
Commentationes Mathematicae Universitatis Carolinae

Roberto van der Putten
Uniqueness and non uniqueness of optimal maps in mass transport problem
with not strictly convex cost

Commentationes Mathematicae Universitatis Carolinae, Vol. 51 (2010), No. 1, 67--83

Persistent URL: http://dml.cz/dmlcz/140079

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2010

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/140079
http://project.dml.cz


Comment.Math.Univ.Carolin. 51,1 (2010)67–83 67

Uniqueness and non uniqueness of optimal maps in

mass transport problem with not strictly convex cost

Roberto van der Putten

Abstract. In the setting of the optimal transportation problem we provide some con-
ditions which ensure the existence and the uniqueness of the optimal map in the case
of cost functions satisfying mild regularity hypothesis and no convexity or concavity
assumptions.
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Classification: 49J30, 54C60

1. Introduction

The wide number of applications of transport problem in several fields as eco-
nomics, probability, statistics and engineering is one of the reasons of the great
interest the problem awakened since its origin due to Monge [28] in 1781. The
problem consists in finding a map y which carries one mass distribution into
another (described by probability measures µ, ν respectively) and minimizes the
total cost

C(y) =

∫

Rn

c(x− y(x)) dµ(x)

in the set of transport maps.
As cost function, Monge considered the euclidean distance c(x) = ‖x‖ but

even in this “natural” case the existence of an optimal transport map has been
proved only two centuries later by Sudakov [35] (with a gap in the proof fixed by
Ambrosio [3]), whereas it was known from the beginning that the solution could
not be unique.

The quadratic case, that is c(x) = ‖x‖2, of relevant interest in fluid dynamics,
was solved by Brenier [8] (see also [17] and [1] for a different approach) who proved
the existence and the uniqueness of the optimal transport map. Later Gangbo
and McCann ([20], [21]) generalized this result to the case of a cost c which is
a strictly convex or strictly concave function of the distance ‖x‖. If c is not
strictly convex, the problem is not yet completely understood as pointed out by
Ambrosio, Gigli and Savaré in their recent book ([4, Chapter 6]). A basic tool in
Gangbo and McCann’s approach is the global invertibility of ∇c as a consequence
of the strict convexity or concavity. Later, several authors considered more general
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assumptions on cost functions h : U ×V −→ R where U, V are open subset of R
n.

We can summarize them as follows:

(Semi-concavity): the map x −→ h(x, y) is locally semi-concave, uniformly in
y;

(Twist condition): on its domain of definition the map y −→ ∂h
∂x (x, y) is injec-

tive for every x;

(see Section 2 or [11] for the definition of semi-concavity). These assumptions
are satisfied, for example, by cost functions induced by Tonelli Lagrangians [19].
Beyond this case semi-concavity assumption is verified by every C1-function while
twist condition, in general, is not easy to check. Although some results (Theo-
rems 3.1 and 3.2) can be applied to cost functions that are not semi-concave, the
aim of this paper is not so much to generalize previous results as to find some
analytical assumptions which guarantee the existence and the uniqueness of the
optimal map. The cost functions we will consider are related to the special class
of mappings

A+
p,q(Ω) = {w ∈W 1,p(Ω; Rn) : adjDw ∈ Lq(Ω; Rn×n), detDw > 0 a.e. on Ω}

introduced by Ball [5] in the study of nonlinear elastic phenomena and whose re-
gularity and invertibility properties were finely studied by Šverák [36] and Müller,
Qi and Yan [29]. We consider this class of functions since in this setting the global
invertibility of ∇c is independent of the convexity or concavity properties of the
cost and allows us to consider continuous cost functions c with isolated singular
points (i.e. points where ∇c fails to exist) and such that ∇c satisfies an injectivity
condition just on the boundary of a suitable set.

The main results are contained in Section 3. We consider the c-subdifferential
of a potential of the transport problem (see Section 2 for the definitions) and
we look for the optimal transport map as its unique measurable selection. As a
first step (Theorems 3.1 and 3.2) we investigate the mass which is carried in a
not unique way and relate it to the noninjectivity set of ∇c. The uniqueness is a
consequence of the approximate regularity of the potential or of the selection itself
and from this we deduce the uniqueness of the optimal map even if the cost is not
strictly convex or concave. More precisely we prove the result (Corollary 3.5) in
the case of cost function c ∈ C2(Ω) such that ∇c agrees with an homeomorphism
on ∂Ω and the Hessian matrix D2c has n− 1 negative eigenvalues in Ω.

In Section 4 we provide an example and an application in an economical setting.

2. Definitions and preliminary results

Notations and definitions.

Throughout the paper n is an integer such that n ≥ 2.
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• We denote by Ln the Lebesgue measure in R
n and by Hk the Hausdorff k-

dimensional measure in R
n. If N ⊂ R

n, dimH (N) will be the Hausdorff dimension
of N , that is, dimH(N) := inf{s ≥ 0 : Hs(N) = 0}.

