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On the structure of finite paramedial quasigroups

V.A. Shcherbacov, D.I. Pushkashu

Abstract. Information on the structure of finite paramedial quasigroups, includ-
ing a classification of finite simple paramedial quasigroups, is given. The problem
“Classify the finite simple paramedial quasigroups” was posed by J. Ježek and
T. Kepka at the conference LOOPS’03, Prague 2003.
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Jaroslav Ježek and Tomaš Kepka posed the problem “Classify the finite simple
paramedial quasigroups” at conference LOOPS’03, Prague 2003 [34]. Paramedial
quasigroups are studied in [21], [17].

1. Introduction

We shall use basic terms and concepts from the books [3], [4], [9], [22]. We
shall use the following order of multiplication (composition) of maps: (αβ)(x) =
α(β(x)), where α, β are maps. By ε we mean the identity permutation.

As usual, La : Lax = a · x, Ra : Rax = x · a are, respectively, left and right
translations of a quasigroup (Q, ·). A map h of a non-empty set Q into itself will
be called a zero map, if |h(Q)| = 1.

A quasigroup (Q, ·) satisfying the identity x · x = x is called an idempotent

quasigroup. A quasigroup (Q, ·) satisfying the identity x ·x = e, where e is a fixed
element of Q, is called a unipotent quasigroup.

1.1 Linear quasigroups and their subclasses. A quasigroup (Q, ·) of the
form

(1) x · y = ϕx + ψy + a,

where (Q,+) is a group, ϕ, ψ are automorphisms of (Q,+), and a is a fixed element
of Q, is called linear quasigroup (over the group (Q,+)) [2].

A linear quasigroup over an abelian group is called a T-quasigroup [21]. The
theory of T-quasigroups was developed by T. Kepka and P. Němec [21], [17].
G.B. Belyavskaya [6] characterized the class of T-quasigroups by two identities.
See also [8], [32].
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A quasigroup (Q, ·) satisfying the identity

(2) xy · uv = xu · yv

is called medial .

Theorem 1.1 (Toyoda theorem [3], [4], [22], [33]). Every medial quasigroup (Q, ·)
can be presented in the form:

(3) x · y = ϕx + ψy + a,

for all x, y ∈ Q, where (Q,+) is an abelian group, ϕ, ψ are automorphisms of
(Q,+) such that ϕψ = ψϕ and a is some fixed element in Q.

Note that before the Toyoda theorem, D.C. Murdoch proved results about the
direct decompositions of finite medial quasigroups [20] (see also Theorem 1.3).

The following identity

(4) xy · uv = vy · ux

is called the paramedial identity.

Theorem 1.2 (Kepka-Němec Theorem [21]). Every paramedial quasigroup (Q, ·)
can be presented in the form:

(5) x · y = ϕx+ ψy + g,

for all x, y ∈ Q, where (Q,+) is an abelian group, ϕ, ψ are automorphisms of
(Q,+) such that ϕϕ = ψψ and g is some fixed element of Q.

Remark 1.1. If we define a paramedial quasigroup (Q, ·) using a finite ring of
residues modulo n, then the automorphisms ϕ and ψ of the abelian group (Q,+)
correspond to pairs of numbers k, l such that gcd(k, n) = gcd(l, n) = 1 and k2 ≡ l2

(mod n).

For a quasigroup (Q, ·) we define the map s: s(x) = x · x for all x ∈ Q. As
usual, s2(x) = s(s(x)) and so on.

We give Murdoch’s theorem [20] in a slightly modernized form [26], [27].
This modernization is based on the following easy proved fact: for any medial
quasigroup (Q, ·) the map s is an endomorphism of this quasigroup. Indeed
s(xy) = xy · xy = xx · yy = s(x) · s(y).

A quasigroup (Q, ·) is called an unipotently-solvable quasigroup of degree m if
there exists the following finite chain of unipotent quasigroups:

Q/s(Q), s(Q)/s2(Q), . . . , sm(Q)/sm+1(Q) ,

where the number m is the minimal natural number with the property
|sm(Q)/sm+1(Q)| = 1.
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Theorem 1.3. Any finite medial quasigroup (Q, ·) is isomorphic to the direct
product of a medial unipotently-solvable quasigroup (Q1, ◦) and a quasigroup
(Q2, ∗), where (Q2, ∗) is an isotope of the form (ε, ε, γ) of a medial distributive
quasigroup (Q2, ⋆), γ ∈ Aut(Q2, ∗), i.e., (Q, ·) ∼= (Q1, ◦) × (Q2, ∗) [26], [27].

Theorem 1.3 reduces the study of the structure of finite medial quasigroups to
the study of the structure of finite medial unipotent and idempotent quasigroups.

