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Abstract. We consider an effective model of nuclear matter including spin and isospin
degrees of freedom, described by an N-body Hamiltonian with suitably renormalized two-
body and three-body interaction potentials. We show that the corresponding mean-field
theory (the time-dependent Hartree-Fock approximation) is “exact” as N tends to infinity.
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1. Introduction

The time-dependent Hartree Fock (TDHF) approximation, used in various quan-

tum situations, is based on the hope that one can describe an interacting fermion

system in terms of an effective single-particle problem. The many-body wave-

function of the system with Hamiltonian H is approximated by a single (Slater)

determinant |Ψ(t)〉 by using a variational criterion: at any t > 0, the deviation

between |Ψ(t)〉 and the true wave-function is minimized. In other words, the vari-
ation δ(〈Ψ(t)|ih̄∂t −H |Ψ(t)〉) equals zero with the constraint that at each time the
trial function is a single Slater determinant Ψ(t) = (1/

√
N !) det{ϕi(xj , t)}, where

ϕi(xj , t) are single-particle functions.

In order to have a more precise idea of this deviation, a natural way to proceed is

to build a quantum hierarchy (analogous to the BBGKY (Bogoliubov-Born-Green-

Kirkwood-Yvon) hierarchy of classical statistical mechanics) having the TDHF equa-

tion as a “weak interacting” limit in a sense to be defined (see [23]). This strategy

has been recently elaborated in a series of works (see [16] and the references therein).

In nuclear physics involving nucleons (spin 1
2 and isospin

1
2 particles), the mean

field computed with the TDHF approximation is especially interesting: it is a natural

197



candidate to get collective information in large amplitude dynamics, while its static

limit accurately predicts energies and charge density distributions for most of nuclei

throughout the Periodic table [19]; moreover, in the small amplitude limit, TDHF re-

duces to the Random Phase Approximation (RPA) which qualitatively describes the

excitation energies and transition charge densities for appropriate low-lying collective

states [21].

In this article we consider a model of nuclear matter including two-body and

three-body interactions and we derive the time-dependent Hartree-Fock equation as

a mean field dynamical equation for this system. The corresponding mean field limit

is conveniently investigated in terms of a density operator DN(t), in the Schrödinger

picture, where DN(t) obeys the von Neumann equation

ih̄
d

dt
DN (t) =

∑

16j6N

[Lj, DN (t)] +
1

N − 1

∑

16i<j6N

[Vij , DN (t)](1.1)

+
1

(N − 1)(N − 2)

∑

16i<j<k6N

[Wijk, DN (t)]

with Vij denoting the two-body potential V acting between the ith and jth particles

([ , ] denoting the commutator) andWijk denoting the three-body potentialW acting

between the ith, the jth and the kth particles.

The physical situation described by (1.1) is a weak interaction limit in the following

sense: each term on the right-hand side is supposed to act on an equal footing which

implies renormalization coefficients of orderN−1 for the two-body potential andN−2

for the three-body potential.

The limit as N → ∞ of the n-body density operator, denoted by DN :n(t), is shown

to converge to the suitably antisymmetrized version of D(t)⊗n, where D(t) obeys the

so-called time-dependent Hartree-Fock equation.

As in [3], the initial state is chosen to be a Slater determinant which is a suitably

factorized state consistent with Fermi-Dirac statistics. Assuming that {DN(0)} is a
sequence of initial states for (1.1) that are close to Slater determinants (this property

described below will be called the Slater closure), we can prove that {DN(t)} has the
Slater closure for all t > 0. Since {DN(t)} has Slater closure, the two-body density
operator DN :2(t) and the three-body density operator DN :3(t) are approximately

equal to (DN :1(t) ⊗ DN :1(t))Σ2, and (DN :1(t) ⊗ DN :1(t) ⊗ DN :1(t))Σ3 when N is

large.

Substituting (DN :1(t)⊗DN :1(t))Σ2 forDN :2(t) and (DN :1(t)⊗DN :1(t)⊗DN :1(t))Σ3

for DN :2(t) and DN :3(t) in the hierarchy, one may guess that for large N , the single-

body density operator should nearly obey the time-dependent Hartree-Fock (TDHF)
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equation

ih̄
d

dt
F (t) = [L,F (t)] + [V, (F (t) ⊗ F (t))Σ2]:1 + [W, (F (t) ⊗ F (t) ⊗ F (t))Σ3]:1,

F (0) = DN :1(0).

