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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , NU MB ER 2 , P AG E S 2 4 9 – 2 6 0

MARKOV BASES OF CONDITIONAL INDEPENDENCE
MODELS FOR PERMUTATIONS

Villő Csiszár

The L-decomposable and the bi-decomposable models are two families of distributions
on the set Sn of all permutations of the first n positive integers. Both of these models
are characterized by collections of conditional independence relations. We first compute a
Markov basis for the L-decomposable model, then give partial results about the Markov
basis of the bi-decomposable model. Using these Markov bases, we show that not all
bi-decomposable distributions can be approximated arbitrarily well by strictly positive bi-
decomposable distributions.

Keywords: conditional independence, Markov basis, closure of exponential family, permu-
tation, L-decomposable

AMS Subject Classification: 62E10, 62H05, 60C05

1. INTRODUCTION

In this paper we are concerned with the study of random permutations. Examples
include voters ranking candidates in an election, the order of books on a shelf after
many readers have used them, or the order of first appearance of n prescribed words
in a word association chain. Permutation data have received most attention in
mathematical psychology, in the context of ranking data. For a review of data
analysis and stochastic models for random permutations, see the collection of papers
Fligner and Verducci [7], or the booklength treatment of Marden [11].

Conditional independence relations are widely used to model the distribution of
random vectors X = (X1, . . . , Xn) over the product state space X = ×n

i=1Xi. A
conditional independence model is the set of all probability distributions satisfying
a collection of conditional independence relations. In Csiszár [3] we introduced two
natural conditional independence models in the setting of random permutations
Π = (Π1, . . . , Πn) of the integers [n] = {1, . . . , n}. These two models are each
other’s “inverse” in the sense we will describe later, and distributions belonging
to both models are called bi-decomposable. We characterized strictly positive bi-
decomposable distributions, but did not deal with the case when some permutations
are allowed to have zero probability. This latter case was the motivation of the
present paper.
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It turns out that Markov bases are a useful tool when dealing with not neces-
sarily strictly positive distributions. A Markov basis essentially lists all polynomial
relationships among the probabilities p(π), which are satisfied by all distributions
p = (p(π)) belonging to the model. These relationships remain valid under limits,
thus they are satisfied by all distributions belonging to the closure of the model
as well.

Algebraic techniques have most extensively been applied to contingency table
models, but much less to permutation models. The only work in this direction we
are aware of is Diaconis and Eriksson [4]. We think it is interesting and important
to broaden the field of application of these algebraic techniques. We mention here
that another use of Markov bases is to generate from the conditional distribution of
the data, given the sufficient statistics, and thus perform exact tests of model fit,
see e. g. [4, 5].

In Section 2 we briefly describe the material from algebraic statistics we need,
as well as our models. Section 3 contains our results about Markov bases. In
Section 4 we show that there exist bi-decomposable distributions, which cannot be
approximated arbitrarily well by strictly positive bi-decomposable distributions.

2. CONDITIONAL INDEPENDENCE MODELS FOR PERMUTATION DATA

2.1. Algebraic background

The use of commutative algebra in statistics is relatively new, but it has already
proved itself very fruitful. Algebraic techniques have first been used in the analysis
of contingency tables, by Diaconis and Sturmfels in their 1998 paper [5]. Some
recent papers include Geiger et al. [9], who analyzed the structure of toric models
for discrete sample spaces, with particular attention to graphical models, or Diaconis
and Eriksson [4], who use Markov chain methods relying on ideal bases to generate
from the conditional distribution of the data, given sufficient statistics. The first
book on the subject is Pistone et al. [12]. These methods make extensive use
of computer algebra packages, which implement various algorithms for computing
ideal bases.

