and other values could have also been used, but serve to match the nominal
size amongst tests, and hence facilitate comparison.

3.2. Bootstrap statistics

For each test statistic, say T , we apply the smooth bootstrap procedure; see for
instance Neumeyer [14]. Under this version of the bootstrap, one computes the
standardized residuals

ê
(s)
j =

êj − 1
n

∑n
l=1 êl√

1
n

∑n
`=1(ê` − 1

n

∑n
l=1 êl)2

, j = 1, . . . , n,

and generates Zj , j = 1, . . . , n, i.i.d. variables having distribution K(·) (in our case
the Gaussian kernel), independently of (Xj , Yj), j = 1, . . . , n. Then the bootstrap
resampling proceeds as follows:

(i) Randomly draw ê
∗(s)
j with replacement from ê

(s)
j , j = 1, . . . , n.

(ii) For a positive constant h̃n, generate bootstrap errors ε∗
j = ê

∗(s)
j + h̃nZj , j =

1, . . . , n.

(iii) Compute the bootstrap observations:

Y ∗
j = m(Xj ; ϑ̂n) + σ̂njε

∗
j , j = 1, . . . , n.



Goodness-of-Fit Tests for Regression Models Based on Empirical Characteristic Functions 967

(iv) Based on (X1, Y
∗
1 ), . . . , (Xn, Y ∗

n ), compute the non-parametric estimates m̂∗(·)
of m(·) and σ̂∗

nj =: σ̂∗
n(Xj) of σ(Xj), and the parametric estimate ϑ̂∗

n.

(v) Compute ê∗
j = (Y ∗

j − m̂∗(Xj))/σ̂∗
nj and û∗

nj = (Y ∗
nj − m(Xj , ϑ̂

∗
n))/σ̂∗

nj , j =
1, 2, . . . , n.

(vi) Calculate the value of the bootstrap version of the test statistic based on ê∗
j

and û∗
j .

When steps (i) – (vi) are repeated a number of times, say B, the sampling distribution
of T is reproduced, and on the basis of this bootstrap distribution we decide whether
the observed value of the test statistic is significant.

In Table 1 and Table 2 the rejection rate for the null hypothesis is reported with
samples of size n = 50 and n = 75, respectively. The nominal size of the test is
5% and 10%. The figures are in the form of percentage of rejection rounded to the
nearest integer, and were obtained from 1000 repetitions with B = 500 bootstrap
replications. For the smooth bootstrap we have used the value h̃n = n−1/4 which
is among those suggested by Neumeyer [14]. All tests are seen to be somewhat
conservative when estimating the nominal size, particularly for n = 50. Between the
standard tests the KS appears to be the most powerful overall. Between the new

tests, power slightly varies with respect to the weight parameter γ, but overall T
(2)
γ

(employing e−γt2 as a weight function) has a slight edge over T
(1)
γ . Moreover T

(2)
γ

with a compromise value of the weight parameter, say γ = 0.04 or 0.06, is seen to
compete well with the empirical DF tests under most alternative cases considered
and with both sample sizes.

Table 1. Percentage of rejection for the linear null hypothesis

observed in 1 000 samples of size n = 50 with

nominal size 5% (left entry), 10% (right entry).

T
(1)
0.30 T

(1)
0.40 T

(1)
0.50 T

(2)
0.04 T

(2)
0.06 T

(2)
0.08 KS CM

H0(ϑ = 0) 3 8 3 7 3 7 3 8 3 7 3 7 3 8 3 7

Trg(0.125) 28 41 26 38 19 34 27 42 26 40 20 35 30 51 24 36

Trg(0.25) 81 90 79 89 75 87 82 92 80 90 76 87 70 86 63 82

Trg(0.50) 97 99 97 99 97 100 97 99 97 99 98 100 90 97 97 99

Sqt(0.125) 7 12 7 11 7 10 8 13 7 11 6 11 11 22 10 18

Sqt(0.25) 31 45 28 42 22 37 32 46 27 43 22 36 32 53 30 44

Sqt(0.50) 83 92 82 91 79 89 85 93 83 92 81 90 78 90 80 90

Exp(0.10) 13 22 10 19 9 16 13 24 10 19 9 18 21 37 23 37

Exp(0.125) 23 36 20 32 17 28 23 37 21 33 18 29 34 50 37 49

Exp(0.15) 37 51 33 48 29 44 38 51 34 48 30 45 46 63 48 62

Log(0.10) 10 21 11 21 11 20 12 22 13 23 12 23 16 26 14 25

Log(0.125) 14 26 15 27 15 28 16 28 18 29 18 29 20 34 21 35

Log(0.15) 18 32 19 34 21 36 18 32 21 35 22 37 26 44 27 44
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Table 2. Percentage of rejection for the linear null hypothesis

observed in 1 000 samples of size n = 75 with

nominal size 5% (left entry), 10% (right entry).