In fact, according to our result (Theorem 3.1), the distance in the trace norm be-

tween DN :1(t) and the corresponding solution to the TDHF equation tends to 0 as

N tends to infinity.

In this article, we assume that the two-body potential V and the three-body

potentialW are bounded operators in a suitable Hilbert space. For technical reasons,

which are commented from a physical point of view in Section 2, our results are

limited to non charged fermions. However, recent works [5], [18] suggest that it may

be possible to prove a theorem similar to our Theorem 3.1 for the case, where V is

the Coulomb potential.

The plan of the paper is as follows: in Section 2 we briefly review some specific

aspects of effective nuclear interactions, then we state and prove (Section 3) our

convergence result, finally we comment in the last section on the Hartree approxi-

mation and the main difficulties one has to face in order to consider more realistic

models.

2. The nuclear N-body problem

Low energy nuclear physics considers nucleons (neutrons and protons) as the ele-

mentary constituents of nuclei. In fact nucleons may be considered as bound states

of quarks, themselves strongly interacting through gluons, but one (presently) does

not know how to derive qualitatively the nucleon-nucleon interaction from the cor-

responding gauge field theory (Quantum Chromodynamics or QCD). As far as low

energy nuclear physics is concerned the quark-gluons degrees of freedom are not di-

rectly observed and nucleons are the physically relevant objects. However, even in

this context, properties of nuclei cannot directly be derived from a possible “bare”

interaction between nucleons, which is too singular to be treated through perturba-

tive methods and one is forced to derive “dressed” (effective) interactions, modelling

the “nuclear medium” in a phenomenological way, the so-called effective phenomeno-

logical interactions, for which the many body methods such as Hartree-Fock approx-

imation may be used. These effective forces include a number of parameters which

have to be adjusted in order to fit experimental data.

In various contexts such as dynamics of heavy nuclei or neutron stars astrophysics,

one deals with a large number of particles and it is natural to consider an idealized
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situation consisting of an infinite collection of nucleons. However, this simple model

leads to some conceptual difficulties: contrary to the “atomic” situation, where neg-

ative charges of electrons are neutralized by the positively charged ionic background,

such a neutralization cannot exist in the nuclear case.

One observes that, for light nuclei, the numbers of protons and neutrons tend to

be equal for the more stable configurations. As the mass of the nucleus increases, the

number of neutrons exceeds the number of protons, due to the Coulomb repulsion

between the protons: it is precisely this Coulomb force which prevents nuclei of

arbitrary mass from being stable.

In fact, despite Coulomb repulsion, the fact that nucleons can be brought together

to form stable nuclei shows that the specifically nuclear forces are much stronger

that the Coulomb forces. To study the effect of these nuclear forces, it is therefore

convenient to think of the Coulomb force switched off.

Finally, we adopt the following definition of nuclear matter: a large but equal

number of protons and neutrons held together only by the strong nuclear forces,

which is physically relevant as one expects that the cores of large nuclei that exist

in nature will bear some resemblance to chunks of this idealized matter.

In the rest of this section, we briefly review the main models used by physicists

to model nuclear interactions and we show that a mean-field result applies to an

important class of effective interactions including the D1S model [12].

2.1. The Hamiltonian for nuclear matter: a short review

To describe particles with spin and isospin degrees of freedom (see [1]), the ap-

propriate one-particle Hilbert space is H = L2(R3 × {−1/2, 1/2} × {−1/2, 1/2}) ∼
L2(R3,C2 ⊗C

2), corresponding to the discrete spin (spin up σ = 1/2 and spin down

σ = −1/2) and isospin (neutron τ = −1/2 and proton τ = 1/2) degrees of freedom.

Denoting collectively by x := (r, σ, τ) the space-spin-isospin degree of freedom, the

scalar product on H is

(ϕ, ψ) :=
∑

σ=−1/2,1/2

∑

τ=−1/2,1/2

∫

R3

ϕ(r, σ, τ)ψ(r, σ, τ) dr.

