Commentationes Mathematicae Universitatis Caroline

Tomáš Kepka; Michael K. Kinyon; Jon D. Phillips
F-quasigroups isotopic to groups

Commentationes Mathematicae Universitatis Carolinae, Vol. 51 (2010), No. 2, 267--277

Persistent URL: http://dml.cz/dmlcz/140105

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2010

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

F-quasigroups isotopic to groups

Tomáš Kepka, Michael K. Kinyon, J.D. Phillips

Abstract

In Kepka T., Kinyon M.K., Phillips J.D., The structure of F-quasigroups, math.GR/0510298, we showed that every loop isotopic to an F-quasigroup is a Moufang loop. Here we characterize, via two simple identities, the class of F-quasigroups which are isotopic to groups. We call these quasigroups FGquasigroups. We show that FG-quasigroups are linear over groups. We then use this fact to describe their structure. This gives us, for instance, a complete description of the simple FG-quasigroups. Finally, we show an equivalence of equational classes between pointed FG-quasigroups and central generalized modules over a particular ring.

Keywords: F-quasigroup, Moufang loop, generalized modules
Classification: 20N05

1. Introduction

Let Q be a non-empty set equipped with a binary operation (denoted multiplicatively throughout the paper). For each $a \in Q$, the left and right translations L_{a} and R_{a} are defined by $L_{a} x=a x$ and $R_{a} x=x a$ for all $x \in Q$. The structure (Q, \cdot) is called a quasigroup if all of the right and left translations are permutations of $Q[2]$, [8].

In a quasigroup (Q, \cdot), there exist transformations $\alpha, \beta: Q \rightarrow Q$ such that $x \alpha(x)=x=\beta(x) x$ for all $x \in Q$. A quasigroup Q is called a left F-quasigroup if

$$
\begin{equation*}
x \cdot y z=x y \cdot \alpha(x) z \tag{l}
\end{equation*}
$$

for all $x, y, z \in Q$. Dually, Q is called a right F-quasigroup if

$$
\begin{equation*}
z y \cdot x=z \beta(x) \cdot y x \tag{r}
\end{equation*}
$$

for all $x, y, z \in Q$. If Q is both a left F - and right F-quasigroup, then Q is called a (two-sided) F-quasigroup [1], [3], [4], [5], [6], [7], [9].

Recall that for a quasigroup ($Q, \cdot)$ and for fixed $a, b \in Q$, the structure ($Q,+$) consisting of the set Q endowed with the binary operation $+: Q \times Q \rightarrow Q$ defined by $x+y=R_{b}^{-1} x \cdot L_{a}^{-1} y$ is called a principal isotope of $(Q,+)$. Here $(Q,+)$ is a quasigroup with neutral element $0=a b$, that is, $(Q,+)$ is a loop [2]. (Throughout

[^0]this paper, we will use additive notation for loops, including groups, even if the operation is not commutative.)

To study any particular class of quasigroups, it is useful to understand the loops isotopic to the quasigroups in the class. In [5], we have shown that every loop isotopic to an F-quasigroup is a Moufang loop. In this paper, which is in some sense a prequel to [5], we study the structure of a particular subclass of Fquasigroups, namely those which are isotopic to groups. An F-quasigroup isotopic to a group will be called an $F G$-quasigroup in the sequel.

A quasigroup Q is called medial if $x a \cdot b y=x b \cdot a y$ for all $x, y, a, b \in Q$. We see that $\left(F_{l}\right)$ and $\left(F_{r}\right)$ are generalizations of the medial identity. The main result of Section 2 is that the class of FG-quasigroups is axiomatized by two stronger generalizations of the medial identity. In particular, we will show (Theorem 2.8) that a quasigroup is an FG-quasigroup if and only if

$$
\begin{equation*}
x y \cdot \alpha(u) v=x \alpha(u) \cdot y v \tag{A}
\end{equation*}
$$

and

$$
\begin{equation*}
x y \cdot \beta(u) v=x \beta(u) \cdot y v \tag{B}
\end{equation*}
$$

hold for all x, y, u, v.
In Section 4, we will show that FG-quasigroups are more than just isotopic to groups; they are, in fact, linear over groups. A quasigroup Q is said to be linear over a group $(Q,+)$ if there exist $f, g \in \mathcal{A} u t(Q,+)$ and $e \in Q$ such that $x y=f(x)+e+g(y)$ for all $x, y \in Q$. In Section 3, we give necessary and sufficient conditions in terms of f, g, and e for a quasigroup Q linear over a group $(Q,+)$ to be an FG-quasigroup.

In Section 5, we will use the linearity of FG-quasigroups to describe their structure. For a quasigroup Q, set $M(Q)=\{a \in Q: x a \cdot y x=x y \cdot a x \forall x, y \in$ $Q\}$. We will show (Proposition 5.6) that in an FG-quasigroup $Q, M(Q)$ is a medial, normal subquasigroup and $Q / M(Q)$ is a group. In particular, this gives us a complete description of simple FG-quasigroups (Corollary 5.7) up to an understanding of simple groups.