We now give a short account of toric models, as defined and studied by Geiger
et al [9]. The algebraic background on ideals and varieties can be found in the
marvellous textbook by Cox, Little and O’Shea [1]. A more advanced book, with
statistical applications is Sturmfels [14]. Let X = {x1, . . . , xs} be a finite set. Define
a model, i. e. a family of distributions on X via a t × s nonnegative integer matrix
M = (mij) as follows: a probability distribution p = (p(x1), . . . , p(xs)) belongs to
the toric model M , or p factors according to the toric model M , if

p(xi) = c(λ)
∏t

j=1
λ

mji

j ∀ i, for some λ = (λ1, . . . , λt) ∈ [0, ∞)t. (1)

We will denote this model by To(M). The strictly positive distributions in To(M)
form a discrete exponential family, denoted by E(M). In the sequel, the row space
of M is always assumed to contain the vector 1 = (1, . . . , 1)T , so the normalizing
factor c(λ) can be omitted in (1). We have the series of inclusions

E(M) ⊆ To(M) ⊆ cl(E(M)), (2)
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where cl( ) stands for closure in the usual coordinate-wise topology.

The distributions in To(M) and cl(To(M)) = cl(E(M)) can be characterized
with a condition on their supports and a set of algebraic constraints. Introduce s
indeterminates, also denoted x1, . . . , xs, we work in the ring R[x] = R[x1, . . . , xs]
of polynomials in s indeterminates with real coefficients. For a nonnegative integer
vector u = (u1, . . . , us), let xu = xu1

1 xu2
2 · · · xus

s be a monomial in s variables. For
the matrix M , we define the nonnegative toric variety XM as the set of all common
solutions in Rs

≥0 of the set of polynomial equations

xu − xv = 0 : u, v ∈ Ns, Mu = Mv. (3)

XM is a nonnegative algebraic variety; it is a toric variety, since every defining
polynomial has exactly two terms. In [9] it is shown that a distribution p on X
belongs to cl(To(M)) if and only if p ∈ XM . The distribution p belongs to To(M)
as well, if and only if its support is M -feasible. (The set T ⊂ {1, . . . , s} is called
M -feasible, if for every i 6∈ T , Supp(mi) is not contained in ∪j∈T Supp(mj), where
mi denotes the ith column vector of M and its support is Supp(mi) = {1 ≤ k ≤ t :
mki 6= 0}.)

The nonnegative variety XM depends only on the row space of M , but the M -
feasible sets depend on the particular row vectors chosen to span this space. Rapallo
[13] has shown that for all toric models To(M), there exists a maximal representation
Mmax such that cl(To(M)) = To(Mmax). Therefore, the possible supports of the
distributions in cl(To(M)) are the Mmax-feasible sets. Mmax has the same row space
as M , but in addition, To(Mmax) is closed. The question whether p ∈ XM seems
hard at first glance. However, it is often tractable. XM is the set of common
non-negative roots of all polynomials belonging to the toric ideal IM generated by
the binomials (3). The Hilbert basis theorem asserts that every ideal is finitely
generated, and more importantly, there exist algorithms for computing a (small)
basis of IM . For example, the computer algebra system 4ti2 [8] does the job. One
then only has to check whether all polynomials in this ideal basis vanish at p.

One may want to generate from the conditional distribution of the data, given
the value of the sufficient statistics. Such conditional distributions arise in carrying
out versions of Fisher’s exact test for independence and goodness of fit. Diaconis
and Sturmfels [5] present algebraic algorithms for sampling from the conditional
distribution in the general setting of toric models. Given the model To(M) defined
by (1), and an iid. sample Z = (Z1, . . . , Zm) from it, denote by fZ the empirical
frequency vector on X , i. e. fZ(x) = |{1 ≤ i ≤ m : Zi = x}|. Then the statistic
u = MfZ is sufficient for λ. Define

Fu = {f : X → N : Mf = u}.

We assume throughout that Fu is finite and non-empty. Then the distribution of
fZ , given u, has a hypergeometric distribution on Fu, i. e. the probability of fZ = f
is proportional to

∏
x(f(x)!)−1. It is usually not directly feasible to generate from

the hypergeometric distribution on Fu. However, Markov chain techniques can be
used, provided we can find a Markov basis for the problem.
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Definition 2.1. A Markov basis for the model To(M) is a set of functions fi : X →
Z, such that (i) Mfi = 0 for all i and (ii) for all u, any two elements of the state
space Fu can be connected by a path in Fu, where each step is of form f → f ± fi,
with fi an element of the Markov basis.