• B(x, r) is the open ball of center x and radius r > 0.

• Let E be a Lebesgue measurable set in R
n. The density of E at x ∈ E is

defined by

θ(E, x) := lim
r→0

Hn(E ∩B(x, r))

Hn(B(x, r))

if the limit exists.

• If M is an n× n real matrix we denote by ρ(M) its rank.

• D(E) will be the derived set of E ⊂ R
n, that is the set of all accumulation

points of E.

• Let h : R
n −→ R be a function.

a) The subdifferential of h at x is the set

∂−h(x) = {p ∈ R
n : lim inf

y→x

h(y) − h(x) − p · (y − x)

|y − x| ≥ 0}.

b) The set of reachable subgradients of h at x is

∇∗h(x) = {lim
m

∇h(xm) : h is differentiable at xm, xm → x}.

c) The generalized gradient of h at x is the set

∂h(x) = {p ∈ R
n : lim sup

y→x
t→0+

h(y + tv) − h(y)

t
≥ p · v for all v ∈ R

n}.

d) h is said to be regular at x if

lim
t→0+

h(x+ tv) − h(x)

t
exists and

lim
t→0+

h(x+ tv) − h(x)

t
= lim sup

y→x
t→0+

h(y + tv) − h(y)

t

for every v ∈ R
n.

A detailed treatise of generalized gradients can be found in the book of
Clarke [16].

We now give the definition of a semi-concave function.
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Definition 2.1. Let A be an open set in R
n and ω : [0,+∞) −→ [0,+∞) a

continuous, non-decreasing function such that ω(0) = 0. A function h : A −→ R

is said to be semi-concave in A with modulus ω if, for each x ∈ A, there exists a
linear map lx : R

n −→ R such that

h(y) ≤ h(x) + lx(y − x) + ‖y − x‖ ω(‖y − x‖)

for every y ∈ A.

Besides, h : A −→ R is said to be locally semi-concave if, for each x ∈ A, there
exists an open neighborhood Bx of x such that h is semi-concave in Bx with a
certain modulus.

Further related definitions and properties can be found in [11].

Throughout the paper, we deal with the concepts of approximate continuity
and differentiability according to the definitions and properties one can find in
the book of Giaquinta, Modica and Souček [22]. Here we recall just the definition
of approximate differentiability we frequently use in the following.

Definition 2.2. Let A be a measurable set in R
n and u : A −→ R a measurable

function. Suppose that x ∈ R
n is such that θ(A, x) > 0. We say that u is

approximately differentiable at x if there exists a linear map lx : R
n −→ R such

that

ap lim sup
y→x
y∈A

|u(y) − u(x) − lx(y − x)|
‖y − x‖ = 0.

We denote by apDu(x) the approximate differential of u at x.

Another basic tool is the concept of selection of a set valued map.

Definition 2.3. Let X,Y be sets and F : X −→ Y a set valued map. A single
valued map f : X −→ Y is called a selection of F if f(x) ∈ F (x) for every x ∈ X .

We refer to the book of Repovš and Semenov [32] for further definitions and
properties.

• We denote by M(Rn) the space of non-negative Borel measures on R
n with

finite total mass and compact support. If σ ∈ M(Rn) we denote by sptσ the
support of σ.

Definition 2.4. Let µ, ν ∈ M(Rn). We say that the Borel map v : R
n −→ R

n

pushes µ forward to ν and we write v♯µ = ν if µ[v−1(B)] = ν(B) for every Borel
set B ⊂ R

n.

• We denote by ∆(µ, ν) the set of all maps that push µ forward to ν.
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The transportation problem.

The Monge’s problem generalizes for a continuous cost in the following way.
Let c : R

n −→ R be a continuous function and µ, ν ∈ M(Rn) such that µ
is absolutely continuous with respect to Ln and µ(Rn) = ν(Rn). Besides, let
U, V ⊂ R

n be bounded open sets such that sptµ ⊂ U and spt ν ⊂ V .
The variational problem is

infy∈∆(µ,ν) C(y)

where

C(y) =

∫

Rn
c(x− y(x)) dµ(x).

To overcome the difficulties caused by the nonlinearity of the problem, Kan-
torovich [23] considered the dual linear problem

sup
(u,v)∈Ac

J(u, v)

where

J(u, v) =

∫

Rn

u(x) dµ(x) +

∫

Rn

v(x) dν(x)

and

Ac = {(u, v) : u, v ∈ C(Rn), u(x) + v(y) ≤ c(x− y) on U × V }.
It is well-known that the following duality formula holds ([3, Theorem 2.1] or [31,
Theorem 4.6.8]).