In Section 6 we codify the relationship between FG-quasigroups and groups by introducing the notion of arithmetic form for an FG-quasigroup (Definition 6.1). This enables us to show an equivalence of equational classes between (pointed) FG-quasigroups and certain types of groups with operators (Theorem 6.4 and Lemma 6.5). Finally, motivated by this equivalence, we introduce in Section 7 a notion of central generalized module over an associative ring, and we show an equivalence of equational classes between (pointed) FG-quasigroups and central generalized modules over a particular ring (Theorem 7.1). In [6], which is the sequel to [5], we will examine the more general situation for arbitrary F-quasigroups and introduce a correspondingly generalized notion of module.

2. Characterizations of FG-quasigroups

Proposition 2.1. Let Q be a left F-quasigroup. Then
(1) $\alpha \beta=\beta \alpha$ and α is an endomorphism of Q;
(2) $\quad R_{a} L_{b}=L_{b} R_{a}$ for $a, b \in Q$ if and only if $\alpha(b)=\beta(a)$;
(3) $\quad R_{\alpha(a)} L_{\beta(a)}=L_{\beta(a)} R_{\alpha(a)}$ for every $a \in Q$.

Proof: For (1): $x \cdot \alpha \beta(x) \alpha(x)=\beta(x) x \cdot \alpha \beta(x) \alpha(x)=\beta(x) \cdot x \alpha(x)=\beta(x) x=x=$ $x \alpha(x)$ and so $\alpha \beta(x)=\beta \alpha(x)$. Further, $x y \cdot \alpha(x) \alpha(y)=x \cdot y \alpha(y)=x y=x y \cdot \alpha(x y)$ and $\alpha(x) \alpha(y)=\alpha(x y)$.

For (2): If $R_{a} L_{b}=L_{b} R_{a}$, then $b a=R_{a} L_{b} \alpha(b)=L_{b} R_{a} \alpha(b)=b \cdot \alpha(b) a, a=$ $\alpha(b) a$ and $\beta(a)=\alpha(b)$.

Conversely, if $\beta(a)=\alpha(b)$ then $b \cdot x a=b x \cdot \alpha(b) a=b x \cdot \beta(a) a=b x \cdot a$.
Finally, (3) follows from (1) and (2).
Corollary 2.2. If Q is an F-quasigroup, then α and β are endomorphisms of Q, and $\alpha \beta=\beta \alpha$.

For a quasigroup (Q, \cdot), if the loop isotope $(Q,+)$ given by $x+y=R_{b}^{-1} x \cdot L_{a}^{-1} y$ for all $x, y \in Q$ is associative (i.e., a group), then $L_{b}^{-1} x \cdot R_{a}^{-1}\left(R_{b}^{-1} y \cdot L_{a}^{-1} z\right)=$ $L_{b}^{-1}\left(R_{b}^{-1} x \cdot L_{a}^{-1} y\right) \cdot R_{a}^{-1} z$ for all $x, y, z \in Q$. Replacing x with $L_{b} x$ and z with $R_{a} z$, we have that the associativity of $(Q,+)$ is characterized by the equation

$$
\begin{equation*}
x \cdot L_{b}^{-1}\left(R_{a}^{-1} y \cdot z\right)=R_{a}^{-1}\left(x \cdot L_{b}^{-1} y\right) \cdot z \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in Q$, or equivalently,

$$
\begin{equation*}
L_{x} L_{b}^{-1} R_{z} R_{a}^{-1}=R_{z} R_{a}^{-1} L_{x} L_{b}^{-1} \tag{2.2}
\end{equation*}
$$

for all $x, z \in Q$.
Lemma 2.3. Let Q be a quasigroup. The following are equivalent:
(1) every loop isotopic to Q is a group;
(2) some loop isotopic to Q is a group;
(3) for all $x, y, z, a, b \in Q$, (2.1) holds;
(4) there exist $a, b \in Q$ such that (2.1) holds for all $x, y, z \in Q$.

Proof: The equivalence of (1) and (2) is well known [2]. (3) and (4) simply express (1) and (2), respectively, in the form of equations.
Lemma 2.4. Let Q be an F-quasigroup. The following are equivalent:
(1) Q is an FG-quasigroup,
(2) $\quad x \beta(a) \cdot\left(L_{b}^{-1} R_{a}^{-1} y \cdot z\right)=\left(x \cdot R_{a}^{-1} L_{b}^{-1} y\right) \cdot \alpha(b) z$ for all $a, b, x, y, z \in Q$.

Proof: Starting with Lemma 2.3, observe that $\left(F_{r}\right)$ and $\left(F_{l}\right)$ give $R_{a}^{-1}(u v)=$ $R_{\beta(a)}^{-1} u \cdot R_{a}^{-1} v$ and $L_{b}^{-1}(u v)=L_{b}^{-1} u \cdot L_{\alpha(b)}^{-1} v$ for all $u, v, \in Q$. Replace x with $x \beta(a)$ and replace z with $\alpha(b) z$. The result follows.

Lemma 2.5. Let Q be an F-quasigroup and let $a, b \in Q$ be such that $\alpha(b)=\beta(a)$. Then Q is an $F G$-quasigroup if and only if $x \beta(a) \cdot y z=x y \cdot \alpha(b) z$ for all $x, y, z \in Q$.

