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FINITE VOLUME SCHEMES FOR THE GENERALIZED
SUBJECTIVE SURFACE EQUATION
IN IMAGE SEGMENTATION

Karol Mikula and Mariana Remeš́ıková

In this paper, we describe an efficient method for 3D image segmentation. The method
uses a PDE model – the so called generalized subjective surface equation which is an
equation of advection-diffusion type. The main goal is to develop an efficient and stable
numerical method for solving this problem. The numerical solution is based on semi-implicit
time discretization and flux-based level set finite volume space discretization. The space
discretization is discussed in details and we introduce three possible alternatives of the so
called diamond cell finite volume scheme for this type of 3D nonlinear diffusion equation.
We test the performance of the method and all its variants introduced in the paper by
determining the experimental order of convergence. Finally we show a couple of practical
applications of the method.
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AMS Subject Classification: 35A99, 74S10, 68U10

1. INTRODUCTION

Image segmentation, i. e. extraction of particular objects or structures from the im-
age, is one of the fundamental problems of image processing and has a large variety of
applications in such fields as medicine or biology. The scanning devices for obtaining
the images are evolving rapidly and their use is becoming widespread and standard.
This is accompanied by the demand for an automated extraction of information from
the images and therefore, the imaging technique is usually supported by software
tools based on image processing algorithms. Image segmentation is one of the most
usual tasks. Typical examples are extraction of organs or other significant struc-
tures (tumors, aneurisms) in medical imaging or extraction of cells from microscope
images in biology. As the number of images to process can be sometimes very high,
the quality can vary and it is necessary to get the information or image analysis as
quickly as possible, it is important to have an efficient and robust algorithm that is
able to operate quickly and at the same time deal with some imperfections of the
image, such as noise, incomplete borders of objects or presence of small artifacts.
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In this paper, we are dealing with the generalized subjective surface method
for 3D image segmentation. The method is based on the idea of evolution of a
segmentation function governed by an advection-diffusion model [7]. The paper is
focused on the numerical solution of the model equation and particularly on its space
discretization. This is done by using the so called flux-based level set finite volume
method where, moreover, the so called diamond cell technique and its variants are
applied in order to obtain the necessary approximation of average gradients on the
finite volume sides.

The generalized subjective surface method was originally developed and applied
to segmentation of long time series of 3D images of embryogenesis, see [7]. Here
we provide all details of its spatial discretization with the comparison of various
variants of the diamond cell approximation. It turns out that the scheme that we
call reduced diamond cell method has comparable precision to the other variants
and it is the fastest method from the computational point of view. A large number
of experiments proved that the method can be successfully used to extract the shape
of cell nuclei, cells themselves or whole embryo. Some examples of this interesting
application will be shown in the last section.

2. MATHEMATICAL MODEL

Let I0 : Ω → R, Ω ⊂ R3 represent the intensity function of an image. If we want to
segment an object, we need a segmentation seed - the starting point that determines
the approximate position of the object in the image. Then we construct an initial
segmentation function u0(x). The principle of the subjective surface method [8, 9, 10]
is that the position of the seed is the main factor determining the form of this
function. Having constructed the initial function, we let it evolve by solving the
following GSUBSURF equation

ut − wcon∇g · ∇u = wdifg
√

ε2 + |∇u|2 ∇ ·
(

∇u√
ε2 + |∇u|2

)
, (1)

where u is the evolving function, u(0, x) = u0(x) and we consider the zero Dirichlet
boundary condition on ∂Ω, ε is the regularization parameter, usually ε ¿ 1. The
function g is the edge detector and can be of the form g(s) = 1/(1 + Ks2), K ≥ 0.
It is applied to the gradient of image intensity I0(x) presmoothed by convolution
with the Gaussian kernel Gσ with a small variance σ, which we denote by Iσ, i. e.
g(s) = g(|∇Iσ|) = g(|∇Gσ ∗ I0|). The essential property of this function is that its
negative gradient points towards the edges in the image. We can also use a more
general form g(s) = f

(
1/(1 + Ks2)

)
keeping in mind that f has to preserve the

edge detecting property. If f is suitably chosen, this can improve the quality of the
results.

