
Kybernetika

Zdeněk Beran
On characterization of the solution set in case of generalized semiflow

Kybernetika, Vol. 45 (2009), No. 5, 701--715

Persistent URL: http://dml.cz/dmlcz/140036

Terms of use:
© Institute of Information Theory and Automation AS CR, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/140036
http://project.dml.cz


KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , N U MBE R 5 , P AG E S 7 0 1 – 7 1 5

ON CHARACTERIZATION OF THE SOLUTION SET
IN CASE OF GENERALIZED SEMIFLOW

Zdeněk Beran

In the paper, a possible characterization of a chaotic behavior for the generalized semi-
flows in finite time is presented. As a main result, it is proven that under specific conditions
there is at least one trajectory of generalized semiflow, which lies inside an arbitrary cov-
ering of the solution set. The trajectory mutually connects each subset of the covering.
A connection with symbolic dynamical systems is mentioned and a possible numerical
method of analysis of dynamical behavior is outlined.
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1. INTRODUCTION

When H. Poincare in 1881 – 1886 published his famous series of four memoirs related
to topological analysis of non-linear dynamical systems and simultaneously a tract on
celestial mechanics [27], a new fruitful era of research that addressed the complicated
behavior of non-linear dynamical systems has begun. In that time, only three types
of attractors were known, namely the fixed points, the periodic trajectories and the
surfaces (in case of conservative systems).

In the beginning of the 1960’s, American meteorologist E.N. Lorenz [17] has
attracted much attention by his famous system of three nonlinear ODEs. Lorenz
obtained this system by “truncating” the Navier–Stokes equations. Thought many
scientists, especially experimentalists, knew this article, it is not too surprising that
most mathematicians did not. Thus, when Ruelle and Takens proposed [28] specif-
ically that turbulence was likely an instance of a “strange attractor”. they did so
without specific solutions of the Navier–Stokes equations, or truncated ones, in mind.
In fact, it was the first rendezvous with serious and mathematically correct approach
to the problems of the chaos when dealing with deterministic continuous/discrete
dynamical systems. The natural question instantaneously rose up, namely whether
that kind of behavior is exceptional in the nature or one has to await it rather often.
In the case of Lorenz attractors, the affirmative answer to the later question has been
done by R.F. Williams [33] who generalized previous result of J. Guckenheimer [13]
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and the main result is (roughly speaking): There is uncountably many topologically
mutually distinct Lorenz attractors.

Since that time, retrospectively, one can observe two basic research areas related
to chaotic systems : the first one is focused to the quest for possible new dynami-
cal systems that produce a chaotic behavior while the second one concentrates on
the problems of the numerical analysis of a particular and already known chaotic
dynamical system [4, 5, 7, 29, 30].

Searching for new systems has been in principle bidirectional, too. The first
direction has its roots, in fact, in physics. A lot of physical phenomena are described
by a systems of nonlinear partial differential equations and to solve them, one has to
reduce the infinite-dimensional description to a finite one. This is done usually by
Galerkin method. As real physical systems are conservative, the first phase of their
analysis is an attempt to prove the existence of an attractor and to access dimension
of it at least theoretically and to access a neighborhood of that attracting set so
that all trajectories that start in this neighborhood have as their target just the
attractor. Equations of mathematical physics for which this program is carried out
include the following: the reaction-diffusion equations from chemical dynamics and
population growth, the incompressible Navier–Stokes equations, geophysical flows,
the Kuramoto–Shivashinsky equation, the Cahn–Hilliard equation, the sine-Gordon
equation, a nonlinear wave equations, the Ginzburg–Landau equation (a nonlinear
Schrödinger equation) and a lot of other mutations of the just mentioned. Among
of hundreds other sources, we can mention very nice compendium [32]. The second
direction comes out of the original Lorenz system. The main task is to generalize the
original structure of the right hand side to get a broad class of systems and trying to
find out a new, non-homeomorphic, system while keeping a chaotic behavior. As a
representatives of that direction, we can mention, e. g., [6, 8, 18]. A “proof” of chaotic
behavior of some concrete system is in that cases usually provided by a numerical
methods together with graphics. As a base point, the authors exploit the templates
homotopical to the figures 8 or B and the main instrument of numerical computations
are different Runge–Kutta difference formulas with automatic change of integration
step, which is usually driven by an a posteriori error. There are hundreds of papers,
which analyze different numerical methods of bifurcation analysis, computation of
stable an unstable manifolds and we only mention a still growing book/lecture notes
[12] and also, e. g., [31].