(2.1) infy∈∆(µ,ν) C(y) = sup
(u,v)∈Ac

J(u, v)

and that there exists (ψ, φ) ∈ Ac such that [24]

J(ψ, φ) = sup{J(u, v) : (u, v) ∈ Ac}.
The potential functions ψ, φ have some remarkable properties. First, one may
assume (see [20]) that ψ is the c-transform of φ and vice-versa, that is, ψ = φc

and φ = ψc, where

φc(x) := inf
y∈V

c(x− y) − φ(y), ψc(y) := inf
x∈U

c(x− y) − ψ(x).

For the definition and properties of c-transforms we refer to the book of Rachev
and Rüschendorf [31].

Moreover, since φ and c are continuous there exist x, x′ ∈ V such that

|φc(y) − φc(z)| ≤ |c(y − x) − c(z − x)| + |c(y − x′) − c(z − x′)|.
Therefore if c is (Lipschitz) continuous, ψc and φc are (Lipschitz) continuous in
R

n as well.
In the following, (ψ, φ) = (ψ, ψc) will denote a maximizer of J on Ac.
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Definition 2.5. The c-subdifferential of ψ is the set valued map ∂cψ : U −→ V
defined by ∂cψ(x) := {t ∈ V : c(x− t) = ψ(x) + φ(t)}.

By (2.1) every Borel measurable selection of ∂cψ that pushes µ forward to ν is
an optimal map for the transportation problem. Our aim is to prove that, under
suitable assumptions on the cost, such a selection exists and is unique.

In the next theorem we prove that the local invertibility of ∇c implies the
approximate differentiability of any measurable selection of ∂cψ. A similar result
can be found in [4] (Theorem 6.2.7) where the thesis is achieved under the as-
sumptions of regularity (c ∈ C1(Rn) ∩ C2(Rn \ {0})) and strict convexity of the
cost c which guarantees the global invertibility of ∇c. Theorem 2.6 is proved in a
slight more regular setting (c ∈ C2) with an additional assumption (detD2c 6= 0)
which allows to consider also cost functions which are not convex or concave.

A related result in the setting of Riemannian manifolds can be found in [19]
where the authors prove the approximate differentiability in the case of cost
h(x, y) = d2(x, y), d being a Riemannian distance. The result we present here
deals with cost functions that satisfy a regularity assumption but they are not
necessarily related to the distance in R

n (as the saddle shaped cost in Example 2).

Theorem 2.6. Let c ∈ C(Rn). Then there exists a Borel measurable selection

y of ∂cψ. If c is locally Lipschitz continuous then ∇ψ(x) ∈ ∂−c(x − y(x)) a.e.

in U . Moreover if c ∈ C2(Rn) and detD2c(x) 6= 0 for every x ∈ R
n then y is

approximately differentiable a.e. in U .

Proof: Since c, ψ and φ are continuous it follows that ∂cψ is a closed valued
upper semicontinuous map. Then there exists at least a Borel measurable selection
y of ∂cψ ([32, Part B, Theorem 6.31]).

If c is locally Lipschitz continuous then ψ is differentiable almost everywhere
in U . Let x ∈ U be such that ψ is differentiable in x and f(t) := c(t − y(x)) −
ψ(t) − φ(y(x)). Then f(t) ≥ f(x) for every t ∈ R

n and 0 ∈ ∂−f(x), that is,
∇ψ(x) ∈ ∂−c(x− y(x)).

Finally let c ∈ C2(Rn) be such that detD2c(x) 6= 0 for every x ∈ R
n and

set w(x) := x − y(x). The regularity of c yields that ∇ψ(x) = ∇c(w(x)) for
a.e. x ∈ U and the local semi-concavity of ψ in R

n with modulus ω(t) = at,
a > 0 ([21, Proposition C.2]). This yields that ψ(x)− a

2‖x‖2 is concave and, as a
consequence, ∇ψ is approximately differentiable a.e. in R

n. Now let x0 ∈ U be a
point of approximate continuity of y, B an open neighborhood of w(x0) such that
∇c|B is invertible and let g =: (∇c|B )−1. Since w is approximately continuous

in x0 we have θ(w−1(B), x0) = 1 and y(x) = x− g(∇ψ(x)) for a.e. x ∈ w−1(B).
Then for a.e. x0 ∈ U , y agrees with an approximately differentiable function on a
set of density one for x0. From this fact follows the thesis [22]. �
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The set A2,±
p, n

n−1
(Ω).

In the following we consider cost functions belonging to a set related to the
classes Ap,q introduced by Ball [5].

Let Ω be a bounded open set in R
n and p ≥ 1. We consider the classes

A±
p, n

n−1
(Ω) = {w ∈W 1,p(Ω; Rn) : adjDw ∈ L

n
n−1 (Ω; Rn×n),

detDw is of one sign a.e. in Ω}

and

A2,±
p, n

n−1
(Ω) = {v ∈ W 2,p(Ω) ∩W 1,∞

loc (Ω),∇v ∈ A±
p, n

n−1
(Ω)}.