1.2 Congruences and homomorphisms. A binary relation on a set Q is any
subset of Q×Q.

Definition 1.1. An equivalence θ ⊂ Q×Q is a normal congruence of a quasigroup
(Q, ·) if the following implications hold:

aθb =⇒ (c·a)θ(c·b), aθb =⇒ (a·c)θ(b·c), (c·a)θ(c·b) =⇒ aθb, (a·c)θ(b·c) =⇒ aθb

for all a, b, c ∈ Q [32].

In any quasigroup (Q, ·) the binary relations Q̂ = {(x, x) |x ∈ Q} and Q × Q
are congruences of (Q, ·). These congruences are called the diagonal congruence
and universal congruence, respectively.

Definition 1.2. A quasigroup (Q, ·) is simple if its only normal congruences are

the diagonal Q̂ and universal Q×Q.

Definition 1.3. If θ is a binary relation on a set Q, α is a permutation of the
set Q and from xθy it follows αxθαy for all (x, y) ∈ θ, then we shall say that the
permutation α is an admissible permutation relative to θ and that θ is admissible
relative to the permutation α [3].

Thus any quasigroup congruence is admissible relative to any left and right
quasigroup translation. Any normal quasigroup congruence is admissible relative
to any left, right quasigroup translation and its inverse.

Lemma 1.1. In a quasigroup (Q, ·) of finite order, every congruence is normal
[4], [3].

Proof: Since Q has finite order, for any left translation La there exists a natural
number m such that Lma = ε. Thus L−1

a = Lm−1
a . For right translations, the

proof is similar. �

Definition 1.4. A quasigroup (Q, ·) is α-simple if it does not contain a nontrivial
congruence that is admissible relative to a permutation α of the set Q.

Definition 1.5. If (Q, ·) and (H, ◦) are quasigroups, h : Q → H is a mapping
such that h(x1 ·x2) = hx1 ◦hx2, then h is called a (multiplicative) homomorphism

of (Q, ·) into (H, ◦) and the set {hx |x ∈ Q} is called the homomorphic image of
(Q, ·) under h ([1], [22]).

In case (Q, ·) = (H, ◦) a homomorphism is also called an endomorphism and
an isomorphism is referred to as an automorphism.
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There exists a well known connection between quasigroup homomorphisms and
congruences [4], [22].

Theorem 1.4. If h is a homomorphism of a quasigroup (Q, ·) onto a quasigroup
(H, ◦), then h determines a normal congruence θ on (Q, ·) such that Q/θ ∼= (H, ◦),
and vice versa, a normal congruence θ induces a homomorphism from (Q, ·) onto
(H, ◦) ∼= Q/θ ([4], [22, I.7.2 Theorem]).

A subquasigroup (H, ·) of a quasigroup (Q, ·) is normal ((H, ·) E (Q, ·)), if
(H, ·) is an equivalence class (in other words, a coset class) of a normal congruence.
Notice that any subquasigroup of a T-quasigroup is normal ([17, Theorem 43]).

Definition 1.6. A congruence θ of a quasigroup (Q, ·) is called regular if it is
uniquely defined by any its coset θ(a). A coset θ(a) of a congruence θ is called
regular if it is a coset of only one congruence.

Remark 1.2. In [19] A.I. Mal’tsev has given necessary and sufficient conditions
that a normal complex K of an algebraic systems A is a coset of only one congru-
ence, i.e. K is a coset of only one congruence of a system A. From his result it
follows that in a finite quasigroup (Q, ·), any congruence is regular. See also [25].

1.2.1 Antihomomorphisms. Similarly with Definition 1.5 we give the follow-
ing:

Definition 1.7. If (Q, ·) and (H, ◦) are quasigroups, h : Q→ H is a mapping such
that h(x1 ·x2) = hx2 ◦ hx1, then h is called a (multiplicative) antihomomorphism

of (Q, ·) into (H, ◦) and the set {hx |x ∈ Q} is called the antihomomorphic image

of (Q, ·) under h.

Remark 1.3. It is easy to see that with any antihomomorphism h we can asso-
ciate a homomorphism h in the following way: h(x1 ·x2) = hx2 ◦hx1 if and only if
h(x1 · x2) = hx1 ∗hx2, where (H, ∗) is (12)-parastrophe of the quasigroup (H, ◦).

We have used the same letter h in various type faces because a mapping h of
the set Q into the set H in both cases is the same.

In case (Q, ·) = (H, ◦) an antihomomorphism is also called an antiendomor-

phism and an antiisomorphism is referred to as an antiautomorphism.

Lemma 1.2. Let h be an antihomomorphism of a quasigroup (Q, ·) onto a
groupoid (H, ◦). Then h induces a congruence Kerh = θ (the kernel of h) in
the following way: x θ y if and only if h(x) = h(y).