As a second way a perspective approach started in nineties of the last century.
Dynamical systems may exhibit many beautiful and highly complicated behavior
which are often difficult to capture analytically. With recent advances in computing
power, numerical analysis is a useful approach, either as an initial investigation or
to study systems for which direct analysis if difficult or even impossible. However,
numerical computations require a number of properties which some of the systems
do not initially posses. In the very least, they require finite dimensional systems on
discretized, compact domains. In addition, sensitive dependence, one of the defining
properties of chaotic systems, leads errors to blow up in time. This makes straight
forward simulations of the system problematic if not misleading. Two key obser-
vations give hope that a reduced system, which captures the interesting dynamical
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properties exists. The first observation is that invariant sets often contain functions
that are more regular than the typical functions of the natural phase space. This reg-
ularity, which has been shown to be a property of a large number of systems, allows
for a restriction of the studied domain to a compact subset. The second observation
is that dynamical systems are often low dimensional (e. g., fixed points, periodic
orbits, homoclinic and heteroclinic orbits, horseshoes). An appropriate Galerkin
projection of the full system onto a finite dimensional space should capture such low
dimensional objects ([4, 5, 7, 29, 30]).

The goal of this paper is a generalization of the results on chaotic behavior of
single valued flows to the case of generalized semiflows (definition in Preliminaries).
The main result states roughly that there is at least one trajectory of the gener-
alized semiflow such that when one has arbitrary covering of the solution set with
the surjectivity property (definition in Preliminaries) then the trajectory connects
mutually all subsets of the covering in a finite time. As a result, the trajectory of
the generalized dynamical semiflow can be described/coded through indexing set of
the covering of the solution set and subsequently, the methods of symbolic dynamics
can be used to analyze its dynamics. Moreover, the constructive proof of the main
theorem leads to idea of numerical methods of the Conley index theory to reveal a
topology of the solution set ([24, 25, 26]). So, the novelty of our result can be seen
as a generalization of the existing results for the case of multivalued, noncontinuous
dynamical systems, moreover without any need to construct a specific selector in the
multivalued case when analyzing solution sets including a possible chaotic behavior
of them.

The rest of the paper is organized as follows. Firstly, we give a short description
of ideas that inspired us, then we present some definitions (section three) needed to
formulate and to prove the main results in the fourth section.

2. INITIAL INSPIRATION

The main source of our inspiration is [9, 16], where concise description of a new ap-
proach on a sufficiently abstract level is presented and it seems to us to be worthwhile
to remember it.

We think of Φ : X → X as generating a dynamical system with a′ = Φ(a). Let
{φk|k = 0, 1, 2, . . .} is complete orthogonal basis for X. Let

Pm : X → Xm , span {φk|k = 0, 1, . . . ,m − 1}
be the orthogonal projection onto the first m modes. The standard Galerkin pro-
cedure suggests replacing the study of Φ by that of map f (m) : Xm → Xm where
f (m) , Pm ◦ Φ(·, 0).

The problem is that if we study the dynamics using f (m) then we do not have
any information concerning the errors introduced by the reduction to Xm and by
the projection Pm. To get around this problem observe that we can write

Φ (a) = Φ (Pma, 0) + (Φ (a) − Φ(Pma, 0)) .

In general we cannot hope to determine the right hand term exactly. However if we
restrict our attention to a “small” set of a, then we may be able to obtain a useful
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bound on this term. With this in mind, let W be a compact subset of Xm and let
V be a compact subset of (I − Pm)X. Then, Z , W ×V is a compact subset of X.

Now assume that it can be shown that for all a ∈ Z

‖Φ(a) − Φ(Pma, 0) ‖ < ε.