If one wants to stress the spinor character of the wave function [1], a convenient and

global notation for the wave function of a particle j is

ψj(x) = ϕj(r)χσ(j)ζτ (j),

where x denotes the set (r, σ, τ), ϕj(r) is the spatial part of the wave function,

χσ(j) is the spin wave-function, and ζτ (j) is the isospin wave-function.
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The angular momentum operator L with components Lα for α = 1, 2, 3 is defined

by

Lα := −i
(

rβ
∂

∂rγ
− rγ

∂

∂rβ

)

,

where (α, β, γ) is a cyclic permutation of (1, 2, 3).

The spin operators S3, S+, and S− are defined by

(S3ϕ)(r, σ, τ) := h̄σϕ(r, σ, τ) for σ ∈ {−1/2, 1/2},
(S+ϕ)(r, σ, τ) := h̄

√

(1/2 + σ)(3/2 − σ)ϕ(r, σ − 1, τ) for σ ∈ {−1/2, 1/2},

and

(S−ϕ)(r, σ, τ) := h̄
√

(1/2 − σ)(3/2 + σ)ϕ(r, σ + 1, τ) for σ ∈ {−1/2, 1/2},

where one checks that (S+ϕ)(r, σ = −1/2, τ) = (S−ϕ)(r, σ = 1/2, τ) = 0, and the

three components Sα, for α = 1, 2, 3, of the spin operator ~S used in the spin-orbit

interaction are defined by S1 = i−1(S+ + S−), S2 = −i−1(S+ − S−), and S3.

The isospin operators T1, T2, and T3 are defined exactly by the same expressions,

just by exchanging the respective roles of the spin σ and the isospin τ .

For a two nucleons system (1,2), one also defines the two-body spin exchange

operator Pσ acting on simple states by

Pσϕ(r1, σ1, τ1)ϕ(r2, σ2, τ2) = ϕ(r1, σ2, τ1)ϕ(r2, σ1, τ2),

the two-body isospin exchange operator Pτ by

Pτϕ(r1, σ1, τ1)ϕ(r2, σ2, τ2) = ϕ(r1, σ1, τ2)ϕ(r2, σ2, τ1),

and the Majorana operator

PM = −PσPτ .

For the one-body contribution we take the kinetic operator together with the

intrinsic spin-orbit contribution

(2.1) L := − h̄2

2m
∆ + wlsL · S,

where one can take (see below) wls = 115 MeV fm5.

Concerning the N -body contributions with N > 1, a lot of models have been

proposed, suitable for different physical contexts: a bare interaction successful to de-

scribe nucleon-nucleon scattering is often not convenient to describe static properties
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of large nuclei. In this last case, effective interactions taking into account the medium

effects are better, however they do not give correct agreement with experiments in

scattering processes.

From a general point of view, the best way to go ahead is first to discuss the

general properties an interaction should have in order to satisfy general symmetry

requirements1, then to specialize to either the bare interactions or the effective ones.

2.1.1. General properties of nucleon-nucleon interaction. Let us postulate

the following general form for the nucleon-nucleon potential

V = V (r1, r2, p1, p2, σ1, σ2, τ1, τ2),

where (r1, p1, σ1, τ1) and (r2, p2, σ2, τ2) are the position, momentum, spin and isospin

of the first and the second particle, respectively.

According to the first principles of quantum mechanics, the functional form of V is

restricted by the symmetries acting on the system: due to translational invariance,

V depends only on r := r1 − r2, then by Galilei invariance, V depends only on the

relative momentum p := p1−p2, by rotational invariance, any contribution in V must

have a zero total momentum; by isospin invariance, as only contributions scalar un-

der rotation in the isospin space are allowed, V must include only powers of τ1 ·τ2. Fi-
nally, parity invariance requires that V (r, p, σ1, σ2, τ1, τ2) = V (−r,−p, σ1, σ2, τ1, τ2)

(only even powers of r and p are allowed) and time reversal invariance requires that

V (r, p, σ1, σ2, τ1, τ2) = V (r,−p,−σ1,−σ2, τ1, τ2) (only an even number of p and σ

combined are allowed in each term).