The equation (1) represents a generalization of the classical subjective surface
method [9] that we get if wcon = 1.0, wdif = 1.0. Introducing two new parameters
makes the model more flexible and the possibility to separately control advection
and diffusion represents a chance for improvement of the performance of the method.
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3. DISCRETIZATION OF THE MODEL

3.1. Time discretization

In order to discretize (1) in time, we apply the semi-implicit approach that guarantees
unconditional stability with respect to the diffusion term. Let us suppose that we
solve the equation (1) in time interval I = [0, T ] and in N equal time steps. The
time step is denoted by τ , τ = T/N . The time discretization of the equation then
looks as follows

un − un−1

τ
− wcon∇g · ∇un−1 = wdifg

√
ε2 + |∇un−1|2 ∇ · ∇un

√
ε2 + |∇un−1|2

. (2)

3.2. Space discretization

In order to discretize (2) in space, we apply the so called flux-based level set finite
volume method. First, we will explain the general principle and then we will describe
three different alternatives for the implementation.

Fig. 1. The finite volume mesh, illustration of our notation.

We indentify the finite volumes of the regular rectangular mesh Th with the
voxels of the 3D image. We denote each volume by Vijk, i = 1 . . . N1, j = 1 . . . N2,
k = 1 . . . N3. Let h1, h2, h3 be the size of the volumes in x1, x2, x3 direction. Let
m(Vijk) denote the volume of Vijk and cijk its barycenter. By un

ijk we denote the
approximate value of un at cijk. For the volumes touching the boundary of the
domain, we set un

ijk = 0 according to the Dirichlet boundary condition. For all
inner volumes Vijk, we define three index sets. First, let Nijk denote the set of all
(p, q, r) such that p, q, r ∈ {−1, 0, 1}, |p| + |q| + |r| = 1. Then, let Mijk be the set
of all (p, q, r), p, q, r ∈ {−1, 1}. The third set Pijk is the set of all (p, q, r) such that
p, q, r ∈ {−1, 0, 1}, |p| + |q| + |r| = 2. Let us first consider (p, q, r) ∈ Nijk. The line
connecting the center of Vijk and the center of its neighbor Vi+p,j+q,k+r is denoted
by σpqr

ijk and its length m(σpqr
ijk ). The planar sides of finite volume Vijk are denoted

by epqr
ijk with area m(epqr

ijk ) and outward normal νpqr
ijk . Let xpqr

ijk be the point where the

line σpqr
ijk crosses the side epqr

ijk . Further, for any (p, q, r) ∈ Mijk, let spqr
ijk represent

the vertices of the finite volume Vijk, and for (p, q, r) ∈ Pijk, let ypqr
ijk denote the
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midpoints of the voxel edges. The approximate value of un−1 at xpqr
ijk , spqr

ijk and ypqr
ijk ,

where (p, q, r) belongs to the corresponding index set, is denoted by upqr
ijk , omitting

the time index, as only the values from the time level n − 1 will be needed in these
points.

Let us use the notation v = −wcon∇g. According to [5], the advection term in
(2) can be written in equivalent form

v · ∇un−1 = ∇ · (vun−1) − un−1∇ · v . (3)

Now let us make the space discretization of (2) . We substitute the advection term
by (3) and integrate the resulting equation over Vijk

∫

Vijk

un − un−1

τ
dx +

∫

Vijk

∇ · (vun−1) dx −
∫

Vijk

un−1∇ · v dx

=

∫

Vijk

wdifg
√

ε2 + |∇un−1|2 ∇ · ∇un

√
ε2 + |∇un−1|2

dx . (4)

If we denote by gijk and Q̄n−1
ε,ijk average values of g and Qε =

√
ε2 + |∇un−1|2 in the

finite volume Vijk, and we consider piecewise constant representation un
ijk, un−1

ijk of

un and un−1 over the finite volume mesh, using the divergence theorem we get

m(Vijk)
un

ijk − un−1
ijk

τ
+

∑

Nijk

∫

epqr
ijk

un−1v.νpqr
ijk dγ − un−1

ijk

∑

Nijk

∫

epqr
ijk

v.νpqr
ijk dγ

= wdif gijk Q̄n−1
ε,ijk

∑

Nijk

∫

epqr
ijk

∇un

√
ε2 + |∇un−1|2

.νpqr
ijk dγ. (5)