Then, for all a ∈ Z, Φ (a) lies within an ε-ball of Φ (Pma, 0). We want to recast these
statements about bounds into the language of dynamical systems. Furthermore, we
want this dynamics to be finite dimensional so that we can effectively analyze it.
This leads us to consider multivalued or set valued maps F : W ( Rm with the
property that for all a ∈ Z,

PmΦ(a) ∈ F (Pma) .

Perhaps it is worth noting at this point that if the images of F are “too large” then
we will not be able to extract useful information from it. Thus, obtaining good
bounds on ‖Φ(a) − Φ(Pma, 0) ‖ is essential. At this point we have introduced two
functions, the continuous map f (m) = Pm ◦ Φ(., 0) : W → Rm, which we do not
know explicitly, and a multivalued map F : W ( Rm which encloses f (m) in the
sense that f (m) (Pma) ∈ F (Pma). It is the function F , which implicitly contains the
error estimates that are to be analyzed. However, to directly manipulate an object
with the computer it needs to have a combinatorial structure. To do that, W is
decomposed into a cubical complex on which a combinatorial multivalued map F
that takes grid elements to sets of grid elements is defined. As each grid element
corresponds to a set in W , it is easy to pass from the combinatorial map F to the
multivalued map F . The discussion up to now has described how one proceeds from
infinite dimensional problem to a combinatorial object that can be analyzed using
computer. The question that remains is how to use this combinatorial information to
draw conclusions about the dynamics of Φ. The key tool is the Conley index theory,
which is a topological generalization of Morse theory [22, 23]. In particular, it can be
expressed in terms of homology, which is a combinatorial algebraic topological theory.
Furthermore, the index can be used to prove the existence of specific dynamical
structure such as fixed points, periodic orbits, heteroclinic orbits, and shift dynamics.
The combinatorial map F is used to construct isolating neighborhoods and index
pairs, and finally to compute the associated Conley index for the map f (m). The
important theoretical considerations are that one can pass from F to a multivalued
map F which is enclosure of f (m) and that the Conley index information is preserved
through this transition. The final step is to then verify that the information given
by the Conley index of f (m) on W may be lifted to the full map Φ on Z. We have
moved the definition of the important concept of the Conley index to the Appendix.

The just described abstract schema was successfully applied to some equations
like Cahn–Hilliard equation modeling the process of phase separation of a binary
alloy at a fixed temperature or Swift–Hohenberg equation describing the onset off
Rayleigh–Bénard heat convection, [10, 11].

As far as is to the author known, all examples that have been published in the
literature till now are single valued equations. We would like to generalize the above
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described theory to the case of multivalued ones represented by generalized semi-
flows. The generalized semiflows cover such objects as, e. g. differential inclusions,
e. g., see [1]. We establish some existence result concerning the trajectories of the
generalized semiflows and we will discuss some structural properties of them. The
results are described in the fourth section but first of all, we will define some objects
and their properties in the third section.

3. PRELIMINARIES

Let us define the basic objects of our investigations, e. g., see [2].

Definition 1. A generalized semiflow G on X is a family of maps ϕ : [0, ∞) → X
(called solutions) satisfying the hypotheses:

(H1) (Existence) For each z ∈ X there exists at least one ϕ ∈ G with ϕ (0) = z.

(H2) (Translates of solutions are solutions) If ϕ ∈ G and τ ≥ 0, then ϕτ ∈ G, where
ϕτ (t) , ϕ (t + τ) , t ∈ [0, ∞).

(H3) (Concatenation) If ϕ,ψ ∈ G, t ≥ 0, with ψ (0) = ϕ (t) then θ ∈ G, where

θ(τ) ,
{

ϕ (τ) for 0 ≤ τ ≤ t,
ψ (τ − t) for t < τ

(H4) (Upper-semicontinuity with respect to initial data) If ϕj ∈ G with ϕj(0) → z
then there exists a subsequence ϕµ of ϕj and ϕ ∈ G with ϕ (0) = z such that
ϕµ(t) → ϕ (t) for each t ≥ 0.

Remark. Let G be a generalized semiflow and let E ⊂ X. Define for t ≥ 0

T (t)E , {ϕ (t) |ϕ ∈ G with ϕ (0) ∈ E} ,

so that T (t) : 2X → 2X , where 2X is the space of all subsets of X. It follows from
(H2), (H3) that {T (t)}t≥0 defines a semigroup on 2X . Note that (H4) implies that
T (t) {z} is compact for each z ∈ X, t ≥ 0.