Even after these restrictions a lot of models may be constructed, starting with the

lowest order terms such as S1 ·S2, (r · S1)(r ·S2) or −ih̄(r×p) · (S1 + S2), where Sj

and Tj are the previous spin and isospin operators corresponding to the nucleon j

for j = 1, 2.

The simplest form of V is the central momentum-independent force:

V = V0(r) + Vσ(r)S1 · S2 + Vτ (r)T1 · T2 + Vστ (r) (S1 · S2)(S1 · S2),

which one rewrites, using the previous exchange operators, as

(2.2) V = VW (r) + VM (r)Pr + VB(r)Pσ + VH(r)Pτ ,

where the indices stand for Wigner, Majorana, Barlett, and Heisenberg.

1 This is the strategy commonly used in mechanics of continuous media, where symmetries
give restrictions on the state functions.
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2.1.2. “Bare” interactions from nucleon-nucleon scattering. From low-

energy nucleon-nucleon scattering, some basic features emerge: the interaction is

short range (about 1 fm), within this range it is attractive at “large distance” and

strongly repulsive at “short distance” (6 0.5 fm), and it depends both on the spin

and isospin of the two nucleons. Starting from the idea that the nucleon-nucleon

interaction is mediated by pions as Coulomb interaction is mediated by photons, one

gets the OPEP (One Pion Exchange Potential)

(2.3) VOPEP(r1 − r2, σ1, σ2, τ1, τ2) = − f2

4πµ
(T1 · T2)(S1 · ∇1)(S2 · ∇2)

e−µ|r1−r2|

|r1 − r2|
,

where f is a coupling constant and µ the mass of the pion.

A second popular version of nucleon-nucleon interaction is the Hamada-Johnston

potential, which has the general form

(2.4) VHJ = VC(r) + VT (r)S12 + VLS(r)L · S + VLL(r)L12,

where

S12 := (V0(r) + V1(r)(T1 · T2))
[ (r · S1)(r · S2)

r2
− 1

3
S1 · S2

]

is a tensor term taking into account the quadrupole moment of the deuteron (two-

nucleon state), and

L12 := L2(S1 · S2) −
1

2
[(S1 · L)(S2 · L) + (S2 · L)(S1 · L)],

and the radial parts are inspired by the meson exchange potentials

VC(r) = c0µc
2(T1 ·T2)(S1 · S2)

e−µr

µr

(

1 + aC
e−µr

µr
+ bC

e−2µr

µr2

)

and similar expressions for VT , VLS , and VLL.

While the models discussed previously describe successfully scattering experi-

ments, they are rarely used in typical nuclear structure calculations. It seems that

in nuclei the interaction is strongly modified by complicated many-body effects and

it becomes more profitable to design effective interactions, which include many-body

correlations, and accordingly are especially suitable for mean-field calculations.

2.1.3. Effective interactions. The simplest effective interactions correspond to

contact forces (Dirac distributions)

(2.5) Vij = V0δ(r)I + V1(p
2
i δ(r) + δ(r)p2

j ) + V2pi · δ(r)pj ,

where pj is the momentum operator for the nucleon j.
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The radial parts may be chosen as gaussian V (r) = −V0e
−r2/r2

0 , or of Hulthén

type V (r) = −V0 e−r/r0/(1 − e−r/r0), or of contact type V (r) = −V0δ(r/r0), where

V0 ∼ 50MeV and 1 6 r0 6 2 fm.

However, the most widely used interactions in Hartree-Fock calculations are the

forces of Skyrme type [21], which also include a three-body contribution. The total

interaction is then

V =

N
∑

i<j

Vij +
∑

i<j<k

Vijk .

The two-body term contains the momentum dependence and the spin-exchange con-

tribution and a spin-orbit term

Vij = t0(1 + x0Pσ)δ(ri − rj) +
1

2
t2

(

δ(ri − rj)k
2 + k′2δ(ri − rj)

)

(2.6)

+ t2k
′ · δ(ri − rj)k + iw0(Si + Sj) · k′ × δ(ri − rj)k,

where the relative momenta operators k := 1
2 i−1(∇i−∇j) and k′ := − 1

2 i−1(∇i−∇j)

are supposed to obey the convention that k and k′ act on the wave function at its

right and left, respectively.