Proof: By Proposition 2.1(2), $R_{a} L_{b}=L_{b} R_{a}$ and so $R_{a}^{-1} L_{b}=L_{b} R_{a}^{-1}$. The result follows from Lemma 2.4 upon replacing y with $R_{a} L_{b} y$.
Proposition 2.6. The following conditions are equivalent for an F-quasigroup Q :
(1) Q is an FG-quasigroup,
(2) $x \alpha \beta(w) \cdot y z=x y \cdot \alpha \beta(w) z$ for all $x, y, z, w \in Q$,
(3) there exists $w \in Q$ such that $x \alpha \beta(w) \cdot y z=x y \cdot \alpha \beta(w) z$ for all $x, y, z \in Q$.

Proof: For given $w \in Q$, set $a=\alpha(w)$ and $b=\beta(w)$. By Corollary 2.2, $\alpha(b)=\beta(a)$, and so the result follows from Lemma 2.5.

The preceding results characterize FG-quasigroups among F-quasigroups. Thus the F-quasigroup laws together with Proposition 2.6(2) form an axiom base for FG-quasigroups. Now we turn to the main result of this section, a two axiom base for FG-quasigroups.
Lemma 2.7. Let Q be an FG-quasigroup. For all $x, y, u, v \in Q, L_{x} L_{y}^{-1} R_{v}^{-1} R_{u}=$ $R_{v}^{-1} R_{u} L_{x} L_{y}^{-1}$.
Proof: Another expression for $\left(F_{r}\right)$ is $R_{v}^{-1} R_{u}=R_{\beta(u)} R_{R_{u}^{-1} v}^{-1}$, and so the result follows from (2.2).
Theorem 2.8. A quasigroup Q is an FG-quasigroup if and only if the identities (A) and (B) hold.
Proof: Suppose first that Q is an FG-quasigroup. We first verify the following special case of (A) : for all $x, y, u, v \in Q$,

$$
\begin{equation*}
\alpha(x) y \cdot \alpha(u) v=\alpha(x) \alpha(u) \cdot y v \tag{2.3}
\end{equation*}
$$

Indeed, $\left(F_{l}\right)$ implies $y=L_{u}^{-1} R_{\alpha(u) v}^{-1} R_{y v} u$. Using this and Lemma 2.7, we compute

$$
\alpha(x) y \cdot \alpha(u) v=R_{\alpha(u) v} L_{\alpha(x)} L_{u}^{-1} R_{\alpha(u) v}^{-1} R_{y v} u=R_{y v} L_{\alpha(x)} L_{u}^{-1} u=\alpha(x) \alpha(u) \cdot y v
$$

as claimed.
Next we verify (B). For all $x, y, u, v \in Q$,

$$
\begin{aligned}
x \beta(\alpha(u) y) \cdot(u \cdot v y) & =x \beta(\alpha(u) y) \cdot(u v \cdot \alpha(u) y) & & \text { by }\left(F_{l}\right) \\
& =(x \cdot u v) \cdot \alpha(u) y & & \text { by }\left(F_{r}\right) \\
& =(x u \cdot \alpha(x) v) \cdot \alpha(u) y & & \text { by }\left(F_{l}\right) \\
& =(x u \cdot \beta(\alpha(u) y)) \cdot(\alpha(x) v \cdot \alpha(u) y) & & \text { by }\left(F_{r}\right) \\
& =(x u \cdot \beta(\alpha(u) y)) \cdot(\alpha(x) \alpha(u) \cdot v y) & & \text { by }(2.3) \\
& =x u \cdot(\beta(\alpha(u) y) \cdot v y) & & \text { by }\left(F_{l}\right)
\end{aligned}
$$

where we have also used Corollary 2.2 in the last step. Replacing v with $R_{y}^{-1} v$ and then y with $L_{\alpha(u)}^{-1} y$, we have (B). The proof of (A) is similar.

Conversely, suppose Q satisfies (A) and (B). Obviously, (A) implies $\left(F_{l}\right)$ and (B) implies $\left(F_{r}\right)$, and so we may apply Proposition 2.6 to get that Q is an FGquasigroup.

3. Quasigroups linear over groups

Throughout this section, let Q be a quasigroup and $(Q,+)$ a group, possibly noncommutative, but with the same underlying set as Q. Assume that Q is linear $(Q,+)$, that is, there exist $f, g \in \mathcal{A} u t(Q,+), e \in Q$ such that $x y=f(x)+e+g(y)$ for all $x, y \in Q$.

Let $\Phi \in \mathcal{A} u t(Q,+)$ be given by $\Phi(x)=-e+x+e$ for all $x \in Q$. If we define a multiplication on Q by $x \cdot 1 y=f(x)+g(y)+e$ for all $x, y \in Q$, then $x \cdot{ }_{1} y=f(x)+e-e+g(y)+e=f(x)+e+\Phi g(y)$. On the other hand, if we define a multiplication on Q by $x \cdot 2 y=e+f(x)+g(y)$ for all $x, y \in Q$, then $x \cdot 2 y=\Phi^{-1} f(x)+e+g(y)$. In particular, there is nothing special about our convention for quasigroups linear over groups; we could have used $\left(Q, \cdot{ }_{1}\right)$ or $\left(Q, \cdot{ }_{2}\right)$ instead.
Lemma 3.1. With the notation conventions of this section, and letting $Z(Q,+)$ to denote the center of $(Q,+)$,
(1) Q is a left F-quasigroup if and only if $f g=g f$ and $-x+f(x) \in Z(Q,+)$ for all $x \in Q$,
(2) Q is a right F-quasigroup if and only if $f g=g f$ and $-x+g(x) \in Z(Q,+)$ for all $x \in Q$,
(3) Q is an F-quasigroup if and only if $f g=g f$ and $-x+f(x),-x+g(x) \in$ $Z(Q,+)$ for all $x \in Q$.
Proof: First, note that $\alpha(u)=-g^{-1}(e)-g^{-1} f(u)+g^{-1}(u)$ and $\beta(u)=f^{-1}(u)-$ $f^{-1} g(u)-f^{-1}(e)$ for all $u \in Q$.