Notation. The expression ϕ (·) ∈ G (x) means the solution ϕ (·) that starts at
x ∈ X.

If for each z ∈ X there is exactly one ϕ ∈ G with ϕ (0) = z then G is called a
semiflow.

Definition 2. The generalized semiflow G is said to be upper-semicompact from X
to C ([0, ∞) ; X) (C means a space of continuous mappings from [0, ∞) into X) if for
any solution xn ∈ X converging to x ∈ X and for any generalized semiflow ϕn (·) ∈
G starting at xn, there exists a subsequence of ϕn (·) converging to a generalized
semiflow ϕ (·) ∈ G uniformly on compact intervals.
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Definition 3. Let D be a closed set and let us consider a sequence of nonempty
closed subsets Sn ⊂ D, n ∈ N ∪ 0 , S = {Sn}, such that Sn ∩ Sn+1 6= Ø. Let
ϕ (·) ∈ G (x) be a solution. We say that S forms a ϕ (·)-chain when there exists a
nondecreasing sequence of times 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn ≤ . . . such that for all n ≥ 0,
for any t ∈ [tn, tn+1] , ϕ (t) ∈ Sn and ϕ (tn+1) ∈ Sn+1.

Definition 4. Let D be a closed set and let us consider a sequence of nonempty
closed subsets Sn ⊂ D and we assume that there exists T < +∞ such that for each
nonnegative n and for each z ∈ Sn+1 there exists x ∈ Sn with solution ϕn (·) ∈ Sn

and exists τ ∈ [0, T ) with ϕ (τ) = z, then the system S = {Sn} is called to be
T−surjective under G. When T → +∞, then the system S = {Sn} is called to be
surjective under G.

Definition 5. Let D ⊂ X be a constrained set. A solution ϕ (·) is locally positively
D-invariant when there exists T > 0 such that for each t ∈ [0, T ] we have ϕ (t) ∈ D.
When T = +∞ we call ϕ (·) positively D-invariant, compare, e. g., [3, 14, 15]. When
all ϕ (·) ∈ G are (locally) positively D-invariant, we say that generalized semiflow G
is (locally) positively D-invariant.

Below, we give some examples to illustrate the concept of the generalized semiflow.

Example 1. The generalized semiflow is a far-going generalization of the usual
conception of the (semi)dynamical systems. We have avoided the smoothness even
the continuity of the defining tangent vector manifold. The dynamics of the process
can be discontinuous even multivalued set-mapping. From this point of view, the
traditional dynamical systems analyzed, e. g., in [4, 5, 6, 19, 20] are special cases of
the general concept – the continuous and/or smooth dynamical system are embedded
into the set of the generalized semiflows. The objects of our investigation can be
represented, e. g., by a three-dimensional inclusion

ẋ (t) = −y (t) − u (t)

ẏ (t) = x (t) + ay (t)

u̇ (t) ∈ [−c, c]

or, generally, when one analyzes a control system with multivalued feedback like

ẋ (t) = f (x (t) , u (t))

u (t) ∈ U (x (t)) ,

where x (·) ∈ X and u (·) ∈ U and X and U are finite-dimensional vector spaces
with, generally, different dimensions. One can encounter such a type of generalized
semiflows, e. g., in economy.
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Example 2. As a second example ([1, 21]), we have in mind the evolution inclu-
sions of the type

dy(t)

dt
∈ A(y(t)) + F (y(t)), y(0) = y0 ∈ X,

where X is a Banach space, A : D(A) ⊂ X → 2X is an dissipative operator and
F : X → 2X is a multivalued Lipschitz map with nonempty, bounded, convex, closed
values. An important particular case is A = ∂ϕ, where ∂ϕ is the subdifferential of a
proper, convex, lower semicontinuos function ϕ. As a representative of that abstract
definition, one can consider boundary value problem

∂y

∂t
∈

n∑

i,j=1

∂

∂xi

(
ai,j(x)