The three-body interaction is purely local:

(2.7) Wijk = t3δ(ri − rj)δ(rj − rk)I.

The six parameters t0, t1, t2, t3, x0, and w0 are chosen in order to reproduce the prop-

erties of some fixed finite nuclei (for the so-called “Skyrme III” interaction [7], one

takes for example t0 = −1128.75MeV fm3, t1 = 395.0MeV fm5, t2 = −95.0MeV fm5,

t3 = 14000.0MeV fm6, w0 = 120MeV fm5, x0 = 0.45, where 1 fm (fermi) = 10−15 m

and 1 MeV = 1.602 · 10−13 J are the standard nuclear units).

One observes that, from the mathematical point of view, the above Skyrme inter-

action does not lead to a well behaved Hamiltonian, due to the presence of Dirac

distributions. Moreover, from the physical point of view, although this model is able

to reproduce a number of physical quantities (nuclear binding energies, nuclei radii)

over the whole periodic table with a reasonable set of parameters, it leads to “phys-

ical divergences“, where pairing properties (illustrating superfluid properties of the

main part of nuclei) are involved.

In order to avoid these drawbacks, a finite-range interaction has been devised by

J. Dechargé and D. Gogny in the seventies, which is free of all these divergences [12],

which may be considered as a smeared version of the Skyrme interaction.

For the two-body operator Vij , one considers the short range model [21], [12]

(2.8) Vij =

2
∑

n=1

e−(|ri−rj |)
2/µn(wn + bnPσ − hnPτ −mnPσPτ ),
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where the sum involves the operators Pσ, which exchanges spins σi and σj , and Pτ ,

which exchanges isospins τi and τj .

We consider finally a purely spatial smeared contribution to the three-body oper-

atorWijk:

(2.9) Wijk = t3e
−(|ri−rj |

2+|rj−rk|
2)/µ2I.

In these expressionswn, bn, hn,mn are the so-calledWigner, Bartlett, Majorana, and

Heisenberg coefficients. Together with the spin-orbit coefficient wls, the three-body

coefficient t3 and the nuclear ranges µn are adjusted to experimental data with precise

values (see [12]) given by µ1 = 0.7 fm, w1 = −402.4 MeV, b1 = −100 MeV, h1 =

−496.2 MeV, m1 = −23.56 MeV, µ2 = 1.2 fm, w2 = −21.3 MeV, b2 = −11.77 MeV,

h2 = 37.27 MeV, m2 = −68.81 MeV, wls = 115 MeV fm5, and t3 = 1350 MeV fm4.

We have the following result.

Proposition 1. Assume that the one body operator is given by (2.1),

Li := − h̄2

2m
∆ri

+ wlsLi · Si,

and that the interacting operators Vij and Wijk satisfy, for any x = (r, σ, τ) ∈
R

3 × {−1/2, 1/2}× {−1/2, 1/2}, the conditions

Vij :=

4
∑

l=1

alVl(|ri − rj |)Tl,

where al are real constants, Tl are the spin-isospin exchange operators defined above

with T1 = 1, T2 = Pσ, T3 = Pτ and T4 = PσPτ , and such that

Vl ∈ L2(R3) + L∞(R3)

for l = 1, 2, 3, 4, and

Wijk := W (|ri − rj |, |rj − rk|)T1

with

W ∈ L2(R3 × R
3) + L∞(R3 × R

3).

Then the Hamiltonian HN defined in HN by

(2.10) HN :=
N

∑

i=1

Li +
1

N − 1

∑

16i<j6N

Vij +
1

(N − 1)(N − 2)

∑

16i<j<k6N

Wijk,

with the domain D(HN ) = (H2(R3,C2 ⊗ C
2))N , is essentially self-adjoint.
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P r o o f. As the spin-isospin dependence of the interaction is present only through

the spin-isospin exchange operators Pσ and Pτ which are clearly bounded ope-

rators, and as the spin-orbit contribution defines a self-adjoint operator by virtue

of classical results (see [1], p. 470, and [25]), the above proposition is a direct

consequence of Kato’s self adjointness criterion [17] for operators HN = H0 +

HI , where H0 :=
N
∑

i=1

Li is essentially self-adjoint, HI := (N − 1)−1
∑

16i<j6N

Vij +

(N − 1)−1(N − 2)−1
∑

16i<j<k6N

Wijk is symmetric and H0-bounded with H0-bound

less than 1. �

This result implies that Proposition 1 holds for the finite-range model (“D1S Gogny

interaction”) of nuclear matter introduced in [12], given by (2.8) and (2.9).