For (1): Fix $u, v, w \in Q$ and set $x=f(u)$ and $y=g f(v)$. We have

$$
u \cdot v w=f(u)+e+g f(v)+g(e)+g^{2}(w)
$$

and

$$
\begin{aligned}
u v \cdot \alpha(u) w= & f^{2}(u)+f(e)+f g(v)+e-g f g^{-1}(e)-g f g^{-1} f(u) \\
& +g f g^{-1}(u)+g(e)+g^{2}(w)
\end{aligned}
$$

Thus $\left(F_{l}\right)$ holds if and only if

$$
\begin{align*}
x+e+y= & f(x)+f(e)+f g f^{-1} g^{-1}(y)+e-g f g^{-1}(e) \\
& -g f g^{-1}(x)+g f g^{-1} f^{-1}(x) \tag{3.1}
\end{align*}
$$

for all $x, y \in Q$.
Suppose $\left(F_{l}\right)$ holds. Then setting $x=0$ in (3.1) yields $e+y=f(e)+f g f^{-1} g^{-1}(y)$ $+e-g f g^{-1}(e)$ and $x=0=y$ yields $-f(e)+e=e-g f g^{-1}(e)$. Thus $-f(e)+e+y=$ $f g f^{-1} g^{-1}(y)-f(e)+e$ and $x+e+y=f(x)+e+y-g f g^{-1}(x)+g f g^{-1} f^{-1}(x)$. Setting $y=-e$ in the latter equality, we get $-f(x)+x=-g f g^{-1}(x)+g f g^{-1} f^{-1}(x)$ and hence $-f(x)+x+e+y=e+y-f(x)+x$. Consequently, $-f(x)+x \in Z(Q,+)$ for all $x \in Q$. Use this, together with $-f(e)+e+y=f g f^{-1} g^{-1}(y)-f(e)+e$ (derived above), to conclude that $f g=g f$.

For the converse, suppose $f g=g f$. Then (3.1), after some rearranging, becomes

$$
(-f(x)+x)+e+y=f(e)+y+(e-f(e))+(-f(x)+x)
$$

If we also suppose $-x+f(x) \in Z(Q,+)$ for all $x \in Q$, then the latter equation reduces to a triviality, and so $\left(F_{l}\right)$ holds.

The proof of (2) is dual to that of (1), and (3) follows from (1) and (2).
It is straightforward to characterize F-quasigroups among quasigroups linear over groups for the alternative definitions $\left(Q,{ }_{1}\right)$ and $\left(Q, \cdot{ }_{2}\right)$ above. Recalling that $\Phi(x)=e+x-e$, observe that if $-z+f(z) \in Z(Q,+)$ for all $z \in Q$, then $f g=g f$ if and only if $f \Phi g=\Phi g f$. Using this observation and Lemma 3.1(3), we get the following assertion: $\left(Q, \cdot{ }_{1}\right)$ is an F-quasigroup if and only if $f g=g f$ and $-x+f(x),-x+\Phi g(x) \in Z(Q,+)$ for all $x \in Q$. Similarly, $\left(Q, \cdot r_{2}\right)$ is an F-quasigroup if and only if $f g=g f$ and $-x+\Phi^{-1} f(x),-x+g(x) \in Z(Q,+)$ for all $x \in Q$.

4. FG-quasigroups are linear over groups

Let h and k be permutations of a group $(Q,+)$. Define a multiplication on Q by $x y=h(x)+k(y)$ for all $x, y \in Q$. Clearly, Q is a quasigroup.

Lemma 4.1. Assume that Q is a right F-quasigroup. Then:
(1) $h(x+y)=h(x)-h(0)+h(y)$ for all $x, y \in Q$;
(2) the transformations $x \mapsto h(x)-h(0)$ and $x \mapsto-h(0)+h(x)$ are automorphisms of $(Q,+)$.

Proof: We have $\beta(u)=h^{-1}(u-k(u))$ and $h(h(w)+k(v))+k(u)=w v \cdot u=$ $w \beta(u) \cdot v u=h\left(h(w)+k h^{-1}(u-k(u))\right)+k(h(v)+k(u))$ for all $u, v, w \in Q$. Then $h(x+y)+z=h\left(x+k h^{-1}\left(k^{-1}(z)-z\right)\right)+k\left(h k^{-1}(y)+z\right)$ for all $x, y, z \in Q$. Setting $z=0$ we get $h(x+y)=h(x+t)+k h k^{-1}(y)$ where $t=k h^{-1} k^{-1}(0)$. Consequently, $h(y)=h(t)+k h k^{-1}(y)$ and $k h k^{-1}(y)=-h(t)+h(y)$. Similarly, $h(x)=h(x+t)+k h k^{-1}(0)=h(x+t)-h(t)+h(0), h(x+t)=h(x)-h(0)+h(t)$. Thus, $h(x+y)=h(x)-h(0)+h(t)-h(t)+h(y)=h(x)-h(0)+h(y)$. This establishes (1). (2) follows immediately from (1).