∂v

∂xj

)
+ a0(x)y + f(y) + h, on Ω × (0, T )

y = 0 on ∂Ω × (0, T ), y(x, 0) = u0(x) on Ω.
That type of equations belongs to the reaction-diffusion type of equations of

mathematical physics. Equations describe such phenomena like fluid flow, chemical
reactions, generally energy transport within a stochastic environment.An example
arrives directly from the physics, namely from the theory of incompressible Navier–
Stokes equations ([2]). Let f ∈ L2(Ω)3 and consider the incompressible Navier–
Stokes equations ut + (u · ∇)u = ν∆u − ∇p + f, divu = 0 with boundary condition
u|∂Ω = 0, where ν > 0 is a constant (kinematic viscosity), u means the flow velocity,
p means the pressure and f are external forces. As usual, we switch to the weak for-
mulation of the problem. We use the function spaces V = {u ∈ C∞

0 (Ω)
3 |divu = 0},

H = closure of V in L2(Ω)3, V =
{
u ∈ H1

0 (Ω)3| divu = 0
}

. The weak formulation
of the Navier–Stokes equations on the space of, just defined, solenoidal functions can
be found anywhere, e. g., [2, 32]. It can be proved that the set of weak solutions,
GNS , is a generalized semiflow on H, e. g., [2].

4. MAIN RESULTS

The main result is formulated as follows:

Theorem. Let D be a compact subset. We assume

1. generalized semiflow G is positively D-invariant and upper semicompact,

2. there is a index set I such that D is covered by a family of closed subsets
S = {Sα}α∈I , D ⊂ ∪

α∈I Sα,

3. let S be T -surjective under G, i. e. T < +∞.

Then for any sequence {α0, α1, . . . , αn, . . .} ⊂ I, there exists at least one solution
ϕ (·) ∈ G and a nondecreasing sequence 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn ≤ . . . such that
system S is surjective under ϕ (·) ∈ G.

To p r o v e the Theorem, we firstly formulate a technical Lemma.
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Lemma. Let D be a compact subset. We assume

1. generalized semiflow G is positively D-invariant and upper semicompact,

2. we consider a sequence of compact subsets S = {Sn} such that Sn ⊂ D,

3. let S be T -surjective under G, i. e. T < +∞.

Then there exists at least one solution ϕ (·) ∈ G such that S forms a ϕ (·)-chain.

P r o o f . The main idea of the proof is to glue together local solutions between
neighboring subsets Sn. We will construct an inverse iterated process gluing together
subsequently Sn, Sn−1, . . . , S0 to find out whether there is a nonempty subset of S0,
which can act as a set of initial point from which an arbitrary target point in Sn

can be reached. To accomplish this part of the proof, we recurrently define sets

Un,n−1 , {x ∈ Sn−1| ∃ τ ∈ [0, T ] ∃ ϕ (·) ∈ G ⇒ ϕ (t) ∈ Sn−1 t ∈ [0, T ] ϕ (τ) ∈ Sn}
Un,j , {x ∈ Sj | ∃ τj ∈ [0, T ] ∃ ϕ (·) ∈ G ϕ (·) ∈ Sj (x) ⇒ ϕ (τj) ∈ Un,j+1}

where j = n − 2, n − 1, . . . , 0.
Thus the set Un,0 is the set of initial states x0 ∈ S0 from which at least one

solution ϕ goes successively through all Sj , j = 1, . . . , n. Assumption 3 of Lemma
implies that Un,j 6= Ø and closed due to assumption of upper semicompactnes. We
observe that filtration Un,0, n ∈ N ∪ 0 forms a non increasing family

. . . Un,0 ⊃ Un−1,0 ⊃ . . . ⊃ U0,0

and since D is compact, the intersection U∞ ,
∩∞

n=0 Un,0 6= Ø,
Now, to prove the existence and surjectivity of the ϕ (·) ∈ G, we will, by back-

ward’s way, construct a solution that starts at x ∈ U∞ when n is kept fixed. The
proof is based on gluing technique and classical mathematical induction with respect
to the local time in order to get the time-global solution over the whole ϕ (·)-chain
formed by S.