Šverák [36] and Müller, Qi and Yan [29] studied some regularity and invertibil-
ity properties of functions of the class

A+
p, n

n−1
(Ω) = {w ∈W 1,p(Ω; Rn) : adjDw ∈ L

n
n−1 (Ω; Rn×n),

detDw > 0 a.e. on Ω}.

The authors proved these properties by using the Brouwer degree; therefore they
depend upon the fact that detDw does not change its sign and then holds also
for A±

p, n
n−1

(Ω).

Theorem 2.7. Let Ω ⊂ R
n be a bounded, open set with Lipschitz boundary and

p > n− 1. If c ∈ A2,±
p, n

n−1
then c has a representative c̃ which is locally Lipschitz

continuous in Ω and such that ∇c̃ is continuous in Ω \N with dimH (N) = n− p.

Proof: Let c̃ be a locally Lipschitz continuous representative of the equivalence
class of c. We have that

lim
r→0+

1

|B(x, r)|

∫

B(x,r)
∇c(z) dz = lim

r→0+

1

|B(x, r)|

∫

B(x,r)
∇c̃(z) dz = ∇c̃(x)

for every x ∈ Ω \ E, where dimH(E) = n− p ([40, Corollary 3.3.3]).

Since ∇c ∈ A±
p, n

n−1
(Ω), we have that ∇c̃ is continuous outside a set N of

Hausdorff dimension n− p (see Lemma 4 and Theorem 4 in [36] and Theorem 5.2
in [29]). �

In the following we call c̃ a regular representative of c.
We recall that if w ∈ A±

p, n
n−1

(Ω) then, for every x ∈ Ω there exists a set Nx ⊂
(0, rx) [here rx = dist(x, ∂Ω)] such that L1(Nx) = 0 and w ∈ Ap, n

n−1
(∂B(x, r))
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for each r ∈ (0, rx) \Nx ([36, Proposition 1]). If we consider a continuous repre-
sentative w of w|∂B(x,r)

it is possible to define the degree of w. Let

E(w ;B(x, r)) = {y ∈ R
n \ w(∂B(x, r)) : | deg(w ; ∂B(x, r) ; y)| ≥ 1}∪

∪ {w(∂B(x, r))}.

Among the remarkable properties of this set, we recall here that E(w ;B(x, r)) is
a compact set and E(w ;B(x, r)) ⊂ E(w ;B(x, s)) if r, s ∈ (0, rx) \Nx and r < s
([36, Lemma 3]); finally one defines

F (x,w) =
⋂

r∈(0,rx)\Nx

E(w ;B(x, r)), F (A,w) =
⋃

x∈A

F (x,w) if A ⊂ Ω,

and, if z ∈ F (Ω, w),

G(z, w) = {x ∈ Ω, z ∈ F (x,w)}, G(B,w) =
⋃

z∈B

G(z, w) if B ⊂ F (Ω, w).

The set F (x,w) describes the singularity of w at x and if w has a representative
w̃ which is continuous at x then F (x,w) = w̃(x) ([36, Lemma 4]).

3. Main results

In this section we prove the existence and uniqueness results in the case of cost

functions c ∈ A2,±
p, n

n−1
(Ω) where Ω ⊂ R

n is a bounded neighborhood of the origin

with Lipschitz boundary such that

{x− y : x ∈ U, y ∈ V } ⊂ Ω.

Theorem 3.1. Let p > n− 1 and let c ∈ A2,±
p, n

n−1
(Ω) be a regular representative

of its equivalence class. Besides, let N be the set where ∇c fails to exist and y
a measurable selection of ∂cψ. Suppose that one of the following assumptions

holds.

(a) −c is regular at every point of Ω.

(b) N ∩D(N) = ∅.
Then y(x) ∈ x−G(∇ψ(x),∇c) a.e. in U .

Remarks. 1) We recall that, by Theorem 2.6, if c ∈ C(Ω), then there exists a
Borel measurable selection y of ∂cψ.

2) Assumption (a) is satisfied if c is a semi-concave function ([11, Theorem 3.2.1]).
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Proof: We set w(x) := x− y(x) and prove that ∇ψ(x) ∈ ∇∗c(w(x)) a.e. in U .
Since c is locally Lipschitz continuous, by Theorem 2.6 we obtain that ∇ψ(x) ∈

∂−c(w(x)) a.e. in U . If w(x) /∈ N then ∇ψ(x) = ∇c(w(x)). In the following we
suppose that w(x) ∈ N .

(a) Since ∇ψ(x) ∈ ∂−c(w(x)),−c is regular and by Proposition 2.1.2 in [16],
for any v ∈ R

n we have

v · ∇ψ(x) ≤ lim inf
δ→0+

c(w(x) + δv) − c(w(x))

δ
= lim inf

y→w(x)
δ→0+

c(y + δv) − c(y)

δ

= −max{ξ · v : ξ ∈ ∂(−c)(w(x))} = min{ξ · v : ξ ∈ ∂c(w(x))}.