Lemma 4.2. Assume that Q is a left F-quasigroup. Then:
(1) $k(x+y)=k(x)-k(0)+k(y)$ for all $x, y \in Q$;
(2) the transformations $x \mapsto k(x)-k(0)$ and $x \mapsto-k(0)+k(x)$ are automorphisms of $(Q,+)$.
Proof: Dual to the proof of Lemma 4.1.
Now let Q be an FG-quasigroup, $a, b \in Q, h=R_{a}, k=L_{b}$ and $x+y=$ $h^{-1}(x) \cdot k^{-1}(y)$ for all $x, y \in Q$. Then $(Q,+)$ is a group (every principal loop isotope of Q is of this form), $0=b a$ and $x y=h(x)+k(y)$ for all $x, y \in Q$. Moreover, by Lemmas 4.1 and 4.2, the transformations $f: x \mapsto h(x)-h(0)$ and
$g: x \mapsto-k(0)+k(x)$ are automorphisms of $(Q,+)$. We have $x y=f(x)+e+g(y)$ for all $x, y \in Q$ where $e=h(0)+k(0)=0 \cdot 0=b a \cdot b a$.

Corollary 4.3. Every FG-quasigroup is linear over a group.

5. Structure of FG-quasigroups

Throughout this section, let Q be an FG-quasigroup. By Corollary 4.3, Q is linear over a group $(Q,+)$, that is, there exist $f, g \in \mathcal{A} u t(Q,+), e \in Q$ such that $x y=f(x)+e+g(y)$ for all $x, y \in Q$. Recall the definition

$$
M(Q)=\{a \in Q: x a \cdot y x=x y \cdot a x \forall x, y \in Q\}
$$

Lemma 5.1. $M(Q)=Z(Q,+)-e=\{a \in Q: x a \cdot y z=x y \cdot a z \forall x, y, z \in Q\}$.
Proof: If $a \in M(Q)$, then $f^{2}(x)+f(e)+f g(a)+e+f g(y)+g(e)+g^{2}(x)=$ $x a \cdot y x=x y \cdot a x=f^{2}(x)+f(e)+f g(y)+e+f g(a)+g(e)+g^{2}(x)$ or, equivalently, $f g(a)+e+z=z+e+f g(a)$ for all $z \in Q$. The latter equality is equivalent to the fact that $f g(a)+e \in Z(Q,+)$ or $a \in g^{-1} f^{-1}(Z(Q,+)-e)=Z(Q,+)-$ $g^{-1} f^{-1}(e)=Z(Q,+)-e$, since $g^{-1} f^{-1}(e)-e \in Z(Q,+)$. We have shown that $M(Q) \subseteq Z(Q,+)-e$. Proceeding conversely, we show that $Z(Q,+)-e \subseteq\{a \in$ $Q: x a \cdot y z=x y \cdot a z\}$, and the latter subset is clearly contained in $M(Q)$.

Corollary 5.2. The following conditions are equivalent:
(1) $M(Q)=Z(Q,+)$;
(2) $e \in Z(Q,+)$;
(3) $0 \in M(Q)$.

Lemma 5.3. $\alpha(Q) \cup \beta(Q) \subseteq M(Q)$.
Proof: This follows from Theorem 2.8.
Lemma 5.4. $M(Q)$ is a medial subquasigroup of Q.
Proof: If $u, v, w \in Z(Q,+)$ then $(u-e) \cdot(v-e)=f(u)-f(e)+e+g(v)-g(e)=$ $w-e \in Z(Q,+)-g(e)=Z(Q,+)-e=M(Q)$. Thus $M(Q)=Z(Q,+)-e$ (Lemma 5.1) is closed under multiplication, and it is easy to see that for each $a, b \in Z(Q,+)$, the equations $(a-e) \cdot(x-e)=b-e$ and $(y-e) \cdot(a-e)=b-e$ have unique solutions $x, y \in Z(Q,+)$. We conclude that $M(Q)$ is a subquasigroup of Q. Applying Lemma 5.1 again, $M(Q)$ is medial.

Lemma 5.5. $M(Q)$ is a normal subquasigroup of Q, and $Q / M(Q)$ is a group.
Proof: $Z(Q,+)$ is a normal subgroup of the group $(Q,+)$, and if ρ denotes the (normal) congruence of $(Q,+)$ corresponding to $Z(Q,+)$, it is easy to check that ρ is a normal congruence of the quasigroup Q, too. Finally, by Lemma 5.3, $Q / M(Q)$ is a loop, and hence it is a group.

Putting together Lemmas 5.1, 5.3, 5.4, and 5.5, we have the following.

Proposition 5.6. Let Q be an FG-quasigroup. Then $\alpha(Q) \cup \beta(Q) \subseteq M(Q)=$ $\{a \in Q: x a \cdot y z=x y \cdot a z \forall x, y, z \in Q\}, M(Q)$ is a medial, normal subquasigroup of Q, and $Q / M(Q)$ is a group.

Corollary 5.7. A simple FG-quasigroup is medial or is a group.