So, let as have x ∈ U∞ when n is kept fixed. There exist ψ1 (·) ∈ G and δn
1 ∈ [0, T ]

such that ψ1 (δn
1 ) ∈ Un,1. We set tn1 , δn

1 , ϕn
1 = ψ1 (tn1 ) and ϕn (t) , ψ1 (t) on

[0, tn1 ]. Now we suppose that we have already constructed ϕn (·) on the interval[
0, tnj

]
such that ϕn

(
tnj

)
∈ Un,j ⊂ Sj for j = 1, . . . , k. As ϕn (tnk ) ∈ Un,k, there

exist ψk+1 (·) ∈ G (tnk ) and δn
k+1 ∈ [0, T ] such that ψk+1

(
δn
k+1

)
∈ Un,k+1. We set

tnk+1 , tnk + δn
k+1 and ϕn (t + tnk ) , ψk+1 (t) on

[
tnk , tnk+1

]
. When k = n, we can

prolongate ϕn (·) to [tnn,+∞[ by any solution that starts at ϕn (tnn) at time tnn.
We have proved that there exists ϕn (·) ∈ G (x) and a sequence of tjn ∈ [0, jT ]

such that

∀ j = 1, . . . , n, ϕn

(
tjn

)
∈ Un,j ⊂ Sj and ∀ t ∈

[
tj−1
n , tjn

]
, ϕn (t) ∈ Sj .

We suppose that generalized semiflow is upper semicompact. That assumption im-
plies that sequence ϕn (·) ∈ G is compact in the space C ([0,∞) ; X). Then a sub-
sequence ϕm (·) converges to some solution ϕ (·) ∈ G (x) starting at x uniformly
on compact intervals. Thus, we can extract successive converging subsequences of
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δn
j ∈ [0, T ] converging to δj when n ≥ j → +∞ and setting tj+1 , tj + δj , we can

conclude that ϕ (tj) ∈ Sj . ¤

Now, one can see that Theorem is an easy consequence of the Lemma.

P r o o f . When we associate the sequence {α0, α1, . . . , αn, . . .} with the sequence
of subsets Sn , Sαn , we observe that assumptions of the Lemma are satisfied. ¤

We give an very informal illustrative example to show what the theorem tells to us
([34]). The example comes to us from ancient times, namely the iterative Newton’s
method for determining the zeros of a polynomial. Everybody very well knows that
the initial point of the iterative process should be sufficiently close to a zero of the
polynomial we try to find. Then the iterates will converge to the zero set of that
polynomial. But the term “sufficiently close” makes very often a lot of troubles
as a very strong “separation of zeros” theorems have to be used prior to start the
iteration process. So, the eligible question arise: what happens if the initial point is
not “sufficiently close” to the zero set of the polynomial. We a little bit formalize
the just mentioned scenario (see the following Figure 1).

Fig. 1.

Let us have a polynomial f of the fifth degree with five real separated zeros.
The zeros are separated into 5 intervals defined by critical points of the polynomial
ci, i = 1, 2, 3, 4 marked by {a, b, c, d, e}. The main iteration process is the very well

known mapping T : R → R, where R are real numbers, specifically Tx = x − f(x)

f ′ (x)
,

where f
′
is the derivative of f and T is sometimes called the Newton transform of f .

One can see that to catch a zero in the interval b starting the iteration process from
the interval c, there is a very tiny interval ε ∈ c, where the the iteration step finishes
inside the interval b (the red lines). Now, each iteration {x1, x2, . . . , xn, . . .} forming
a discrete trajectory of a discrete dynamical process, can be coded otherwise, namely
by an interval in which the iteration lies. That means, in our case we have three
symbols – the alphabet {b, c, d} and, for example, if x1 ∈ c, x2 ∈ b, x3 ∈ d, x4 ∈
b, . . . then we get a symbolic expression of the trajectory as {c, b, d, b, ...}. The
transition from the iterative description to the symbolic one represents set-valued
mapping – the generalized semiflow. Let S = {b, c, d}N