Therefore ∂c(w(x)) = {∇ψ(x)} and this implies that ∇c(w(x)) = ∇ψ(x).

(b) We observe that y and ∇ψ are approximately continuous a.e. in U ([22,
Chapter 1.1.5, Proposition 1]). Let x ∈ U be a point of approximate continuity
of y and ∇ψ. This means that there exist measurable sets E1, E2 such that
x ∈ E1 ∩ E2, θ(E1, x) = θ(E2, x) = 1 and y|E1

, ∇ψ|E2
are continuous. Therefore

there exists a sequence {rn}n such that rn → 0+ and Ln((E1∩E2)∩B(x, rn)) > 0.
Let {xn}n be a sequence convergent to x such that xn ∈ E1 ∩ E2. We have
that w(xn) → w(x) and, since N ∩ D(N) = ∅, we obtain that w(xn) /∈ N
and ∇ψ(xn) = ∇c(w(xn)) definitively. Then limn ∇c(w(xn)) = ∇ψ(x), that is,
∇ψ(x) ∈ ∇∗c(w(x)).

Now we prove that ∇∗c(w(x)) ⊂ F (w(x),∇c) a.e. in U .
Let {zn}n be a sequence convergent to w(x) such that there exist ∇c(zn) and
limn ∇c(zn). Besides for every r > 0, let nr ∈ N be such that zn ∈ B(w(x), r)
if n > nr. We observe that deg(∇c ;B(w(x), r) ;∇c(zn)) 6= 0 for a.e. r <
dist(w(x), ∂Ω) and n > nr, otherwise we would have

∫

B(w(x),r)
f(∇c(y)) detD2c(y) dy = 0

for some r and every f ∈ C∞ supported in the connected component of R
n \

∇c(∂Ω) containing ∇c(zn) ([29, Theorem 5.1]) and this is impossible since detD2c
has the same sign a.e. in Ω. Therefore ∇c(zn) ∈ E(∇c ;B(w(x), r)) for a.e.
r < dist(w(x), ∂Ω) if n > nr and since E(∇c ;B(w(x), r)) is compact, also
limn ∇c(zn) ∈ E(∇c ;B(w(x), r)). Then ∇∗c(w(x)) ⊂ E(∇c ;B(w(x), r)) for a.e.
r < dist(w(x), ∂Ω) and this implies that ∇∗c(w(x)) ⊂ F (w(x),∇c). Finally,
∇ψ(x) ∈ F (w(x),∇c) a.e. in U and the thesis follows from the definition of G.

�

Now we prove the uniqueness results. At this aim we consider the following
assumption on the cost c.
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(H) There exists a bounded open set Ω0 ⊂ R
n such that Ω ⊂ Ω0 and a function

g ∈ A±
p, n

n−1
(Ω0) such that g is a homeomorphism onto g(Ω0) and ∇c|∂Ω

= g|∂Ω
.

Remark. Assumption (H) is satisfied by every nontrivial radial cost c(x) = f(‖x‖)
with f : (0,+∞) −→ R derivable a.e. such that f ′(t) 6= 0 for some t large enough.

In the following we consider the function h : Ω0 −→ R
n defined by

h(x) =

{ ∇c(x) if x ∈ Ω,

g(x) if x ∈ Ω0 \ Ω.

Theorem 3.2. Let p > n − 1, c ∈ A2,±
p, n

n−1
(Ω) be a regular representative of its

equivalence class and y1, y2 two measurable selections of ∂cψ. Suppose that

(1) c satisfies (H),
(2) one of the assumptions (a), (b) of Theorem 3.1 holds. Then there exist

measurable sets T ⊂ R
n and N0 ⊂ U such that Hn−1(T ) = 0, Ln(N0) = 0

and {x ∈ U : y1(x) 6= y2(x)} ⊂ ∇ψ−1(T ) ∪N0.

Proof: Let T = {y ∈ g(Ω) : diamG(y, h) > 0}. By Theorem 7(iv) in [36] and
Theorem 5.3 in [29] we have Hn−1(T ) = 0. Besides, if we set wk(x) := x− yk(x),
k = 1, 2, by Theorem 3.1 it follows that wk(x) ∈ G(∇ψ(x),∇c) ⊂ G(∇ψ(x), h)
a.e. in U where the inclusion holds since F (z,∇c) ⊂ F (z, h) for every z ∈ Ω.
Therefore there exists a negligible subset N0 of U such that

{x ∈ U : y1(x) 6= y2(x)} ⊂ {x ∈ U : diamG(∇ψ(x), h) > 0} ∪N0 ⊂
⊂ ∇ψ−1(T ) ∪N0.