6. Arithmetic forms of FG-quasigroups

Definition 6.1. An ordered five-tuple $(Q,+, f, g, e)$ will be called an arithmetic form of a quasigroup Q if the following conditions are satisfied:
(1) the binary structures $(Q,+)$ and Q share the same underlying set (denoted by Q again);
(2) $(Q,+)$ is a (possibly noncommutative) group;
(3) $f, g \in \mathcal{A} u t(Q,+)$;
(4) $f g=g f$;
(5) $-x+f(x),-x+g(x) \in Z(Q,+)$ for all $x \in Q$;
(6) $e \in Q$;
(7) $x y=f(x)+e+g(y)$ for all $x, y \in Q$.

If, moreover, $e \in Z(Q,+)$, then the arithmetic form will be called strong.
Theorem 6.2. The following conditions are equivalent for a quasigroup Q :
(1) Q is an $F G$-quasigroup;
(2) Q has at least one strong arithmetic form;
(3) Q has at least one arithmetic form.

Proof: Assume (1). From Corollary 4.3 and Lemma 3.1(3), we know that for all $a, b \in Q, Q$ has an arithmetic form $(Q,+, f, g, e)$ such that $0=b a$. Further, by Lemma $5.3, \alpha(Q) \cup \beta(Q) \subseteq M(Q)$. Now, if the elements a and b are chosen so that $b a \in \alpha(Q) \cup \beta(Q)$ (for instance, choose $a=b=\alpha \beta(c)$ for some $c \in Q$ and use Corollary 2.2), or merely that $b a \in M(Q)$, then the form is strong by Corollary 5.2. Thus (2) holds. (2) implies (3) trivially, and (3) implies (1) by Lemma 3.1(3).

Lemma 6.3. Let $\left(Q,+, f_{1}, g_{1}, e_{1}\right)$ and $\left(Q, *, f_{2}, g_{2}, e_{2}\right)$ be arithmetic forms of the same $F G$-quasigroup Q. If the groups $(Q,+)$ and $(Q, *)$ have the same neutral element 0, then $(Q,+)=(Q, *), f_{1}=f_{2}, g_{1}=g_{2}$, and $e_{1}=e_{2}$.

Proof: We have $f_{1}(x)+e_{1}+g_{1}(y)=x y=f_{2}(x) * e_{2} * g_{2}(y)$ for all $x, y \in Q$. Setting $x=0=y$, we get $e_{1}=e_{2}=e$. Setting $x=0$ we get $p(y)=e+g_{1}(y)=e * g_{2}(y)$ and so $f_{1}(x)+p(y)=f_{2}(x) * p(y)$. But p is a permutation of Q and $p(y)=0$ yields $f_{1}=f_{2}$. Similarly, $g_{1}=g_{2}$ and, finally, $(Q,+)=(Q, *)$.

Theorem 6.4. Let Q be an FG-quasigroup. Then there exists a biunique correspondence between arithmetic forms of Q and elements from Q. This correspondence restricts to a biunique correspondence between strong arithmetic forms of Q and elements from $M(Q)$.

Proof: Combine Corollary 4.3, Lemma 3.1(3), and Corollary 5.2.
Lemma 6.5. Let Q and P be FG-quasigroups with arithmetic forms $\left(Q,+, f, g, e_{1}\right)$ and $\left(P,+, h, k, e_{2}\right)$, respectively. Let $\varphi: Q \rightarrow P$ be a mapping such that $\varphi(0)=0$. Then φ is a homomorphism of the quasigroups if and only if φ is a homomorphism of the groups, $\varphi f=h \varphi, \varphi g=k \varphi$ and $\varphi\left(e_{1}\right)=e_{2}$.

Proof: This generalization of Lemma 6.3 has a similar proof.
Denote by $\mathcal{F}_{g, p}$ the equational class (and category) of pointed FG-quasigroups. That is $\mathcal{F}_{g, p}$ consists of pairs $(Q, a), Q$ being an FG-quasigroup and $a \in Q$ a fixed element. If $(P, b) \in \mathcal{F}_{g, p}$ then a mapping $\varphi: Q \rightarrow P$ is a homomorphism in $\mathcal{F}_{g, p}$ if and only if φ is a homomorphism of the quasigroups and $\varphi(a)=b$. Further, put $\mathcal{F}_{g, m}=\left\{(Q, a) \in \mathcal{F}_{g, p}: a \in M(Q)\right\}$. Clearly $\mathcal{F}_{g, m}$ is an equational subclass (and also a full subcategory) of $\mathcal{F}_{g, p}$.

Let $\varphi: Q \rightarrow P$ be a homomorphism of FG-quasigroups. For every $a \in Q$ we have $(Q, \alpha(a)),(P, \alpha \varphi(a)) \in \mathcal{F}_{g, m}$, and $\varphi \alpha(a)=\alpha \varphi(a)$. Thus φ is a homomorphism in $\mathcal{F}_{g, m}$. Similarly, $(Q, \beta(a)),(P, \beta \varphi(a)) \in \mathcal{F}_{g, m}$ and $\varphi \beta(a)=\beta \varphi(a)$.