Further, for (p, q, r) ∈ Nijk we approximate integrated fluxes
∫

epqr
ijk

v.νpqr
ijk dγ by

vpqr
ijk = m(epqr

ijk )

(
−wcon

gi+p,j+q,k+r − gijk

m(σpqr
ijk )

)
,

and we distinguish between the outflow and inflow boundaries by defining two sets of
indices Nout

ijk = {(p, q, r) ∈ Nijk , vpqr
ijk > 0} , N in

ijk := {(p, q, r) ∈ Nijk , vpqr
ijk ≤ 0} .

Using the upwind principle in the second term on the LHS of (5), approximating the
normal derivative ∇un.νpqr

ijk on the RHS by (un
i+p,j+q,k+r −un

ijk)/m(σpqr
ijk ) and defin-

ing Qpqr;n−1
ε,ijk as an average of Qε on epqr

ijk , we get the following discrete formulation

m(Vijk)
un

ijk − un−1
ijk

τ
+

∑

Nout
ijk

un−1
ijk vpqr

ijk +
∑

Nin
ijk

un−1
i+p,j+q,k+rv

pqr
ijk − un−1

ijk

∑

Nijk

vpqr
ijk

= wdif gijk Q̄n−1
ε,ijk

∑

Nijk

m(epqr
ijk )

un
i+p,j+q,k+r − un

ijk

Qpqr;n−1
ε,ijk m(σpqr

ijk )
,
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that can be further simplified and we get our fully discrete scheme

m(Vijk)
un

ijk − un−1
ijk

τ
+

∑

Nin
ijk

(
un−1

i+p,j+q,k+r − un−1
ijk

)
vpqr

ijk

= wdif gijk Q̄n−1
ε,ijk

∑

Nijk

m(epqr
ijk )

un
i+p,j+q,k+r − un

ijk

Qpqr;n−1
ε,ijk m(σpqr

ijk )
. (6)

Taking into account the zero Dirichlet boundary conditions, the scheme (6) rep-
resents a linear system of equations that can be solved efficiently for example by
the SOR method. In order to be able to perform the computations, we still need
to express the average values gijk, Q̄n−1

ε,ijk and Qpqr;n−1
ε,ijk either in voxels or on voxel

sides. In the following sections, we will describe the possibilities for obtaining these
quantities by using the diamond cell strategy.

3.2.1. Diamond-cell approximation

The basic idea for all our schemes is to use the so called diamond cells. A diamond is
an auxiliary volume in the form of an octahedron whose vertices are the barycenters
of two neighboring voxels and the vertices of their common side, see Figure 2.

Fig. 2. Construction of a diamond cell.

Let us consider the diamond cell D shown in the figure. The values of un−1 in the
voxel centers are known. In addition, we will need to approximate the values in voxel
vertices spqr

ijk , (p, q, r) ∈ Mijk. To that goal we compute the average of neighboring
voxels values, i. e., we define

upqr
ijk =

1

8

(
un−1

ijk + un−1
i+p,j,k + un−1

i,j+q,k + un−1
i,j,k+r + un−1

i+p,j+q,k (7)

+ un−1
i+p,j,k+r + un−1

i,j+q,k+r + un−1
i+p,j+q,k+r

)
, for (p, q, r) ∈ Mijk .

Now we can proceed to the computation of the averaged gradient of un−1 in D.
Using the divergence theorem, we get

1

m(D)

∫

D

∇un−1 dx =
1

m(D)

∫

∂D

un−1n∂D ds. (8)
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If we assume that a side σ of D has vertices V 1
σ , V 2

σ and V 3
σ , then the term on the

RHS can be approximated as follows

1

m(D)

∫

∂D

un−1n∂D ds ≈ 1

m(D)

∑

σ∈∂D

1

3

(
un−1

V 1
σ

+ un−1
V 2

σ
+ un−1

V 3
σ

)
m(σ)nσ. (9)

The volume of D can be expressed as m(D) = h1h2h3

3 and the areas of its faces as
well as their normals can be easily obtained by performing the vector product of
their oriented edges. Finally, we get the following expression