With a Markov basis in our hand, the usual Metropolis algorithm can be applied
to sample from the desired distribution. These ideas, with the necessary modifica-
tions, can also be used to solve larger problems, where the calculation of a Markov
basis is infeasible, see [5] for details. The basic result (Theorem 3.1 in [5]) states

that a collection of functions fi is a Markov basis if and only if the set xf+
i − xf−

i

generates the ideal IM .

2.2. The models

In this section, we introduce our conditional independence models for random per-
mutations. We repeat what is necessary from the paper [3], to which we refer the
reader for further details and proofs. Let v = (v(1), . . . , v(s)) be a vector, for the
set of the ith to jth coordinates, and for the subvector of the ith to jth coordinates
of v, introduce the notations

v{i..j} = {v(i), . . . , v(j)}, v(i..j) = (v(i), . . . , v(j)), 1 ≤ i ≤ j ≤ s.

Let Sn stand for the symmetric group of all permutations π of [n] = {1, . . . , n}. We
denote a probability distribution on Sn by p = {p(π) : π ∈ Sn}, and let Π be a
random permutation with distribution p, that is P (Π = π) = p(π). The idea of L-
decomposability first appears in [2], and was motivated by Luce’s ranking postulate
[10]. It expresses that conditional on the set of the first k coordinates of Π, these k
coordinates and the remaining n − k coordinates are independent, for all k.

Definition 2.2. Let Π be a random permutation with probability distribution p
on Sn. Π or p is called L-decomposable, if for every 1 ≤ k ≤ n − 1 and π ∈ Sn

P (Π(k + 1) = π(k + 1) | Π(1..k) = π(1..k))

= P (Π(k + 1) = π(k + 1) | Π{1..k} = π{1..k}) , (4)

if the lefthandside is defined. Equivalently (see [2]), p is L-decomposable, if there
exists a non-negative function Λ and a constant c, such that for all π ∈ Sn

p(π) = c
∏n−1

k=0
Λ(π(k + 1), π{1..k}). (5)

The function Λ above is defined on the set D = {(x,C) : C ⊂ [n], x 6∈ C}. The
following definition was introduced in [3].

Definition 2.3. Let Π be a random permutation with probability distribution p
on Sn. Π or p is called bi-decomposable, if both Π and Π−1 are L-decomposable.

In this paper, we only consider these two decomposable properties. In [3], we stud-
ied some other generalizations as well. The two statistical models we will study are
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the L-decomposable model, which is the family of all L-decomposable distributions
on Sn, and the bi-decomposable model B, which is the family of all bi-decomposable
distributions on Sn. From now on, we suppose n ≥ 4, since for n ≤ 3, all distribu-
tions on Sn are L-decomposable and bi-decomposable as well. The L-decomposable
model falls into the framework of toric models, as seen from formula (5). Denoting
an = |D| = n2n−1, the model matrix L is an × n!, whose rows are indexed by the
pairs (x,C) ∈ D, whose columns are indexed by the permutations π ∈ Sn, and its
entries are given by

L((x,C), π) = χ{π{1..|C|} = C, π(|C| + 1) = x}, (6)

where χ denotes the indicator function. We avoid denoting the indices of the matrix
elements by subscripts for the sake of readability. By definition, the L-decomposable
model is closed, so we have To(L) = cl(E(L)).