Denote by \mathcal{G} the equational class (and category) of algebras $Q\left(+, f, g, f^{-1}, g^{-1}, e\right)$ where $(Q,+)$ is a group and conditions (2)-(6) of Definition 6.1 are satisfied. If $P\left(+, h, k, h^{-1}, k^{-1}, e_{1}\right) \in \mathcal{G}$, then a mapping $\varphi: Q \rightarrow P$ is a homomorphism in \mathcal{G} if and only if φ is a homomorphism of the groups such that $\varphi f=h \varphi, \varphi g=k \varphi$ and $\varphi(e)=e_{1}$. Finally, denote by \mathcal{G}_{c} the equational subclass of \mathcal{G} given by $e \in Z(Q,+)$.

It follows from Theorem 6.4 and Lemma 6.5 that the classes $\mathcal{F}_{g, p}$ and \mathcal{G} are equivalent. That means that there exists a biunique correspondence $\Phi: \mathcal{F}_{g, p} \rightarrow \mathcal{G}$ such that for every algebra $A \in \mathcal{F}_{g, p}$, the algebras A and $\Phi(A)$ have the same underlying set, and if $B \in \mathcal{F}_{g, p}$, then a mapping $\varphi: A \rightarrow B$ is an $\mathcal{F}_{g, p^{-}}$ homomorphism if and only if it is a \mathcal{G}-homomorphism.

Corollary 6.6. The equational classes $\mathcal{F}_{g, p}$ and \mathcal{G} are equivalent. The equivalence restricts to an equivalence between $\mathcal{F}_{g, m}$ and \mathcal{G}_{c}.

7. Generalized modules

Let $(G,+$) be a (possibly noncommutative) group. An endomorphism $\varphi \in$ $\mathcal{E} n d(G,+)$ will be called central if $\varphi(G) \subseteq Z(G,+)$. We denote by $\mathcal{Z E} n d(G,+)$ the set of central endomorphisms of $(G,+)$. Clearly, the composition of central endomorphisms is again a central endomorphism and $\mathcal{Z E} n d(G,+)$ becomes a multiplicative semigroup under the operation of composition. Furthermore, if $\varphi \in \mathcal{Z E} n d(G,+)$ and $\psi \in \mathcal{E} n d(G,+)$ then $\varphi+\psi \in \mathcal{E} n d(G,+)$ where $(\varphi+\psi)(x)=$ $\varphi(x)+\psi(x)$ for all $x \in G$. Consequently, $\mathcal{Z E} n d(G,+)$ becomes an abelian group under pointwise addition, and, altogether, $\mathcal{Z E} n d(G(+))$ becomes an associative ring (possibly without unity).

Let R be an associative ring (with or without unity). A central generalized (left) R-module will be a group $(G,+$) equipped with an R-scalar multiplication
$R \times G \rightarrow G$ such that $a(x+y)=a x+a y,(a+b) x=a x+b x, a(b x)=(a b) x$ and $a x \in Z(G,+)$ for all $a, b \in R$ and $x, y \in G$.

If G is a central generalized R-module, then define the annihilator of G to be $\operatorname{Ann}(G)=\{a \in R: a G=0\}$. It is easy to see that $\operatorname{Ann}(G)$ is an ideal of the ring R.

Let $\mathbf{S}=\mathbb{Z}[\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}]$ denote the polynomial ring in four commuting indeterminates $\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}$ over the ring \mathbb{Z} of integers. Put $\mathbf{R}=S \mathbf{x}+S \mathbf{y}+S \mathbf{u}+S \mathbf{v}$. That is, \mathbf{R} is the ideal of \mathbf{S} generated by the indeterminates. On the other hand, \mathbf{R} is a commutative and associative ring (without unity) freely generated by the indeterminates.

Let \mathcal{M} be the equational class (and category) of central generalized \mathbf{R}-modules G such that $\mathbf{x}+\mathbf{u}+\mathbf{x u} \in \operatorname{Ann}(G)$ and $\mathbf{y}+\mathbf{v}+\mathbf{y v} \in \operatorname{Ann}(G)$. Further, let \mathcal{M}_{p} be the equational class of pointed objects from \mathcal{M}. That is, \mathcal{M}_{p} consists of ordered pairs (G, e) where $G \in \mathcal{M}$ and $e \in G$. Let \mathcal{M}_{c} denote the subclass of centrally pointed objects from \mathcal{M}_{p}, i.e., $(G, e) \in \mathcal{M}_{c}$ iff $(G, e) \in \mathcal{M}_{p}$ and $e \in Z(G,+)$.

Theorem 7.1. The equational classes $\mathcal{F}_{g, p}$ and \mathcal{M}_{p} are equivalent. This equivalence restricts to an equivalence between $\mathcal{F}_{g, m}$ and \mathcal{M}_{c}.