means a set of all possible
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sequences, each entry of them is one of the three symbols. Now, we are ready to show
the meaning of the just proved theorem. It means that when we choose arbitrary
symbolic sequence then it has to be in the image of the Newton transform. To show
that, we use the “iterated inverse image” approach, [34], in fact, we mimic the proof
of the theorem. The beginning of that process is depicted in Figure 1. To get the
symbol b, one can start inside the interval/symbol c, more precisely inside ε ∈ c.
As a second step, we need to reach the interval ε ∈ c from subsequent symbol of
the arbitrary symbolic sequence, we have chosen at the beginning. But this can
be accomplished in the similar way as it was previously due to smoothness of the
Newton transform. In this way, we can continue as long as the arbitrary chosen
symbol sequence is not exhaust. The process is, in some way, similar to the Cantor
set construction. Much more deeply is the Newton method, from the symbolic
dynamics point of view, analyzed in, already mentioned, [34].

5. OBSERVATIONS AND OUTLOOKS

In this section we give some conclusions and future outlooks of the just proved
theorem. Thought the proof of the theorem is rather easy and geometrically clear,
we can do some far-going conclusions.

As a first observation, the Theorem’s proof gives some guidelines how to get a
solution of the generalized semiflow systems numerically. Selecting an enough broad
bounded and closed region of the phase space, we can cover it by a cubical complex
as it was roughly mentioned in the Initial inspirations. It can be accomplished
due to assumptions of the Theorem. As a next step, we can make use of the, in the
Initial inspirations mentioned, results and numerical algorithms of the computational
homology and of the Conley index theory, which should be generalized for the case
of generalized semiflows. As a result, the topological structure of the solutions of
the generalized semiflows should be obtained.

As a second observation, the indexing set I = {α0, α1, . . . , αn, . . .}, which de-
scribes the covering of the phase space, forms an alphabet, which codes the trajec-
tories that start in x ∈ U∞ in order to get a code word. The trajectories’s coding
provides a straight way to utilize known methods of symbolic dynamics. By analysis
of the code word there are known topological methods, which can reveal whether
there are fixed points, periodic trajectories even if the trajectories embody a chaotic
behavior.

Both observations are just now under further investigation and the results are
scheduled for publishing in the near future.

APPENDIX

In the Appendix, we give a definition of the concept of Conley index and some
of its basic properties (see [23]). The index is a generalization of the very well
known concept of the Morse index of a hyperbolic equlibrium point of a vector field,
defined as the dimension of its unstable manifold at that point. Conley index is the
homotopy class of the space obtained from an isolated invariant set by collapsing the
exit set to a point. The fundamental idea of the Conley index is to characterize an
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isolated invariant set by the behavior of the flow on the boundary of a neighborhood.
More precisely:

Isolating neighborhood. A compact set N ⊂X, where X denotes a locally com-
pact metric space, is an isolating neighborhood, if Inv(N,ϕ) := {x∈N |ϕ(R, x)⊂N}
⊂ intN , where ϕ (R × X) → X is a flow satisfying ϕ(0, x) = x and ϕ (t, ϕ (s, x)) =
ϕ(t + s, x), and intN denotes the interior of N .

Isolated invariant set (i.i.s.). S is an isolated invariant set if S = Inv(N) for
some isolating neighborhood N .

Exit set. Ne ⊂ N is defined as follows Ne = {x ∈ N |ϕ([0, t], x)
∩

N * N, ∀ t ≥ 0}.

Isolating block. An isolating block for the i.i.s. S is an isolating neighborhood N
such that the flow has no “internal tangencies” with the boundary of N – there is
no trajectory segment touching the boundary of N from the inside. More precisely,
let x ∈ ∂N , where ∂N means the boundary of N , then there exists some ε ≥ 0 such
that ϕ ((−ε, 0) , x) ⊂ N and ϕ ((0, ε) , x) ⊂ N .

Pointed space. A pointed space (Y, y0) is a topological space Y with a distin-
guished point y0 ∈ Y .

Given a pair (N,L) of spaces with L ⊂ N , N/L := (N�L)
∪

[L], where [L]
denotes the equivalence class of points in L in the equivalence relation: x ∼ y iff
x = y or x, y ∈ L.

Let (X,x0) and (Y, y0) be pointed topological spaces and let f, g : (X,x0)→(Y, y0)
be a continuous functions. Implicitly, the assumption that f (x0) = g (x0) = y0 is
supposed.