Proof: It is easy to see that θ is an equivalence. We prove that the equivalence
θ is a congruence. Rewrite implication (a) θ (b) −→ (c · a) θ (c · b) in the following
form h(a) = h(b) −→ h(c · a) = h(c · b). The last implication is equivalent
with the following h(a) = h(b) −→ h(a) ◦ h(c) = h(b) ◦ h(c). It is clear that
this last implication is true. In the similar way, we may prove the implication
(a) θ (b) −→ (a · c) θ (b · c). �

For antiendomorphisms, the situation is more interesting.
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Corollary 1.1. 1. If h is an endomorphism of a quasigroup (Q, ·), then
(hQ, ·) is a subquasigroup of (Q, ·) [29], [28].

2. If h is an antiendomorphism of a quasigroup (Q, ·), then (hQ, ·) is a
subquasigroup of (Q, ·).

Proof: 1. We rewrite the proof from [4, p. 33] for more general case. We prove
that (hQ, ·) is a subquasigroup of quasigroup (Q, ·). Let h(a), h(b) ∈ h(Q). We
demonstrate that the solution of equation h(a) · x = h(b) lies in h(Q). Consider
the equation a ·y = b. Denote solution of this equation by c, i.e. y = c. Then h(c)
is a solution of equation h(a) · x = h(b). Indeed, h(a) · h(c) = h(a · c) = h(b).

It is easy to see, that this is a unique solution. Indeed, if h(a) · c1 = h(b), then
h(a) · h(c) = h(a) · c1. Since h(a), h(c), c1 are elements of (Q, ·), then h(c) = c1.
For the equation x · h(a) = h(b), the proof is similar.

2. We prove that (hQ, ·) is a subquasigroup of (Q, ·). Let h(a), h(b) ∈ h(Q).
We demonstrate that the solution of equation h(a)·x = h(b) lies in h(Q). Consider
the equation y · a = b. Denote solution of this equation by c, i.e. y = c. Then we
have h(c · a) = h(a) · h(c) = h(b). Then the element h(c) is a solution of equation
h(a) · x = h(b).

We prove that this is a unique solution. Indeed, if h(a) · c1 = h(b), then
h(a) · h(c) = h(a) · c1. Since h(a), h(c), c1 are elements of (Q, ·), then h(c) = c1.

For the equation x · h(a) = h(b), the proof is similar. �

Notice that Case 1 of Corollary 1.1 follows from Theorem 1.4.

2. Paramedial quasigroups

2.1 Antiendomorphisms of paramedial quasigroups. Note that the fact
that a quasigroup has an endomorphism often plays a determining role in the
study of the structure of the quasigroup [20], [26], [29], [28]. In this article we
apply the endomorphic (or, more precisely, antiendomorphic) approach to the
study of finite paramedial quasigroups.

Lemma 2.1. For any paramedial quasigroup (Q, ·), the map s is an antiendo-
morphism [21], [17].

Proof: Indeed, s(xy) = xy · xy = yy · xx = s(y) · s(x). �

Corollary 2.1. For any paramedial quasigroup (Q, ·) the map s2 is an endomor-
phism of this quasigroup.

Proof: Indeed, s2(xy) = s(s(xy)) = s(s(y) · s(x)) = s2(x) · s2(y). �

Corollary 2.2. For any paramedial quasigroup (Q, ·) the map s2n+1, n ∈ N, is
an antiendomorphism and the map s2n, n ∈ N, is an endomorphism.

Proof: This follows from Lemma 2.1 and Corollary 2.1. �

Theorem 2.1. The antiendomorphism s of a paramedial quasigroup (Q, ·) is a
zero map if and only if (Q, ·) is a unipotent quasigroup given by x·y = ϕx−ϕy+g
for all x, y ∈ Q, where (Q,+) is an abelian group, ϕ ∈ Aut(Q,+) and g ∈ Q.
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Proof: (⇒) By Theorem 1.2, there exist an abelian group (Q,+) and automor-
phisms ϕ, ψ such that x · y = ϕx+ ψy + g. From the conditions of the theorem,
s(0) = g. Since the map s is a zero antiendomorphism of (Q, ·) we have s(x) = g
for all x ∈ Q. Thus s(x) = ϕx + ψx + g = g, and so ϕx + ψx = 0 for all x ∈ Q,
whence ψ = −ϕ.

(⇐) In the quasigroup (Q, ·) of the form x · y = ϕx − ϕy + g we have s(x) =
x ·x = ϕx−ϕx+g = g for all x ∈ Q. Then the map s is a zero antiendomorphism
of (Q, ·). �

Corollary 2.3. If a paramedial quasigroup (Q, ·) of the form x · y = ϕx−ϕy+ g
has zero antiendomorphism s, then (Q, ·) is isomorphic to a quasigroup (Q, ◦) of
the form x ◦ y = ϕx− ϕy.

Proof: Let x ◦ y = L−g(Lgx · Lgy), x, y ∈ Q. It is clear that (Q, ◦) ∼= (Q, ·).
Quasigroup (Q, ◦) has the following form

x ◦ y = −g + ϕ(g + x) − ϕ(g + y) + g = ϕg + ϕx− ϕg − ϕy = ϕx− ϕy.