The picture is more complex for the bi-decomposable model, which is again, by
definition, closed. It is the intersection of two toric models: the L-decomposable,
and the L−1-decomposable models. The latter is obtained by the inversion of the
former: a distribution p on Sn is L−1-decomposable, if the distribution q, defined as
q(π) = p(π−1), is L-decomposable. We will show that the bi-decomposable model
is not toric, i. e. there is no matrix M with non-negative integer elements such that
B = To(M). In [3] we showed that the family of strictly positive bi-decomposable
distributions is an exponential family with a 0−1 model matrix B. The rows of B are
vectors denoted by ρk`

aq, where k, `, a, q take all possible values. The row-vector ρk`
aq

is the indicator vector of the event that among the first k coordinates of π there are
exactly a which are less than or equal to `, moreover the pair (π(k), π−1(`)) ∈ Ak`

q ,

where the pairs (x, y) belong to the sets Ak`
q according to the following pattern.

Ak`
1 : x > `, y < k, Ak`

2 : x < `, y < k, Ak`
3 : x < `, y > k,

Ak`
4 : x > `, y > k, Ak`

5 : x = `, y = k.
(7)

In [3], as one of the main results, we also calculated the rank of B and L (the
number of free parameters), and identified basis vectors in their row spaces (possible
parametrizations). Thus, in our previous studies, we dealt with E(B), which we
now continue by studying the models To(B), cl(To(B)) and B. To see what happens
when zero probabilities are allowed is not only of theoretical interest and importance:
for a general dataset, a maximum likelihood estimate does not necessarily exist in
E(B) or To(B), but it uniquely exists in the closures of these models. In practice,
when n is moderately large, then most datasets have less than n! elements, thus the
empirical distribution necessarily has zeros. Some of these zeros may be present in
the maximum likelihood estimate as well.

3. MARKOV BASES

In this section we give some results regarding Markov bases in the two toric models
To(L) and To(B).
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3.1. L-decomposable model

In the case of To(L), the constraints defining conditional independence can be trans-
lated into an equivalent set of polynomial constraints. Let C be a subset of [n] of size
k, where 2 ≤ k ≤ n − 2 and let ρ1, ρ2 be two distinct permutations of C, and τ1, τ2

be two distinct permutations of [n] \ C. For all such choices, define the binomial

x(ρ1,τ1)x(ρ2,τ2) − x(ρ1,τ2)x(ρ2,τ1), (8)

where (ρ, τ) is the concatenation of the two permutations. These binomials obviously
belong to IL. According to Theorem 3.1, no other polynomial constraints are needed,
since these generate the ideal IL. This theorem can be proved either directly, or by
referring to more general results. First we give a simple direct proof.

Theorem 3.1. The system of polynomials in (8) generates the ideal IL.

P r o o f . It is enough to show that the functions defined by system (8) constitute a
Markov basis of moves, i. e. any two datasets with the same set of sufficient statistics
can be connected by a path using these moves. In the proof, we will construct such
a path. Define the index set

I = {i = i(C, π1, π2, ρ1, ρ2) : C ⊂ [n], π1, π2 ∈ SC , π1 6= π2, (9)

ρ1, ρ2 ∈ S[n]\C , ρ1 6= ρ2},

where SC denotes the set of permutations of the elements of C. For i ∈ I, define
fi : Sn → Z as

fi(π1, ρ1) = fi(π2, ρ2) = −1, fi(π1, ρ2) = fi(π2, ρ1) = 1, fi(σ) = 0 otherwise. (10)

It is obvious that Lfi = 0 for all i, so the only thing to show is connectedness. Let
u, v ∈ Nn! be two frequency vectors such that Lu = Lv. We will construct a path
from u to v using the moves fi. For any vector j = (j1, . . . , jk) of distinct integers
between 1 and n, denote by Bj ⊂ Sn the set of permutations beginning with the
specified string, i. e. π(s) = js for 1 ≤ s ≤ k. We will use the shorthand notation
u(Bj) =

∑
π∈Bj

u(π). First of all, u(Bj) = v(Bj) for all j, since u(Bj) = (Lu)(j, ∅),

one of the sufficient statistics supposed to be equal for u and v. Suppose by induction
that using the steps fi, we have already arrived at a frequency vector uk, such that
for all j of length (less than or) equal to k, uk(Bj) = v(Bj).