Homotopy of functions. We say that f is homotopic to g, denoted by f ∼y,
if there exists a continuous function F : X×[0, 1]→Y such that F (x, 0) = f(x),
F (x, 1) = g(x), F (x0, s) = y0, 0 ≤ s ≤ 1.

Obviously, ∼ is an equivalence relation. The equivalence class of f in this relation
is called the homotopy class of f and denoted [f ].

Homotopy of spaces. Two pointed topological spaces (X,x0) and (Y, y0) are ho-
motopic , (X,x0)∼(Y, y0), if there exists f : (X,x0)→(Y, y0) and g : (Y, y0)→(X,x0)
such that f ◦ g ∼ idY and g ◦ f ∼ idX .

Homotopy defines an equivalence class on the set of topological spaces, e. g.,
R2� {0} ∼ S1.

Index pair. Let S be an i.i.s. A pair of compact sets (N,L) where L ⊂ N is called
an index pair for S if

1. S = Inv (cl (N�L)) and N�L is a neighborhood of S (cl means a closure),
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2. L is positively invariant in N ; that is given x ∈ L and ϕ ([0, t] , x) ⊂ N , then
ϕ ([0, t] , x) ⊂ L.

3. L is an exit set for N .

Conley index. Let S be an i.i.s. (see previous definition). The (homotopy) Conley
index of S is h (S) = h (S, ϕ) ∼ (N/L, [L]) – the Conley index is a homotopy type
of the pointed space N/L. One can prove that

1. Given an isolated invariant set S, there exists an index pair.

2. The Conley index is well defined: let (N,L) and (N
′
, L

′
) be index pairs for an

i.i.s. S. Then (N/L, [L]) ∼ (N
′
/L

′
, [L

′
]).

The following Theorem states the simplest example of how the Conley index is
used to make assertions about the dynamics of ϕ:

Theorem – Ważewski property. If the Conley index of N is not trivial, then
Inv (N,ϕ) 6= ®.

The second important Theorem leads to the conclusion that the Conley index of
the dynamical system generated by a sufficiently good numerical approximation will
be the same as that of the original system:

Theorem – Continuation property. If N is an isolating neighborhood for a
continuous family of maps ϕλ, e. g. Inv (N,ϕλ) ⊂ intN for λ ∈ [0, 1], then the
Conley index of N under ϕλ0 , is the same as the Conley index of N under ϕλ1 ,
where λ0, λ1 ∈ [0, 1].

Example. We demonstrate the Conley homotopy index concept on the well known
2-dimensional hyperbolic system (see Figure 1), which can be seen as a topologically
equivalent flow in the neighborhood of the origin when the fixed point of a original
system is hyperbolic fixed point due to Hartman–Grobman theorem (see, e. g. [15]).
The origin represents the hyperbolic fixed point of the dynamical system. As one can
see, every box round the origin that has the origin as its interior point, constitute
an isolating block N . The upper and the lower sides of the box (the bold dash lines)
compose the exit sets Ne. Here, the exit set is composition of two disjoint sets. Now,
accordingly to the above mentioned definitions, we collapse (homotopy equivalence)
each of the exit sets to a point (see Figure 3) – one gets the first picture. The tilde
between pictures means homotopy. Subsequently, the two point that form northern
and southern poles can be by another homotopy equivalence identified so that, as a
result, we get a 1-sphere with a point – pointed space (S1, ∗). The star ∗ represents
the northern pole in the last picture of the Figure 3. So the Conley index has a
homotopy type of the circle with a distinguished point. Due to isomorphism of the
1-sphere with Z1 (1-dimensional integers), we conclude an agreement with the result
of the Morse theory, which states 1-dimensional unstable manifold in that case.
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Fig. 2.

Fig. 3.
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[6] S. Čelikovský and G. Chen: On a generalized Lorenz canonical form of chaotic sys-
tems. Internat. J. Bifurcation Chaos, in press.
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(1979), 73–99.

[34] S. Wong: Newton’s method and symbolic dynamics. Proc. Amer. Math. Soc. 2 (1984),
91, 245–253.
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