Proof: Firstly, take $(Q, a) \in \mathcal{F}_{g, p}$. Let $(Q,+, f, g, e)$ be the arithmetic form of the FG-quasigroup Q, such that $a=0$ in $(Q,+)$. Define mappings φ, μ, ψ, ν : $Q \rightarrow Q$ by $\varphi(x)=-x+f(x), \mu(x)=-x+f^{-1}(x), \psi(x)=-x+g(x)$ and $\nu(x)=-x+g^{-1}(x)$ for all $x \in Q$. It is straightforward to check that φ, μ, ψ, ν are central endomorphisms of $(Q,+)$, that they commute pairwise, and that $\varphi(x)+$ $\mu(x)+\varphi \mu(x)=0$ and $\psi(x)+\nu(x)+\psi \nu(x)=0$ for all $x \in Q$. Consequently, these endomorphisms generate a commutative subring of the ring $\mathcal{Z E} n d(Q,+)$, and there exists a (uniquely determined) homomorphism $\lambda: \mathbf{R} \rightarrow \mathcal{Z E} n d(Q,+)$ such that $\lambda(\mathbf{x})=\varphi, \lambda(\mathbf{y})=\psi, \lambda(\mathbf{u})=\mu$, and $\lambda(\mathbf{v})=\nu$. The homomorphism λ induces an \mathbf{R}-scalar multiplication on the group $(Q,+)$ and the resulting central generalized R-module will be denoted by \bar{Q}. We have $\lambda(\mathbf{x}+\mathbf{u}+\mathbf{x u})=0=$ $\lambda(\mathbf{y}+\mathbf{v}+\mathbf{y v})$ and so $\bar{Q} \in \mathcal{M}$. Now define $\rho: \mathcal{F}_{g, p} \rightarrow \mathcal{M}_{p}$ by $\rho(Q, a)=(\bar{Q}, e)$, and observe that $(\bar{Q}, e) \in \mathcal{M}_{c}$ if and only if $e \in Z(Q,+)$.

Next, take $(\bar{Q}, e) \in \mathcal{M}_{p}$ and define $f, g: Q \rightarrow Q$ by $f(x)=x+\mathbf{x} x$ and $g(x)=x+\mathbf{y} x$ for all $x \in Q$. We have $f(x+y)=x+y+\mathbf{x} x+\mathbf{x} y=x+\mathbf{x} x+y+\mathbf{x} y=$ $f(x)+f(y)$ for all $x, y \in Q$, and so $f \in \mathcal{E} n d(Q,+)$. Similarly, $g \in \mathcal{E} n d(Q,+)$. Moreover, $f g(x)=f(x+\mathbf{y} x)=x+\mathbf{y} x+\mathbf{x} x+\mathbf{x y} x=x+\mathbf{x} x+\mathbf{y} x+\mathbf{y} \mathbf{x} x=g f(x)$, and therefore $f g=g f$. Still further, if we define $k: Q \rightarrow Q$ by $k(x)=x+\mathbf{u} x$ for $x \in Q$, then $f k(x)=x+(\mathbf{x}+\mathbf{u}+\mathbf{x u}) x=x=k f(x)$, and it follows that $k=f^{-1}$ and so $f \in \mathcal{A} u t(Q,+)$. Similarly, $g \in \mathcal{A} u t(Q,+)$. Of course, $-x+f(x)=\mathbf{x} x \in Z(Q,+)$ and $-x+g(x) \in Z(Q,+)$. Consequently, Q becomes an FG-quasigroup under the multiplication $x y=f(x)+e+g(y)$. Define $\sigma: \mathcal{M}_{p} \rightarrow \mathcal{F}_{g, p}$ by $\sigma(\bar{Q}, e)=(Q, 0)$. Using Theorem 6.4 and Lemma 6.5, it is easy to check that the operators ρ and σ represent an equivalence between $\mathcal{F}_{g, p}$ and \mathcal{M}_{p}. Further, $0 \in M(Q)$ if and only if $e \in Z(Q,+)$, so that the equivalence restricts to $\mathcal{F}_{g, m}$ and \mathcal{M}_{c}.

References

[1] Belousov V.D., Florja I.A., On left-distributive quasigroups, Bul. Akad. Štiince RSS Moldoven 1965 (1965), no. 7, 3-13.
[2] Bruck R.H., A Survey of Binary Systems, Springer, 1971.
[3] Golovko I.A., F-quasigroups with idempotent elements, Mat. Issled. 4 (1969), vyp. 2 (12), 137-143.
[4] Kepka T., F-quasigroups isotopic to Moufang loops, Czechoslovak Math. J. 29(104) (1979), no. 1, 62-83.
[5] Kepka T., Kinyon M.K., Phillips J.D., The structure of F-quasigroups, math.GR/0510298.
[6] Kepka T., Kinyon M.K., Phillips J.D., F-quasigroups and generalized modules, math.GR/0512244.
[7] Murdoch D.C., Quasi-groups which satisfy certain generalized associative laws, Amer. J. Math. 61 (1939), 509-522.
[8] Pflugfelder H., Quasigroups and Loops: Introduction, Sigma Series in Pure Math. 8, Helderman, Berlin, 1990.
[9] Sabinina L.L., On the theory of F-quasigroups, in Webs and Quasigroups, pp. 127-130, Kalinin. Gos. Univ., Kalinin, 1988.

Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolovská 83, 18675 Prague 8, Czech Republic

E-mail: kepka@karlin.mff.cuni.cz
Department of Mathematics, University of Denver, 2360 S Gaylord St, Denver, CO 80208, USA
E-mail: mkinyon@math.du.edu
URL: http://www.math.du.edu/~mkinyon
Department of Mathematics \& Computer Science, Northern Michigan University, Marquette, MI 49855, USA

E-mail: jophilli@nmu.edu
URL: http://euclid.nmu.edu/~jophilli/

[^0]: The first author partially supported by the institutional grant MSM 113200007 and by the Grant Agency of Charles University, grant \#269/2001/B-MAT/MFF.