�

Theorem 2.2. The antiendomorphism s of a paramedial quasigroup (Q, ·) is the
identity permutation of the set Q if and only if (Q, ·) is a medial distributive
commutative quasigroup of the form x ·y = ϕx+ϕy for all x, y ∈ Q, where (Q,+)
is an abelian group, ϕ ∈ Aut(Q,+).

Proof: (⇒) By Theorem 1.2, there exist an abelian group (Q,+) and auto-
morphisms ϕ, ψ such that x · y = ϕx + ψy + g. Since s = ε, we have s(0) =
ϕ 0 + ψ 0 + g = 0, so that g = 0.

Therefore s·(x) = ϕx+ ψx = x for all x ∈ Q, ψ = ε− ϕ. Then ϕ2 = (ε− ϕ)2,
ϕ2 = ε−ϕ−ϕ+ϕ2, ϕ+ϕ = ε. But ϕ+ψ = ε. Therefore ϕ = ψ, x · y = ϕx+ϕy
and the quasigroup (Q, ·) is a medial distributive commutative quasigroup.

(⇐) In a medial distributive commutative quasigroup (Q, ·), the map s is the
identity (anti)endomorphism. �

Lemma 2.2. Let (Q, ◦) be a distributive medial quasigroup with the form x◦y =
ϕx + ψy, α ∈ Aut(Q,+). A quasigroup (Q, ·) of the form x · y = L+

a α(x ◦ y) =
αϕx + αψy + a is a paramedial quasigroup if and only if ψ = α−1ϕα.

Proof: If quasigroup (Q, ·) is a paramedial quasigroup, we have αϕαϕ = αψαψ,
and so ϕαϕ = ψαψ. But ψ = ε − ϕ, since (Q, ◦) is a medial distributive quasi-
group. Then ϕαϕ = (ε−ϕ)α(ε−ϕ) = α−αϕ−ϕα+ϕαϕ, so that α = αϕ+ϕα,
and thus ε = ϕ+α−1ϕα. But ε = ϕ+ψ. Therefore ψ = α−1ϕα, that is, αψ = ϕα.

It is easy to check that the converse also holds. �

Theorem 2.3. If the antiendomorphism s of a paramedial quasigroup (Q, ·) of
the form x · y = ϕx+ ψy + g is a permutation of the set Q, then

(i) the map ϕ+ ψ is an automorphism of (Q,+);
(ii) the quasigroup (Q, ◦) of the form x ◦ y = s−1(x · y) = (ϕ+ψ)−1ϕx+(ϕ+

ψ)−1ψy is a distributive medial quasigroup;
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(iii) the map s is an antiautomorphism of (Q, ◦).

Proof: (i) By Kepka-Nemec Theorem x · y = ϕx + ψy + g. Then s(x) = ϕx +
ψx+ g, that is, s = Lg(ϕ+ ψ). Since the maps s and Lg are permutations of Q,
the map ϕ+ψ is an automorphism of the group (Q,+), and s−1 = (ϕ+ψ)−1L−g.

(ii) Thus

x◦y = s−1(ϕx+ψy+g) = (ϕ+ψ)−1(ϕx+ψy+g−g) = (ϕ+ψ)−1ϕx+(ϕ+ψ)−1ψy.

Notice x ◦ x = (ϕ + ψ)−1ϕx + (ϕ + ψ)−1ψx = (ϕ + ψ)−1(ϕ + ψ)x = εx = x.
Thus (Q, ◦) is an idempotent T-quasigroup. It is well known that any idempotent
T-quasigroup is a medial distributive quasigroup [21], [17]. Indeed, it is clear that
(ϕ + ψ)−1ϕ + (ϕ + ψ)−1ψ = ε. Denote the expression (ϕ + ψ)−1ϕ by α and the
expression (ϕ + ψ)−1ψ by β. If α = ε − β, then αβ = (ε − β)β = β − β2 =
β(ε− β) = βα. Therefore by Theorem 1.1 (Q, ◦) is a medial quasigroup. Further
we have xx · yz = x · yz = xy · xz and xy · zz = xy · z = xz · yz.

(iii) We prove that the map s is an antiautomorphism of (Q, ◦), i.e., s(y ◦ x) =
s(x) ◦ s(y). We have

(6) s(y ◦ x) = s(s−1(y · x)) = ϕy + ψx+ g;

(7)

s(x) ◦ s(y) = (Lg(ϕ+ ψ)x) ◦ (Lg(ϕ+ ψ)y)

= (ϕ+ ψ)−1ϕ(Lg(ϕ+ ψ)x) + (ϕ+ ψ)−1ψ(Lg(ϕ+ ψ)y)

= (ϕ+ ψ)−1ϕ(g + ϕx+ ψx) + (ϕ+ ψ)−1ψ(g + ϕy + ψy)

= (ϕ+ ψ)−1(ϕg + ϕ2x+ ϕψx) + (ϕ+ ψ)−1(ψg + ψϕy + ψ2y)

= (ϕ+ ψ)−1(ϕg + ϕ2x+ ϕψx+ ψg + ψϕy + ψ2y)

(ϕ2=ψ2)
= (ϕ+ ψ)−1(ϕg + ψ2x+ ϕψx+ ψg + ψϕy + ϕ2y)

= (ϕ+ ψ)−1((ϕ + ψ)g + (ϕ+ ψ)ψx + (ϕ+ ψ)ϕy)

= (ϕ+ ψ)−1(ϕ+ ψ)(ψx + ϕy + g)

= ϕy + ψx+ g.