�

Remarks. 1) If c ∈ C1(Ω) then F (x, h) = ∇c(x) for every x ∈ Ω. Since G(y, h) ⊂
Ω for every y ∈ g(Ω) ([36, Theorem 7]), one has G(y, h) = ∇c−1(y) and T is the
image set of the “points of noninjectivity” of ∇c. Therefore c satisfies the twist
condition if and only if T = ∅.

2) Assumptions of Theorems 3.1 and 3.2 are satisfied also by cost functions
that are not semi-concave.

Theorem 3.3. Let p > n− 1, and let c ∈ A2,±
p, n

n−1
(Ω) be a regular representative

of its equivalence class. Suppose that

(1) c satisfies (H),
(2) one of the assumptions (a), (b) of Theorem 3.1 holds,

(3) one of the following assumptions holds:

(3a)
∫

Ω0
‖ adjDh‖n| detDh|1−n dx < +∞,

(3b) ψ is twice approximately differentiable and ρ(apD2ψ(x)) ≥ n − 1
a.e. in U .
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Then there exists a unique (a.e.) measurable selection y of ∂cψ with ∂cψ(x) =
{y(x)} a.e. in U and y ∈ ∆(µ, ν).

Proof: Let y1, y2 be two measurable selections of ∂cψ. By Theorem 3.2 there
exist measurable sets T ⊂ R

n and N0 ⊂ U such that Hn−1(T ) = 0,Ln(N0) = 0
and {x ∈ U : y1(x) 6= y2(x)} ⊂ ∇ψ−1(T ) ∪N0.

If (3a) holds, by Corollary 2 in [36] and Theorem 5.3 in [29] we have that T = ∅.
Now we suppose that (3b) holds.

Since Hn−1(T ) = 0 we have that ρ(apD2ψ(x)) < n − 1 a.e. in ∇ψ−1(T )
([38, Lemma 3.2]) but this means that Ln(∇ψ−1(T )) = 0. Therefore there exists
a unique (a.e.) Borel measurable selection y of ∂cψ and by Castaing’s selection
theorem ([32, Part B, Theorem 6.9]) we have ∂cψ(x) = {y(x)} a.e. in U . Then the
c-subdifferential set valued map is a singlevalued map a.e. in U and this implies in
standard ways that y ∈ ∆(µ, ν) (see [13, Section 3, Lemma 2] or [20, Theorem 1,
Claim 3]). �

Remarks 3.4. 1) Assumption (3a) was introduced by Ball ([6]) and ensures that
T = ∅, that is, if c ∈ C1, c satisfies the twist condition.

2) If c ∈ C1,1(Ω) then ψ is semi-concave in Ω with modulus ω(t) = at, a > 0
and ψ(x) − a

2‖x‖2 is concave ([21, Proposition C.2]). Therefore ψ has the well
known regularity properties of convex functions; more precisely ψ has a second
order differential at almost every x ∈ Ω ([2, Theorem 7.10]), that is, there exists
a matrix D2ψ(x) such that

ψ(x+ v) = ψ(x) + 〈∇ψ(x); v〉 +
1

2
〈D2ψ(x)v; v〉 + o(‖v‖2)

for v ∈ R
n.

The strictly concave functions of the distance are interesting for the economical
applications ([21]) or for the relativistic heat equation such as the cost

c(x) =
√

1 − ‖x‖2

with ‖x‖ < d =: sup{‖s − t‖ : s ∈ sptµ, t ∈ spt ν} < 1 ([9], [27]). In this case
Gangbo and McCann have proved the existence and uniqueness of the optimal
map. In the next theorem we consider a regular cost (c ∈ C2) which may be
strictly concave or saddle shaped in some direction.

Corollary 3.5. Let p > n− 1 and c ∈ C2(Ω) ∩ A2,±
p, n

n−1
(Ω). Suppose that

(1) c satisfies (H),
(2) the Hessian matrix D2c(x) has at least n−1 negative eigenvalues for every

x ∈ Ω.
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Then there exists a unique (a.e.) measurable selection y of ∂cψ with ∂cψ(x) =
{y(x)} a.e. in U and y ∈ ∆(µ, ν).

Proof: By Remark 3.4, ψ is locally semi-concave and has a second order dif-
ferential a.e. in x ∈ Ω. We prove that at every point x0 where ψ has a second
order differential we have ρ(D2ψ(x0)) ≥ n−1. Suppose for the contradiction that
ρ(D2ψ(x0)) ≤ n− 2 and let y be a Borel measurable selection of ∂cψ(x0). As in
Theorem 2.6 we consider f(t) := c(t− y(x0)) − ψ(t) − φ(y(x0)). Clearly f has a
second order differential at x0 and since x0 is a global minimum for f , we have

(3.1)
f(x0 + v) =

1

2
〈D2f(x0)v; v〉 + o(‖v‖2)

=
1

2
[〈D2c(x0 − y(x0))v; v〉 − 〈D2ψ(x0)v; v〉] + o(‖v‖2) ≥ 0

for every v ∈ R
n.