Now take any C with |C| = k, and construct a k! × (n − k) two-way contingency
table for both uk and v, where the rows are labelled by the permutations of C
and the columns by the elements in [n] \ C. In the cell labelled by (j, x), enter the
value uk(Bj,x) and v(Bj,x) respectively. The uk-table and the v-table have the same
marginals: the row sums are equal by the induction hypothesis, while the column
sums are equal since they are just the sufficient statistics (Luk)(C, x) = (Lv)(C, x).

It is well-known (see e. g.[5]), that for two-way contingency tables, a Markov basis
is provided by the following moves. There is a move for all r1 6= r2 and c1 6= c2,
namely, we subtract 1 from the (r1, c1) and from the (r2, c2) entries of the table, and
add 1 to the (r1, c2) and to the (r2, c1) entries. Applying this to our contingency
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table, we can transform the uk-table into the v-table by such moves. These moves
are realised on a finer scale: if we choose rows j and j′, and columns x and x′,
such that uk(Bj,x) > 0 and uk(Bj′,x′) > 0 (the contingency-table move can be
performed), then there exist permutations g and g′ of the sets [n] \ (C ∪ x) and
[n] \ (C ∪x′) respectively, such that uk(j, x, g) > 0 and uk(j′, x′, g′) > 0. Then with
i = i(C, j, j′, (x, g), (x′, g′)), making move fi on uk results in the desired move on
the contingency table. Performing this contingency table transformation for all C of
cardinality k, we get the new frequency vector uk+1 on the path. Finally, un = v.¤

We now outline an alternative proof. It was shown in Dobra [6] that Markov
bases for decomposable graphical models can always be built up from the basic
±∓ moves. Moreover, Geiger et al. [9] proved that for a graphical model, the
existence of a degree-2 Markov basis is equivalent to the decomposability of the
model. In addition, in the case of decomposable graphical models, the polynomial
relations expressing the global Markov property form a Markov basis. Now, Π is
an L-decomposable random permutation, if and only if the variables Zk = Π{1..k},
1 ≤ k ≤ n form a Markov chain, i. e. the variables Zk satisfy the global Markov
property with respect to the following graph:

If we allowed the vector Z = (Z1, . . . , Zn) to take its values in the whole prod-
uct of the sets Zk = {Ak ⊆ [n] : |Ak| = k}, then the corresponding Markov basis
M could be obtained from the above results of Dobra and Geiger et al. However,
we now have a certain pattern of zeros, namely, only the cells (A1, . . . , An) with
A1 ⊂ · · · ⊂ An are allowed to have positive probability. Let us call these cells legal,
the other cells illegal. The idea is to restrict the Markov basis M to the legal cells,
i. e. to throw away every basis polynomial, which contains variables corresponding
to illegal cells. In general, the remaining polynomials N are not a Markov basis.
However, it is easy to show that if the pattern of zeros is admissible, then N is a
Markov basis. By admissible we mean the following. It is well-known that the vector
Z satisfies the global Markov property with respect to the above graph, if and only
if its distribution factorizes:

P(Z1 = A1, . . . , Zn = An) =
∏n−1

j=1
θj(Aj , Aj+1).

The pattern of zeros is admissible, if it can be achieved by setting some parameters
θj(Aj , Aj+1) to zero. In our case, a cell is illegal if and only if Aj 6⊂ Aj+1 for some
j, so the pattern of zeros is achieved by setting θj(Aj , Aj+1) = 0 for all such pairs.

The advantage of the direct proof of Theorem 3.1 is that it shows how two fre-
quency vectors with the same sufficient statistics can be connected, using the Markov
moves. In addition, this proof can be carried over to other situations, where the pat-
tern of zeros is not admissible. For example, take the toric model of distributions p
of the form

p(π) =
∏n

k=1
Λ(π{1..k}).