Since the right sides of equalities (6) and (7) are equal, we obtain that s(y ◦ x) =
s(x) ◦ s(y). �

Remark 2.1. For detailed information on the structure of medial paramedial
quasigroups in which the map s is a permutation see [17, Lemma 22, Theorem 23].

Corollary 2.4. The quasigroup (Q, ◦) from Theorem 2.3 is paramedial if and
only if ϕ(ϕ + ψ)−1ϕ = ψ(ϕ+ ψ)−1ψ.

Proof: (Q, ◦) is paramedial if and only if (ϕ+ψ)−1ϕ(ϕ+ψ)−1ϕ = (ϕ+ψ)−1ψ(ϕ+
ψ)−1ψ. The last equality is equivalent with the following (ϕ+ψ)(ϕ+ψ)−1ϕ(ϕ+
ψ)−1ϕ = (ϕ+ψ)(ϕ+ψ)−1ψ(ϕ+ψ)−1ψ, that is, ϕ(ϕ+ψ)−1ϕ = ψ(ϕ+ψ)−1ψ. �
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2.2 Finite simple paramedial quasigroups. We recall that any antiautomor-
phism of a quasigroup defines a congruence (Lemma 1.2) which is normal in the
finite case (Lemma 1.1).

Then a necessary condition for the simplicity of a finite paramedial quasigroup
(Q, ·) is that the antiendomorphism s is either a permutation of the set Q (i.e. an
antiendomorphism with trivial kernel) or is a zero antiendomorphism.

This condition is not sufficient. For example, in any distributive quasigroup
the map s is a permutation [29], [28], but it is easy to construct non-simple
distributive quasigroups. Simple medial quasigroups are described in [15]. Finite
simple T-quasigroups are researched in [23], [24].

A loop (Q,+) satisfying the identity (x+x)+(y+z) = (x+y)+(x+z) is called
a commutative Moufang loop. It is clear that any abelian group is a commutative
Moufang loop.

We recall some definitions [18]. Let V (k, p) be a k-dimensional vector space
over a field GF (p). We denote by GL(k, p) the group of all invertible linear
operators on V (k, p), i.e., the automorphism group of the vector space V (k, p).

Let G be a group. Any homomorphism Φ : G −→ GL(k, p) is called a linear

representation of the group G in the vector space V (k, p). This representation of
the group G is denoted by (Φ, V (k, p)).

Let (Φ, V (k, p)) be a linear representation of a group G. A subspace U of
V (k, p) is called an invariant subspace relative to G if Φ(g)u ∈ U for all u ∈ U
and all g ∈ G. The zero subspace and the entire space V (k, p) are called trivial
invariant subspaces.

A representation (Φ, V (k, p)) of a group G that has only trivial invariant sub-
spaces is called an irreducible representation.

We shall use the following theorem ([24], [23, Theorem 2]).

Theorem 2.4. Let (Q, ·) be a linear quasigroup of the form x ·y = (ϕx+ψy)+a,
where (Q,+) is n-generated commutative Moufang loop. Then the quasigroup
(Q, ·) is simple if and only if (Q,+) ∼=

⊕n

i=1(Zp)i for some prime p; the group
〈ϕ, ψ〉 is an irreducible two-generated subgroup of the group GL(n, p).

Theorem 2.5. A finite paramedial quasigroup (Q, ·) of the form x·y = ϕx+ψy+c
over an abelian group (Q,+) is simple if and only if

1. (Q,+) ∼=
⊕n

i=1(Zp)i;
2. the group 〈ϕ, ψ〉 is an irreducible subgroup of the group GL(n, p);
3. if |Q| > 1, the quasigroup (Q, ·) lies in one of the following disjoint quasi-

group classes:
(a) the map s is a zero antiendomorphism; in this case, ψ = −ϕ, (Q, ·)

is a medial unipotent quasigroup, and (Q, ·) is isomorphic to a quasi-
group (Q, ◦) of the form x ◦ y = ϕx− ϕy over the group (Q,+);

(b) the map s is the identity permutation; in this case, c = 0, ϕ =
ψ, ϕ+ϕ = ε, (Q, ·) is a paramedial medial commutative distributive
quasigroup;
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(c) the map s is a non-identity permutation; (Q, ◦), x◦y = (ϕ+ψ)−1ϕx+
(ϕ + ψ)−1ψy, is an (ϕ + ψ)-simple medial distributive quasigroup,
(ϕ+ ψ) ∈ Aut(Q,+).