Since ρ(D2ψ(x0)) ≤ n−2 there exists a subspace V of R
n such that dimV ≥ 2

and 〈D2ψ(x0)v; v〉 = 0 for every v ∈ V . Now let λ1, . . . , λq be the distinct negative

eingevalues of D2c(x0 − y(x0)) and Wλ1
, . . . ,Wλq

the relative eigenspaces. By

assumption we have that dim
⊕q

i=1Wλi
≥ n−1 and if we set W =: V ∩⊕q

i=1Wλi

we get dimW ≥ 1. Therefore 〈D2c(x0 − y(x0))w;w〉 < 0 for every w ∈ W \ {0}
and this is a contradiction with (3.1).

Thus ρ(D2ψ(x)) ≥ n − 1 for a.e. x ∈ Ω, assumption (3b) of Theorem 3.4 is
satisfied and the thesis follows. �

Theorem 3.6. Let p > n− 1, and let c ∈ A2,±
p, n

n−1
(Ω) be a regular representative

of its equivalence class. Suppose that

(1) c satisfies (H),
(2) one of the assumptions (a), (b) of Theorem 3.1 holds,

(3) there exists a measurable selection y of ∂cψ such that y is approximate

differentiable a.e. in U and ‖ apDy(x)‖ < 1 a.e. in U .

Then y is the unique measurable selection of ∂cψ(x), ∂cψ(x) = {y(x)} a.e. in U
and y ∈ ∆(µ, ν).

Proof: We set w(x) := x− y(x) and

N0 = {x ∈ Ω : ∇c is not differentiable in x} ∪ {x ∈ Ω : detD2c(x) = 0}.

By Theorem 3.1 we have that ∇ψ(x) = ∇c(w(x)) a.e. in Ω \ w−1(N0). Since
‖ apDy(x)‖ < 1 a.e. in U we have that apDw is invertible a.e. ([10, Propo-
sition VI.7]) and det apDw(x) 6= 0 a.e. Therefore Ln(w−1(N0)) = 0 ([38,
Lemma 3.2]) and ψ is twice approximately differentiable a.e. in U . Moreover

det apD2ψ(x) = detD2c(w(x)) det apDw(x) 6= 0

a.e in U and the thesis follows from Theorem 3.3. �
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4. Examples

1) An economic application.

We give an economic application of the proved results to multidimensional
incentive problem in a situation of Adverse Selection (we refer to [7] or [25] for
a survey on this subject). In this setting the aim of the principal is to contract
with an agent concerning a service (commonly called action) and a monetary
compensatory transfer, the principal being not informed about the individual
characteristics of the agent.

We assume that the agent is characterized by the quasi linear utility function

V (x, y, t) = f(x, y) + t,

where x ∈ A ⊂ R
n is the agent’s characteristics, unobservable by the principal,

y ∈ B ⊂ R
n is the action or choice of the agent, t ∈ R is the compensatory

transfer and A,B bounded open sets. Besides we recall that a contract is a pair
of functions (h, t) : A −→ B × R and the aim of the principal is to look for a
incentive-compatible contract, that is a contract (h, t) such that

f(x, h(x)) + t(x) ≥ f(x, h(z)) + t(z) for all (x, z) ∈ A×A.

Finally we say that a function h : A −→ B is implementable (or rationalizable) if
there exists a function t : A −→ R such that (h, t) is incentive-compatible.

Here we consider the case f(x, y) = −c(x− y) (considered also in [12] and [14]
under the assumption that c is strictly convex) and a Borel map h0 : A −→ B as

a referred action profile. Finally we define ν(C) = µ(h−1
0 (C)) for every Borel set

C ⊂ B and we denote (ψ, φ) = (ψ, ψc) a maximizer of J on Ac.

Proposition 4.1. Let c satisfy the assumptions of Corollary 3.5. Then there

exists a unique (a.e.) incentive-compatible contract (h, φ ◦ h) such that h(x) ∈
∂cψ(x) for every x ∈ A and h ∈ ∆(µ, ν).

Proof: By Corollary 3.5 there exists a unique (a.e.) Borel measurable selection
h of ∂cψ. We have that h ∈ ∆(µ, ν) and ψ(x) + φ(h(x)) = c(x − h(x)) for every
x ∈ A. Thus

φ(h(x)) − c(x− h(x)) = −ψ(x) ≥ φ(h(z)) − c(x− h(z))

for every (x, z) ∈ A×A and this implies that the contract (h, φ ◦ h) is incentive-
compatible. �

Remark. We recall that in the one dimensional case (that is, A,B are intervals),

if f ∈ C2 and satisfies the Spence-Mirless condition ∂2f
∂x∂y > 0 then h is imple-

mentable if and only if h is non-decreasing [33]. In the case f(x, y) = c(x − y)



80 R. van der Putten

the Spence-Mirless condition yields that c′′ < 0, that is, c is strictly concave. The
economic interpretation of this fact is that the agent is risk averse meanwhile in
general the strict convexity of c means that the agent is risk prone. Proposi-
tion 4.1 allows to consider, in a multidimensional setting, saddle shaped utility
functions where different attitude to risk of the agent can be represented.