1

m(D)

∫

D

∇un−1 dx ≈
un−1

i+1,j,k − un−1
ijk

h1
e1

+
u1,1,1

ijk + u1,1,−1
ijk − u1,−1,1

ijk − u1,−1,−1
ijk

2h2
e2

+
u1,1,1

ijk + u1,−1,1
ijk − u1,−1,−1

ijk − u1,1,−1
ijk

2h3
e3, (10)

where e1, e2 and e3 are the unit base vectors. This expression, derived for the voxel
side e100

ijk , and its analogies for diamond cells corresponding to the other sides of the

voxel Vijk, can be used as the approximation of the gradient in the barycenters xpqr
ijk

of the sides epqr
ijk , (p, q, r) ∈ Nijk. If we denote such diamond cell approximation of

the gradient on voxel side epqr
ijk by ∇pqrun−1

ijk , and use the same strategy to compute
gradients of image intensity Iσ, we can define

Qpqr;n−1
ε,ijk =

√
ε2 + |∇pqrun−1

ijk |2, Q̄n−1
ε,ijk =

√
ε2 + 1

6

∑
Nijk

|∇pqrun−1
ijk |2

gijk = g
(

1
6

∑
Nijk

|∇pqrIσ;ijk|
)

(11)

and use it in the fully discrete scheme (6).

3.2.2. Split diamond-cell approximation

Now let us present a modification of the diamond cell strategy introduced origi-
nally in [1] for solving the classical subjective surface equation. For each side epqr

ijk ,
(p, q, r) ∈ Nijk, we construct four auxiliary volumes by splitting the diamond cell
in four tetrahedral parts, see Figure 3. Let us consider the side e100

ijk indicated in
the figure. All tetrahedra have two vertices in common, cijk and ci+1,j,k, and the

remaining vertices are always two neighboring vertices s1qr
ijk of the side e100

ijk . For the
other sides of the voxel, the tetrahedra are constructed analogously.

Let us consider the tetrahedron T displayed in the figure. Our goal is to approx-
imate the following average gradient

ḠT =
(
Ḡx

T , Ḡy
T , Ḡz

T

)
=

1

m(T )

∫

T

∇un−1 dx,
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Fig. 3. Construction of a tetrahedral volume.

Let us use the same approximation of the values of un−1 in voxel vertices as in (7).
It is possible to perform similar calculations as in (9) for such tetrahedral cell, but
one can get the same result using a more straightforward procedure. Let us consider
the function un−1 linear on T . Then we can directly write

Ḡx
T =

un−1
i+1,j,k − un−1

ijk

h1
, Ḡz

T =
u1,−1,1

i,j,k − u1,−1,−1
ijk

h3
,

Ḡy
T =

un−1
i+1,j,k+un−1

ijk

2 − u1,−1,1
ijk +u1,−1,−1

ijk

2
h2

2

.

This leads to the following approximation of the averaged gradient in T

1

m(T )

∫

T

∇un−1 dx ≈
un−1

i+1,j,k − un−1
ijk

h1
e1 (12)

+
un−1

i+1,j,k + un−1
ijk − u1,−1,1

ijk − u1,−1,−1
ijk

h2
e2 +

u1,−1,1
ijk − u1,−1,−1

ijk

h3
e3 .

An analogous procedure can be applied to any of the 24 tetrahedra corresponding
to the 6 sides of the voxel. Let T pqrs

ijk , (p, q, r) ∈ Nijk, s = 1 . . . 4, represent the four

tetrahedra belonging to the side epqr
ijk and ∇pqrsun−1

ijk the corresponding averaged
gradients approximated according to (12) . Then we can define

Qpqr;n−1
ijk =

1

4

4∑

s=1

|∇pqrsun−1
ijk |, Q̄n−1

ε,ijk =

√√√√ε2 +
1

6

∑

Nijk

(
Qpqr;n−1

ijk

)2

, (13)

Qpqr;n−1
ε,ijk =

√√√√ε2 +
1

4

4∑

s=1

|∇pqrsun−1
ijk |2, gijk = g


1

6

∑

Nijk

1

4

4∑

s=1

|∇pqrsIσ;ijk|


 .