Proof: (⇒) Cases 1 and 2 follow from Theorem 2.4.
From Lemma 1.2 we have that if a paramedial quasigroup (Q, ·) is simple, then

in this case the map s is a permutation of the set Q, or it is a zero antiendomor-
phism.

Case 3(a) follows from Theorem 2.1.
Case 3(b) follows from Theorem 2.2.
Case 3(c) follows from Theorem 2.3.
(⇐) Any quasigroup mentioned in Case 3 with the properties mentioned in

Cases 1 and 2 is simple and paramedial. �

2.3 Direct decomposition of finite paramedial quasigroups. In this sec-
tion we prove an analog of Murdoch’s Theorem [20] on the structure of finite
medial quasigroups. See also [26], [29]. Direct decompositions of some parame-
dial quasigroups and abelian groups, which are connected with these quasigroups,
are studied in [17].

Definition 2.1. If (Q1, ·), (Q2, ◦) are quasigroups, then their (external) direct

product (Q, ∗) = (Q1, ·) × (Q2, ◦) is the set of all ordered pairs (a′, a′′) where
a′ ∈ Q1, a

′′ ∈ Q2, and where the operation in (Q, ∗) is defined component-wise,
that is, (a1 ∗ a2) = (a′1 · a

′

2, a
′′

1 ◦ a′′2).

Direct products of quasigroups are studied in many articles and books, see, for
example, [11], [30], [21], [14], [5], [7]. The concept of direct product of quasigroups
was used already in [20]. In the group case it is possible to find these definitions,
for example, in [13].

In [10], [30], [31], there is a definition of the (internal) direct product of Ω-
algebras. We recall that any quasigroup is an Ω-algebra.

Definition 2.2. If U and W are congruences on the algebra A which commute
and for which U ∩W = Â = {(a, a)| ∀ a ∈ A}, then the join U ◦W = U ∨W of U
and W is called the direct product U ⊓W of U and W [30], [31].

The following theorem establishes the connection between concepts of internal
and external direct product of Ω-algebras.

Theorem 2.6. An Ω-algebra A is isomorphic to a direct product of Ω-algebras
B and C with isomorphism ϕ, i.e. ϕ : A→ B × C, if and only if there exist such
congruences U and W of A that A2 = U ⊓W ([30, p. 16], [31]).

Lemma 2.3. If a paramedial quasigroup Q is isomorphic to the direct product
of quasigroups A and B, then the quasigroups A and B also are paramedial
quasigroup.

Proof: If we suppose that A or B is not paramedial, then Q is paramedial
neither. �
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We need the following well known fact.

Lemma 2.4. Normal quasigroup congruences commute in pairs [19], [30], [10],
[29].

Define in a finite paramedial quasigroup (Q, ·) the following chain

(8) Q ⊃ s1(Q) ⊃ s2(Q) ⊃ · · · ⊃ sm(Q) ⊃ . . .

The chain (8) becomes stable if there exists a natural numberm such that sm(Q) =
sm+1(Q) = sm+2(Q) . . . . In this case we shall say that the antiendomorphism s
has the order m.

Taking into consideration Corollary 1.1 we can say that such a chain exists in
any paramedial quasigroup. It is clear that the chain (8) becomes stable in any
finite paramedial quasigroup.

Theorem 2.7. Any finite paramedial quasigroup (Q, ·) has the following struc-
ture

(Q, ·) ∼= (A, ◦) × (B, ·),

where (A, ◦) is a quasigroup with a unique idempotent element; (B, ·) is isotope of
a distributive medial quasigroup (B, ⋆), x ·y = s(x⋆y), x⋆y = ϕx+ψy, s = L+

a α,
a ∈ B, α ∈ Aut(B,+), ϕαϕ = ψαψ.

Proof: The proof of this theorem mainly repeats the proof of Theorem 6 from
[26].

If the map s is a permutation of Q, then by Theorem 2.3, (Q, ·) is an isotope
of a distributive quasigroup.

If s(Q) = k, where k is a fixed element of the set Q, then (Q, ·) is a unipotent
quasigroup, (Q, ·) ∼= (Q, ◦), where x ◦ y = ϕx − ϕy, (Q,+) is an abelian group,
ϕ ∈ Aut(Q,+) (Theorem 2.1).

We suppose that sm = sm+1, where m ≥ 1. From Corollary 1.1 it follows that
sm(Q, ·) = (B, ·) is a subquasigroup of (Q, ·). It is clear that (B, ·) is a paramedial
quasigroup in which the map s = s|sm(Q) is a permutation of B ⊂ Q. In other
words, s(B) = B.

Define a binary relation δ on (Q, ·) by the following rule: xδy if and only if
sm(x) = sm(y).