A Markov basis of this model can be described using an argument similar to the one
in the proof of Theorem 3.1.
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3.2. Minimality

We say that a Markov basis is minimal, if omitting any of the moves, the remaining
ones no longer form a Markov basis. Though in practical applications a non-minimal
Markov basis may produce a more rapidly mixing Markov chain, determining the
minimal Markov bases for a problem can be of theoretic interest. Takemura and Aoki
[16] have given some characterizations of minimal Markov bases, and a necessary and
sufficient condition for the uniqueness of the minimal Markov basis. It is straight-
forward to apply their results to the L-decomposable model, as follows. Given two
permutations π0 6= π1, we say that they part at k, if π0{1..k} = π1{1..k}, but
π0(k +1) 6= π1(k +1), where the possible parting places are 0 ≤ k ≤ n−2. If π0 and
π1 part at exactly h ≥ 2 places, then they can be partitioned as πi = (π1

i , . . . , πh
i ),

i = 0, 1, where for each 1 ≤ k ≤ h − 1, the sub-permutations (π1
0 , . . . , πk

0 ) and
(π1

1 , . . . , πk
1 ) permute the same elements, but the first elements of πk+1

0 and πk+1
1 are

different. For such a pair π0, π1, let f0 be the frequency vector on Sn with

f0(π0) = f0(π1) = 1, f0(σ) = 0 if σ 6= π0, π1.

Then there are exactly 2h−1 frequency vectors f with Lf = Lf0. Let ε = (ε1, . . . , εh)
be a vector with εk = 0, 1 (1 ≤ k ≤ h), and let πε = (π1

ε1
, . . . , πh

εh
). Then for the

frequency vector

fε(πε) = fε(π1−ε) = 1, fε(σ) = 0 otherwise,

we have Lfε = Lf0, and these are the only frequency vectors with this property. It
follows from Theorem 2.1 in [16] that a minimal Markov basis has to contain 2h−1−1
moves of the form fε − f ε̃, which connect the frequency vectors fε into a tree. For
h = 2, this can only be done in one way, however, for h > 2, there are as many ways
as there are (undirected) trees on 2h−1 labelled vertices. Of course, not all moves
fε−f ε̃ are of form (10), since they can contain several “crossovers”. However, even if
we are only allowed to choose from (10), we can construct many trees. For n = 4, 5,
the minimal Markov basis is unique, since h ≤ 2 in these cases. For n ≥ 6, there is
no unique minimal Markov basis. Thus we have shown the following.

Theorem 3.2. In the L-decomposable toric model, for n = 4, 5 the unique minimal
Markov basis is given by the binomials in (8), while for n ≥ 6, this Markov basis is
not minimal. In the latter case, there is no unique minimal Markov basis.

Regarding the number of elements in a minimal Markov basis, we note that for
n = 4 and 5, the minimal basis contains 6 and 270 elements respectively.

3.3. The toric model To(B)

For this model, in the case n = 4, the package 4ti2 [8] arrived at a minimal Markov
basis very quickly, which we now describe. For this n, the six binomials in (8) are
the unique minimal basis of IL. By inverting the problem, we get six analogous
binomials, of which only four are new. This gives altogether 10 binomials, which
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are satisfied by all bi-decomposable distributions p ∈ B. The minimal basis of IB

contains 18 binomials, the 10 degree two binomials defining B, plus 8 binomials of
degree four. One of these additional binomials is

x1324x2431x3241x4123 − x1423x2341x3124x4231. (11)

We do not list the others, since these eight binomials form a complete orbit in the
following sense. We have shown in [3] that cl(To(B)) is invariant under several
transformations, namely under the reordering of the probabilities p(π) according to
the inversion of permutations, and right or left multiplication by the subgroup of
Sn generated by the leading transposition (213 . . . n) and the reversing permutation
(n(n − 1) . . . 21). We will denote this subgroup by H8, since it has eight elements.
More formally, define the transformation group T acting on Sn, with

T = {τ(ρ1,ε,ρ2) : (ρ1, ε, ρ2) ∈ H8 × {−1, +1} × H8},

and action τ(ρ1,ε,ρ2)(π) = ρ1π
ερ2. The elements of T act on distributions by per-

muting the probabilities: pτ (π) = p(τ(π)) if τ ∈ T . Invariance of the model means
that

p ∈ cl(To(B)) ⇒ pτ ∈ cl(To(B)) ∀ τ ∈ T .