Let us remark that taking the average of ∇pqrsun−1
ijk for s = 1 . . . 4 would yield the

same expression of the averaged gradient on the voxel side as in the original diamond
cell strategy (10). The difference between the two approaches lies in averaging the
absolute values of |∇pqrsun−1

ijk | instead of averaging gradients ∇pqrsun−1
ijk as vectors.
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3.2.3. Reduced diamond-cell approximation

Finally, let us present a useful simplification of the original diamond cell approach.
In both methods mentioned in the previous two sections, there were 18 points con-
tributing to the approximation of the average gradient on one particular voxel side
epqr
ijk . For example, as indicated in Figure 4, for the side S = e100

ijk , the values in
the points ci,j+q,k+r, ci+1,j+q,k+r, q, r ∈ {−1, 0, 1}, are involved. The principle of
the reduced diamond cell approach is to omit the values in the eight corner points
ci,j+q,k+r, ci+1,j+q,k+r, q, r ∈ {−1, 1} and thus reduce the stencil from 18 to 10
points and consequently the computational cost. Such reduction can be done us-
ing 2D diamond cell strategy applied in two planes containing ci,j,k, ci+1,j,k, and
orthogonal to S.

Fig. 4. Reduced diamond cell scheme. On the left, the points of the diamond cell scheme

corresponding to e100
ijk . In the middle, the points of the reduced scheme. On the right, 2D

analogy to the diamond cell strategy.

Our reduced scheme is using the values of un−1 in the midpoints ypqr
ijk of the voxel

edges which are approximated for any (p, q, r) ∈ Pijk by

upq0
ijk =

1

4
(un−1

ijk + un−1
i+p,j,k + un−1

i,j+q,k + un−1
i+p,j+q,k),

up0r
ijk =

1

4
(un−1

ijk + un−1
i+p,j,k + un−1

i,j,k+r + un−1
i+p,j,k+r),

u0qr
ijk =

1

4
(un−1

ijk + un−1
i,j+q,k + un−1

i,j,k+r + un−1
i,j+q,k+r).

The components of the averaged gradient on S are approximated by 2D diamond
cell approach in the orthogonal planes which use the above defined values upqr

ijk , cf.
[2, 3]. Then on S we get

1

m(S)

∫

S

∇un−1 dx ≈
un−1

i+1,j,k − un−1
ijk

h1
e1 (14)

+
u1,1,0

ijk − u1,−1,0
ijk

h2
e2 +

u1,0,1
ijk − u1,0,−1

ijk

h3
e3.
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Applying similar formulas to the other voxel sides, we get the approximations
∇pqrun−1

ijk of the gradient in the points xpqr
ijk and we use the same expressions as

in (11) to define the required quantities.

4. EXPERIMENTAL ORDER OF CONVERGENCE
OF NUMERICAL METHODS

In order to inspect the convergence properties of the suggested methods, we deter-
mined the EOC for all three alternatives proposed in Sec. 3 . The analytical solution
of the problem (1) is not known, so we used a modified problem with non-zero RHS.

∂tu − wcon∇g∇u − wdifg
√

ε2 + |∇u|2∇.
∇u√

ε2 + |∇u|2
= f(u) . (15)

We take the function ũ(x, y, z, t) = t cos(πx) cos(πy) cos(πz) to be the analytical
solution of the problem and from that we determine the term f(ũ). The function
g is of the form g(x, y, z) = cos2(πx) cos2(πy) cos2(πz). The values of parameters
were chosen as follows: wcon = 1.0, wdif = 1.0, Ω = [−0.5, 0.5]3, T = 0.16, N1 =
N2 = N3 = n, h1 = h2 = h3 = h = 1/n, n = 10, 20, . . . , 160, ε = h2, and we choose
coupling τ ≈ h2 which is typical for parabolic equations. The results for all methods
are displayed in Tables 1 – 3. We can see that the EOC is slightly better than 1 for
all schemes which means that they are reliable and they can be used in practical
applications based on solving the GSUBSURF equation.