By Lemma 1.2 (if sm is an antiendomorphism) or by Theorem 1.4 (if sm is an
endomorphism), the relation δ is a congruence of (Q, ·). By Lemma 1.1, δ is a
normal congruence.

It is known that any subquasigroup of a T-quasigroup is normal ([17, Theo-
rem 43]). Thus the subquasigroup (B, ·) of (Q, ·) is normal. By Remark 1.2, this
subquasigroup defines exactly one normal congruence. Denote this congruence by
the letter ρ.

It is known ([3, pp. 56–57], [4], [22]) that any coset ρ(a) of a normal congruence
ρ of a quasigroup (Q, ·) can be presented in the form a · B, where B is a normal
subquasigroup of (Q, ·) and B = ρ(b) for some b ∈ Q. Indeed, we can take into
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consideration the following equalities a · ρ(b) = ρ(a · b) = ρ(a) · b that are true for
any normal congruence ρ of a quasigroup (Q, ·).

Taking into consideration Remark 1.2, we can say that any normal subquasi-
group B of a quasigroup Q defines in a unique way a normal congruence ρ by the
rule: xρy if and only if B · x = B · y, i.e. for any b1 ∈ B there exists exactly one
element b2 ∈ B such that b1 ·x = b2 · y and vice versa, for any b2 ∈ B there exists
exactly one element b1 ∈ B such that b1 · x = b2 · y.

We prove that δ ∩ ρ = Q̂ = {(x, x)| ∀x ∈ Q}. From the reflexivity of δ and ρ,

we have that δ ∩ ρ ⊇ Q̂. On the other hand, let (x, y) ∈ δ ∩ ρ, i.e. let xδy and
xρy where x, y ∈ Q. Using the definitions of δ, ρ we have sm(x) = sm(y) and
(B, ·) · x = (B, ·) · y. Then there exist a, b ∈ B such that a · x = b · y. Applying to
both sides of last equality the map sm we obtain sm(a) · sm(x) = sm(b) · sm(y),
sm(a) = sm(b), a = b, since the map sm|B is a permutation of the set B. If a = b,
then from a · x = b · y we obtain x = y.

From Definition 2.2, it follows that in order to prove the existence of the con-
gruence direct decomposition of (Q, ·), we should prove that δ ◦ ρ = Q×Q.

Let a, c be fixed elements of Q. We will have proven the equality if we can
shown that there exists y ∈ Q such that aδy and yρc. Now, from the definition
of δ we have that condition aδy is equivalent to equality sm(a) = sm(y). From
the definition of congruence ρ it follows that condition yρc is equivalent to the
following condition: y ∈ ρ(c) = B · c. Thus we will have proven the equality
δ◦ρ = Q×Q if we demonstrate that there exists y ∈ B ·c such that sm(a) = sm(y).
Such an element y exists since sm(B ·c) = sm(B) ·sm(c) = B = sm(Q), if the map
sm is an endomorphism of (Q, ·), while if sm is an antiendomorphism of (Q, ·),
then sm(B · c) = sm(c) · sm(B) = B = sm(Q).

Therefore ρ ◦ δ = Q × Q = δ ◦ ρ, δ ∩ ρ = Q̂ and we can use Theorem 2.6.
Now we can say that (Q, ·) is isomorphic to the direct product of (Q, ·)/δ ∼= (B, ·)
(Theorem 1.4) and (Q, ·)/ρ ∼= (A, ◦) [9].

The paramedial identity holds in (B, ·) since (B, ·) ⊆ (Q, ·). If the quasigroups
(Q, ·) and (B, ·) are paramedial quasigroups, (Q, ·) ∼= (A, ◦) × (B, ·), then (A, ◦)
is a paramedial quasigroup as well (Lemma 2.3).

Now we prove that the quasigroup (A, ◦) ∼= (Q, ·)/(B, ·), where sm(Q, ·) =
(B, ·), has a unique idempotent element.

We can identify elements of (Q, ·)/(B, ·) with cosets of the form B · c, where
c ∈ Q. From properties of (A, ◦), we have that sm(A) = a, where the element a
is a fixed element of A that corresponds to the coset class B.

Further, taking into consideration the properties of endomorphism s of the
quasigroup (A, ◦), we obtain sm+1A = s(smA) = s(a) = a. Therefore s(a) = a,
i.e. the element a is an idempotent element of (A, ◦). To prove the uniqueness of
the idempotent element, suppose there exists c ∈ A such that c ◦ c = c, i.e. such
that s(c) = c. Then sm(c) = c = a, since sm(A) = a.

The fact that (B, ·) is an isotope of a distributive quasigroup (B, ⋆) follows
from Theorem 2.3. �



368 V.A. Shcherbacov, D.I. Pushkashu

Taking into consideration Theorem 2.7 we can formulate an analog of Theo-
rem 1.3 for finite paramedial quasigroups.