The transformation group also acts naturally on the polynomials in the ring R[xπ :
π ∈ Sn]: a transformation τ takes the polynomial f to the polynomial fτ by replacing
all variables xπ by xτ(π). The orbit of f is the set O(f) = {fτ : τ ∈ T }. Of course, if
a polynomial constraint is satisfied in cl(To(B)), then, by invariance, all polynomials
in its orbit are satisfied as well. It can be checked that the orbit of the binomial in
(11) consists of eight elements. Transforming (11) in ratio form, we get

(
x1324

x3124

)/ (
x1423

x4123

)
=

(
x2341

x3241

)/ (
x2431

x4231

)

Thus, the binomial in (11) can be interpreted as the denominator-cleared version
of the equality of the ratios of certain odds-ratios. All other binomials in the orbit
inherit this interpretation.

We will see in Section 4 that the Markov basis for n = 4 makes it possible to prove
some results for all n ≥ 4. However, one wants to find a Markov basis also for larger
values of n. After the first version of this paper was submitted, Johannes Rauh
managed to calculate a minimal Markov basis for n = 5 with 4ti2. The calculations
took about 195 hours on a 2.6 GHz machine. The Markov basis contained almost
fifty thousand elements, and the largest degree was 8. This suggest that the problem
becomes very complicated as n grows: even for n = 5, much more work would be
needed to understand at least partially the structure of the Markov basis.

4. STRICT INCLUSIONS

In this section we study the relationship between the models To(B), cl(To(B)), and
B. The main result is the following.
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Theorem 4.1. For all n ≥ 4, To(B) ( cl(To(B)) ( B.

P r o o f . In both cases, we first give a counterexample for n = 4, which can then
be extended to any n > 4 using Lemma 4.2 after the theorem. The first statement
is proved by the following example for n = 4. Let T4 ⊂ S4 consist of the following
16 permutations:

1234, 1243, 1324, 1342, 1423, 2134, 2143, 2341,
3241, 3412, 3421, 4231, 4213, 4321, 4312, 4123.

(12)

It is easily seen that T4 is not B-feasible, since ∪π∈T4Supp(b(·, π)) is the whole set
of rows of B. Therefore the uniform distribution p on T4 does not factor according
to B. However, it can be checked directly that the distributions pm ∈ E(B) form a
convergent sequence with limit p, where log pm = mv + c(m)1, and v is given by

v = ν11
1 − ν12

1 − ν21
1 + 2ν22

2 − ρ22
25 + ρ23

25 + ρ32
25 − ν33

3 + ρ33
35,

where for any k, `, a, we define νk`
a =

∑5
q=1 ρk`

aq.
Let us turn to the second relation, still fixing n = 4. It is enough to give explicitly

a distribution x = (x1, . . . , xn!), which is a root of all of the degree two binomials
in the Markov basis of IB , but fails to satisfy at least one of the other binomials,
for example (11). Such an example is the uniform distribution on the set R4 of the
seven permutations

1324, 2341, 2431, 3241, 3124, 4231, 4123. (13)

Turning to general n > 4, fix any permutation σ of the numbers 5, . . . , n. It is
easy to see that the uniform distribution on the set T4 ×σ = {(π, σ) : π ∈ T4} is not
an element of To(B), since the B-feasibility closure of T4 × σ is S4 × σ. For fixed
k, `, and π ∈ Sn, let (ak`(π), qk`(π)) be the unique pair (a, q) such that ρk`

aq(π) = 1.
Observe that for k, ` ≤ 4,

{(ak`(π), qk`(π)) : π ∈ T4 × σ} = {(ak`(π), qk`(π)) : π ∈ S4 × σ},

while for all other pairs k, `, the statistics (ak`, qk`) are constant on T4 × σ, only
depending on σ:

(ak`(π), qk`(π)) = c(k, `, σ) ∀ π ∈ S4 × σ, if k > 4 or ` > 4.