2) A saddle-shaped cost.

We consider the cost function c : R
2 −→ R defined by

c(x, y) =
√

x4 + (1 + y2)−1.

Clearly c ∈ C∞(R2) and

detD2c(x, y) = 2x2[x4(1+ y2)(3y2 − 1)+3(2y2− 1)][x2(1+ y2)+1]−2(1+ y2)−2.

Let Ω = {(x, y) ∈ R
2 : x4 + y2 < 1

2} and suppose that {P −Q : P ∈ sptµ,Q ∈
spt ν} ⊂ Ω. A straightforward computation shows that detD2c ≤ 0 in Ω and
detD2c(x, y) = 0 if and only if x = 0; besides we have that cxx(0, y) = cxy(0, y) =

0 and cyy(0, y) = (2y2 − 1)(y2 + 1)−
5
2 < 0 if y2 < 1

2 . Therefore D2c is indefinite
or negative semi-definite in Ω and c is neither locally convex nor concave in Ω.

Now let Ω0 = {(x, y) ∈ R
2 : x4 + y2 < 3

4} and g : Ω0 :−→ R be defined by

g(x, y) = (p(x), q(y)),

where

p(x) =
2x3

√

x4 + 2(3 − 2x4)−1
q(y) = −

√
2y

(1 + y2)
√

(1 − y4)(3 + 2y2)
.

It is easy to show that p and q are strictly monotone on
(

− 4

√

3
4 ,

4

√

3
4

)

, detDg(x, y)=

p′(x)q′(y) ≤ 0 in Ω0 and detDg(x, y) = 0 if and only if x = 0. Hence g is an

homeomorphism of Ω0 onto g(Ω0), g ∈ A±
p,2(Ω0) for any p > 1 and one verify

that g = ∇c on ∂Ω. Then c satisfies assumption (H) and, by Corollary 3.5, there
exists a unique optimal map for the transportation problem.
Finally we observe that

h(P ) :=

{ ∇c(P ) if P ∈ Ω

g(P ) if P ∈ Ω0 \ Ω
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does not satisfy assumption (3a) of Theorem 3.3; in fact we have that there exist
a, b > 0 such that

∫

Ω0

‖ adjDh‖2

| detDh| dx dy ≥
∫

Ω

‖ adjD2c‖2

| detD2c| dx dy ≥
∫

Ω

c2yy

| detD2c| dx dy

=

∫

Ω

[x4(1 + y2)(1 − 3y2) + (1 − 2y2)]2

2x2(1 + y2)3[x4(1 + y2) + 1][x4(1 + y2)(1 − 3y2) + 3(1 − 2y2)]
dx dy

>

∫

Ω∗

a

bx2 dx dy = +∞ ,

where Ω∗ = {(x, y) ∈ Ω : y2 < 1
4}.
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Basel, 2008.

[5] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ra-
tional Mech. Anal. 63 (1978), 337–403.

[6] Ball J.M., Global invertibility of Sobolev functions and the interpenetration of matter, Proc.
Roy. Soc. Edinburgh Sect. A 88 (1981), 315–328.

[7] Bolton P., Dewatripont M., Contract Theory, The MIT Press, Cambridge, 2005.

[8] Brenier Y., Décomposition polaire et réarrangement monotone des champs de vecteurs,
C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 805–808.

[9] Brenier Y., Extended Monge-Kantorovich theory, Optimal Transportation and Applications
(L.A. Caffarelli and S. Salsa, Eds.), Lecture Notes in Mathematics, 1813, Springer, Berlin,
2003, pp. 91–121.

[10] Brezis H., Analyse Fonctionelle, Masson, Paris, 1983.

[11] Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton-Jacobi Equations and Op-

timal Control, Progress in Nonlinear Differential Equations and their Applications, 58,
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[30] Plakhov A.Yu., Exact solutions of the one-dimensional Monge-Kantorovich problem, Mat.
Sb. 195 (2004), no. 9, 57–74; II , Sb. Math. 195 no. 9 (2004), 1291–1307.
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[32] Repovš D., Semenov P.V., Continuous Selections of Multivalued Mappings, Kluver Aca-
demic, Dordrecht, 1998.

[33] Rochet J.C., A necessary and sufficient condition for rationalizability in a quasi-linear

context, J. Math. Econom. 16 (1987), 191–200.
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