Theorem 2.8. Any finite paramedial quasigroup (Q, ·) is isomorphic to the direct
product of a paramedial unipotently-solvable quasigroup (Q1, ◦) with a unique
idempotent element and a quasigroup (Q2, ∗), where (Q2, ∗) is an isotope of the
form (ε, ε, γ) of a medial distributive quasigroup (Q2, ⋆), x ∗ y = γ(x ⋆ y), x ⋆ y =
ϕx+ψy, (Q2,+) is the abelian group corresponding to (Q2, ⋆), γ = L+

a α, a ∈ Q2,
α ∈ Aut(Q2,+), ϕαϕ = ψαψ.

2.4 Paramedial quasigroups of order 4. We shall use the following

Remark 2.2. If a map f of a quasigroup (Q, ·) has the form Laξ, where ξ is
an antiendomorphism of (Q, ·), then ξLax = ξ(a · x) = ξx · ξa = Rξaξx. Thus
f2 = LaRξaξ

2 and so on. Therefore, fk is a zero map if and only if ξk is a zero
map.

There are two abelian groups of order 4: the additive group Z4 of residues
modulo 4 and the elementary abelian 2-group Z2 ⊕ Z2.

Let Z4 = {0, 1, 2, 3}. Then AutZ4 = {ε, I}, where I = (13). Notice that the
automorphism I is often denoted by the sign “–”.

The following triplets define paramedial quasigroups of order 4 over the group
Z4:

1) Case ϕ = ψ. We have such triplets (ε, ε, 0, 3), (I, I, 0, 3). Here the expression
0, 3 denotes the set of integers {0, 1, 2, 3}.

It is clear that any triplet from the first series defines the group Z4.
Any quasigroup from the second series is a medial paramedial quasigroup in

which the antiendomorphism s has the form L+
i ξ, where i ∈ {0, 1, 2, 3}, the map

ξ is multiplication of any quasigroup element x element by the number −2 ≡ 2
(mod 4).

Using Remark 2.2 we obtain that any quasigroup from the second series is a
unipotently-solvable quasigroup of degree 2.

2) Case ϕ2 = ψ2 and ϕ 6= ψ. We have the following subcases: (ε, I, 0, 3),
(I, ε, 0, 3). Any quasigroup from the last triplets has zero antiendomorphism s
since I ≡ −. Therefore in this case we can use Corollary 2.3.

We denote elements of the group Z2⊕Z2 as follows: {(0; 0), (1; 0), (0; 1), (1; 1)}.
Then Aut(Z2 ⊕ Z2) has the form

Aut(Z2 ⊕ Z2) =

{(

1 0
0 1

)

,

(

1 0
1 1

)

,

(

1 1
0 1

)

,

(

0 1
1 0

)

,

(

1 1
1 0

)

,

(

0 1
1 1

)}

.

Denote automorphisms ϕi as follows ε = ( 1 0
0 1 ), ϕ2 = ( 1 0

1 1 ), ϕ3 = ( 1 1
0 1 ), ϕ4 =

( 0 1
1 0 ), ϕ5 = ( 1 1

1 0 ), ϕ6 = ( 0 1
1 1 ).

It is known that Aut(Z2 ⊕ Z2) ∼= S3 [12], [16].
1) Case ϕ = ψ is obvious and we omit it.
2) Case ϕ2 = ψ2 and ϕ 6= ψ.
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We notice ε2 = ϕ2
2 = ϕ2

3 = ϕ2
4 = ε, ϕ2

5 = ϕ6, ϕ
2
6 = ϕ5. Then the condition

ϕ2 = ψ2 and ϕ 6= ψ is fulfilled for the following automorphisms: ε, ϕ2, ϕ3 and ϕ4.
The following triplets define paramedial quasigroups of order 4 with the prop-

erty ϕ 6= ψ over the group Z2 ⊕ Z2:
(ε, ϕ2, 0, 3), (ϕ2, ε, 0, 3), (ε, ϕ3, 0, 3), (ϕ3, ε, 0, 3), (ε, ϕ4, 0, 3), (ϕ4, ε, 0, 3),

(ϕ2, ϕ3, 0, 3), (ϕ2, ϕ4, 0, 3), (ϕ4, ϕ2, 0, 3), (ϕ3, ϕ2, 0, 3), (ϕ3, ϕ4, 0, 3), (ϕ4, ϕ3, 0, 3).
Any quasigroup from the first row is a medial paramedial quasigroup. Each of

these quasigroups is unipotently-solvable quasigroup of degree 2.
Quasigroups from the second row are simple paramedial quasigroups since any

pair of elements of the set {ϕ2, ϕ3, ϕ4} generates the group Aut(Z2 ⊕ Z2) ∼= S3

[12], [16].
Moreover all these quasigroups are not medial, since automorphisms ϕ2, ϕ3, ϕ4

are not permutable in pairs relative to the operation of multiplication. Therefore
all these quasigroups are from Case 3(c) of Theorem 2.5.
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