We use this fact to show that the uniform distribution on T4 × σ is in cl(E(B)).
Consider the vector

vn = ν11
1 − ν12

1 − ν21
1 + 2ν22

2 − ρ22
25 + ρ23

25 + ρ32
25 − ν33

3 + ρ33
35,

where the vectors on the right are of length n!, and the coordinates are indexed by
π ∈ Sn. We have vn(π, σ) = v4(π) for every π ∈ S4. For k, ` > 4, define the vectors

wk`
n = 1 − ρk`

ak`(π,σ),qk`(π,σ),
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with π ∈ S4 arbitrary. Thus, these vectors are zero on all permutations in S4 × σ,
but for any other permutation in π ∈ Sn, there is at least one pair k, `, such that
wk`

n (π) = 1. Thus letting pm be the distribution in E(B) with

log pm = m
(
vn − c

∑
k,`>4

wk`
n

)
+ c(m)1,

with c large enough, we see that pm converges to the uniform distribution on T4 ×σ.
Fixing the same σ as before, by the first part of Lemma 4.2, the uniform distri-

bution on R4 × σ is in B. However, it is not in cl(E(B)). Suppose, indirectly, that
it is. Then there is a convergent sequence to it in E(B), and by Lemma 4.2, the
σ-restrictions of the sequence terms to S4 are in E(B) for n = 4. However, this se-
quence of restricted distributions converges to the uniform distribution on R4, which
is a contradiction. ¤

In the following lemma, whose proof we leave to the reader, ∗-decomposable can
mean any of the two types (L , bi), but is the same within one statement.

Lemma 4.2. (i) Let n < m, and let p be a ∗-decomposable distribution on Sn. For
any permutation σ of the numbers n + 1, . . . ,m, let q be the following distribution
on Sm, called the σ-lifting of p:

q(π) =

{
p(π(1..n)) if π{1..n} = {1..n} and π(n + 1..m) = σ
0 otherwise.

Then q is a ∗-decomposable distribution on Sm.

(ii) Let n < m, and let q be a ∗-decomposable distribution on Sm. For any
permutation σ of the numbers n + 1, . . . ,m such that

∑
ρ(n+1..m)=σ q(ρ) > 0, let p

be the following distribution on Sn, called the σ-restriction of q: p(π) = c · q(π, σ),
where c is a normalizing constant. Then p is a ∗-decomposable distribution on Sn.

We have seen that To(B) is not closed, but as we mentioned earlier, there exists a
maximal representation Bmax such that To(Bmax) = cl(To(B)). There is a function
in 4ti2 for calculating a maximal representation of a model matrix M . The idea is
the following. The vectors with nonnegative integer coordinates in the row space
of M form a lattice L. A set H = {v1, . . . , vh} is a Hilbert basis of the lattice,

if every v ∈ L can be written in the form v =
∑h

i=1 civi with nonnegative integer
coefficients ci. Arranging the vectors in H as the rows of a matrix, we get a maximal
representation Mmax, as shown in [13].

For n = 4, the 4ti2 output was a 0−1 matrix with 32 rows. Out of these 32 rows,
24 correspond to sufficient statistics ρk`

aq for some values of k, `, a, q. The remaining
eight rows have 8 ones each, for example, one row has zeros at the 16 permutations
of the counterexample (12), and ones at the remaining 8 permutations. This shows
that the set (12) is indeed Bmax-feasible, and thus the uniform distribution on it is
in To(Bmax). This maximal representation provides another proof that the uniform
distribution on the set of permutations in (13) is not in cl(To(B)), since this set
is not Bmax-feasible, in fact it becomes feasible only after adding the permutation
1423 to it. It remains for future work to understand the eight new rows of Bmax

combinatorically, as well as to calculate a maximal representation of B for n = 5.
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