Table 1. Experimental order of convergence

for diamond cell scheme.

n τ L∞(I, L2(Ω)) - error EOC
10 0.04 2.267154e-2
20 0.01 9.454992e-3 1.26173
40 0.0025 3.612228e-3 1.38819
80 0.000625 1.474722e-3 1.29245

160 0.00015625 6.524255e-4 1.17656

Table 2. Experimental order of convergence

for split diamond cell scheme.

n τ L∞(I, L2(Ω)) - error EOC
10 0.04 2.395713e-2
20 0.01 9.878041e-3 1.27816
40 0.0025 3.782398e-3 1.38942
80 0.000625 1.531248e-3 1.30459

160 0.00015625 6.768897e-4 1.17772
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Table 3. Experimental order of convergence

for reduced diamond cell scheme.

n τ L∞(I, L2(Ω)) - error EOC
10 0.04 2.294529e-2
20 0.01 9.546493e-3 1.26516
40 0.0025 3.636421e-3 1.39245
80 0.000625 1.478174e-3 1.29870

160 0.00015625 6.501010e-4 1.18508

5. EXAMPLES OF PRACTICAL APPLICATIONS

The GSUBSURF method was extensively tested and used for segmentation of 3D
images of embryogenesis coming from confocal laser microscopes. Being able to
extract the shape of the individual cells, their nuclei or the shape of the whole
embryo, we can perform various analyses of the process of embryonic development –
determine the number of cells, volume of the embryo, density of cells, number and
positions of cell divisions etc.

Fig. 5. Examples of embryo image segmentation. On the left, segmentation of cell nuclei.

In the middle, segmentation of cell shape. On the right, whole embryo segmentation.

The reduced diamond cell variant was chosen as the most suitable one for practical
computations because of its simplicity, precision comparable with the other methods
and the lowest CPU time demands. Figure 5 shows three examples of segmentation
of zebrafish (danio rerio) embryo images. We segmented images of cell nuclei to get
the shapes of all nuclei and cell membrane images to extract the shape of whole cells
and whole embryo. All images were preprocessed by geodesic mean curvature flow
filtering algorithm [6]. In all cases, we used time step τ = 0.1 and voxel dimensions
h1 = h2 = h3 = 1.0. Further, K = 1000, ε = 10−3, wcon = 10.0, and wdif = 5.0,
wdif = 0.1, wdif = 2.0 for nuclei, membrane and embryo segmentation, respectively.
The edge detector was g(s) = 1

1+Ks2 for membrane and embryo segmentation, and

g(s) = Gρ ∗ 1
(1+Ks2)6 , ρ = 0.0001 (Gρ denotes the Gauss kernel) for nuclei segmen-
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tation. The values of the parameters were chosen after extensive testing, taking in
account the computational cost and the quality of the result. The segmentation
seeds were represented by approximate cell centers detected by flux-based level set
center detection algorithm [4]. For nuclei segmentation, all isosurfaces of the initial
segmentation function were equal ellipsoids centered in the detected cell center. For
the whole embryo segmentation, the initial condition is obtained as the union of ini-
tial segmentation functions for all nuclei. For the membrane segmentation, we used
the Voronoi diagram principle to construct the initial condition, see [7] for details.
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segmentation by the generalized subjective surface method using the finite volume
technique. In: Proc. FVCA5 – 5th International Symposium on Finite Volumes for
Complex Applications, Hermes Publ., Paris 2008.

[8] A. Sarti and G. Citti: Subjective surfaces and Riemannian mean curvature flow
graphs. Acta Math. Univ. Comenian. 70 (2000), 85–103.

[9] A. Sarti, R. Malladi, and J.A. Sethian: Subjective Surfaces: A Method for Complet-
ing Missing Boundaries. Proc. Nat. Acad. Sci. 12 (2000), 97, 6258–6263.

[10] A. Sarti, R. Malladi, and J.A. Sethian: Subjective surfaces: A geometric nodel for
boundary completion. Internat. J. Comput. Vision 46 (2002), 3, 201–221.
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of Technology, Radlinského 11, 813 68 Bratislava. Slovak Republic.

e-mails: mikula@math.sk, remesikova@math.sk


		webmaster@dml.cz
	2013-09-21T15:51:09+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