T
(1)
0.30 T

(1)
0.40 T

(1)
0.50 T

(2)
0.04 T

(2)
0.06 T

(2)
0.08 KS CM

H0(ϑ = 0) 5 9 4 9 4 8 5 9 4 8 4 8 6 11 4 8

Trg(0.125) 56 70 49 65 43 58 56 70 48 65 44 58 68 82 45 59

Trg(0.25) 97 99 97 99 97 99 98 99 98 99 97 99 96 98 92 97

Trg(0.50) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Sqt(0.125) 16 23 13 21 11 18 16 23 13 21 11 18 30 42 22 33

Sqt(0.25) 65 79 61 74 49 64 64 80 59 73 50 66 73 84 60 74

Sqt(0.50) 99 99 99 100 99 100 99 100 99 100 99 100 99 100 99 99

Exp(0.10) 39 53 34 49 32 44 39 53 36 49 33 45 55 70 52 63

Exp(0.125) 61 72 57 70 53 66 61 73 57 71 53 68 74 83 68 80

Exp(0.15) 79 87 76 86 72 84 80 88 77 87 73 84 87 93 84 91

Log(0.10) 47 63 48 63 48 63 49 64 50 64 50 64 51 66 54 68

Log(0.125) 63 78 67 83 67 83 62 80 66 83 67 83 64 81 71 82

Log(0.15) 72 86 78 90 80 91 75 88 76 91 77 92 76 90 83 91

4. PROOFS

The proofs of both theorems are somehow similar to those of Theorems in Hušková
and Meintanis [10]. Important part of the proofs utilize the results on the estimator

θ̂ by van Keilegom et al. [16], see Lemma A.1 and A.2.

P r o o f o f T h e o r em 1. Notice that the residuals êj can be expressed as

êj = εj + εj

( σ(Xj)

σ̂n(Xj)
− 1

)
+

m(Xj) − m̂n(Xj)

σ̂n(Xj)
, j = 1, . . . , n,

and then by the Taylor expansion we have

cos(têj) = cos(tεj) − t sin(tεj)
(
εj

( σ(Xj)

σ̂n(Xj)
− 1

)
+

m(Xj) − m̂n(Xj)

σ̂n(Xj)

)
+ t2Rc

nj(t),

j = 1, . . . , n, where Rc
nj(t) are remainders. Similar relations can be obtained for

sin(têj)’s, let us denote the respective remainder terms by Rs
nj(t). In an analogous

way we receive for the residuals ûj

ûj = εj + εj

( σ(Xj)

σ̂n(Xj)
− 1

)
+

m(Xj) − m(Xj , ϑ̂n)

σ̂n(Xj)
, j = 1, . . . , n,

and also

cos(tûj) = cos(tεj) − t sin(tεj)
(
εj

( σ(Xj)

σ̂n(Xj)
− 1

)
+

m(Xj) − m(Xj , ϑ̂n)

σ̂n(Xj)

)
+ t2Qc

nj(t),
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j = 1, . . . , n, where Qc
nj(t) are remainders. The respective remainder terms of Taylor

expansions for sin(tûj)’ are denoted by Qs
nj(t).

Thus under H0 Zn(t) can be expressed as

Zn(t) =
t√
n

n∑

j=1

(− sin(tεj) + cos(tεj))
m̂(Xj) − m(Xj , ϑ̂n)

σ̂n(Xj)

+
t2√
n

n∑

j=1

(Rc
nj(t) + Rs

nj(t) + Qc
nj(t) + Qs

nj(t)).

Since under H0 m(·) = m(·, θ0) and since the assumptions Lemma 3 in Hušková and
Meintanis [10] can be applied in our setup and we have that

∫ ( t√
n

n∑

j=1

(
− sin(tεj) + cos(tεj)

)m̂(Xj) − m(Xj)

σ̂n(Xj)

− t√
n

n∑

j=1

εj

(
C(t) − S(t)

))2

w(t) dt = oP (1).

Similarly we receive that

∫ ( t√
n

n∑

j=1

(
− sin(tεj) + cos(tεj)

)m(Xj , ϑ̂n) − m(Xj)

σ̂n(Xj)

−t
√

n(ϑ̂n − ϑ0)
T E

( 1

σ(X1)

∂m(X1, ϑ0)

∂ϑ0

)
(C(t) − S(t))

)2

w(t) dt = oP (1).

Next by Lemma A.2 in van Keilegom et al. [16] we have the following asymptotic

representation for the estimator ϑ̂n

√
n(ϑ̂n − ϑ0) =

1√
n

n∑

j=1

B−1
ϑ0

∂m(Xj , θ0)

∂θ
σ(Xj)εj + oP (1)

Still we have to prove that the remainder terms Rc
nj(t), R

s
nj(t), Q

c
nj(t), Qnjs(t)

do not influence the limit behavior. This property for Rc
nj(t), R

s
nj(t) follows from

Lemma 4 in Hušková and Meintanis [10]. Concerning negligibility of Qnjc(t), Qnjs(t)
we notice

t2√
n

n∑

j=1

(|Qc
nj(t)| + |Qs

nj(t)|)

= OP

( t2√
n

n∑

j=1

(
ε2

j (σ
2(Xj) − σ̂2(Xj))

2 + (m(Xj , ϑ̂n) − m(Xj , ϑ0)
2
)

uniformly in t. Applying properties of the estimators σ̂2(Xj) and m(Xj , ϑ̂n) we
receive that ∫ ( t2√

n
(

n∑

j=1

(|Qc
nj(t)| + |Qs

nj(t)|)
)2

w(t) dt = oP (1).
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Combining all these issues together we can conclude that

∫ {
Zn(t) − t(C(t) − S(t))√

n

n∑

j=1

εj(1 − σ(Xj)b
T (Xj , θ0)

B−1
ϑ0

E
( 1

σ(X1)
b(X1, ϑ0))

)}2

w(t) dt = oP (1).

The assertion of Theorem 1 can be easily finished. ¤

P r o o f o f Th e o r em 2. It follows the same line as in Theorem 1 with replacing
m(x, θ) by m(x, θ) + r(x)/

√
n. We also apply Lemma 2 in van Keilegom et al. [16].

The details are omitted. ¤
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