Just note that the more singular Skyrme model (2.6)–(2.7) does not satisfy the

requirements of Theorem 1, due to the presence of delta distributions.

Moreover, we observe that the two-body and three-body interactions given

by (2.8), (2.9) are bounded operators, which will be crucial for applying the machin-

ery of [4].

3. The time-dependent Hartree-Fock approximation

Let us briefly recall some notation from [3]. For nucleons (protons and neu-

trons) the appropriate N -particle Hilbert space of wavefunctions is the antisym-

metric subspace AN ⊂ HN defined by using unitary permutation operators on HN .

For any π in the group GN of permutations of {1, 2, . . . , N}, one considers the
permutation operator Uπ as Uπ(ξ1 ⊗ . . . ⊗ ξn) = ξπ−1(1) ⊗ . . . ⊗ ξπ−1(n). Then

AN = {ψ ∈ HN : Uπψ = sgn(π)ψ ∀π ∈ GN}.
We denote in the sequel Σn := n!PAN

, where PAN
= N !−1

∑

π∈GN

sgn(π)Uπ is the

orthogonal projector whose range is AN . The pure states of an N -fermion system

correspond to the orthogonal projectors Pψ onto one-dimensional subspaces of AN

and the statistical states of the N -fermion system are the positive trace class oper-

ators of trace 1 (density operators) D on AN . These fermionic densities are those

density operators that satisfy

(3.1) DUπ = UπD = sgn(π)D ∀π ∈ GN .

It is proved in [3] that the operator norm ‖D‖ of a fermionic density operator on HN

is bounded by 1/N . If {ej}j∈J is an orthonormal basis of H then the family

{ej1 ⊗ ej2 ⊗ . . .⊗ ejN : j1, j2, . . . , jN ∈ J}
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is an orthonormal basis of HN . Since AN is the range of PAN
and since PAN

(ej1 ⊗
ej2 ⊗ . . .⊗ ejN ) = 0, unless all of the indices ji are distinct, the set

S = {PAN
(ej1 ⊗ ej2 ⊗ . . .⊗ ejN ) : j1, j2, . . . , jn all distinct}

is a spanning set for AN and the basis vectors for AN built in this way are called

the Slater determinants.

For n 6 N , the nth partial trace is a contraction from T (H⊗N ) onto T (H⊗n). The

nth partial trace of T will be denoted by T:n, and may be defined as follows. Let

O be any orthonormal basis of H. If T ∈ T (H⊗N ) and n < N then

(3.2) 〈T:nw, x〉 =

N−n
∑

j=1

∑

yj∈O

〈T (w ⊗ y1 ⊗ . . .⊗ yN−n), (x ⊗ y1 ⊗ . . .⊗ yN−n)〉

for any w, x ∈ H⊗n. If a trace class operator T ∈ T (H⊗N ) satisfies (3.1) then so

does T:n; the partial trace defines a positive contraction from T (H⊗N) to T (H⊗n)

that carries fermionic densities to fermionic densities. Finally, if a density operatorD

on HN commutes with every permutation operator Uπ then it is symmetric.

Observing that if PΨN
denotes the orthogonal projector onto the span of ΨN ∈ AN

then

(3.3) (PΨN
):n =

Nn(N − n)!

N !
(PΨN

)⊗n:1

∑

π∈Πn

sgn(π)Uπ ,

we introduce the following definition.

Definition 3.1. For each N , let DN be a symmetric density operator on HN .

The sequence {DN} has Slater closure if, for each fixed n,

lim
N→∞

‖DN :n −D⊗n
N :1Σn‖tr = 0.

The N -particle dynamics is described by a self-adjoint operator iL(N) on H, where

L(N) is the one body potential acting on a single particle; in addition to the kinetic

term −h̄2(2m)−1∆, it may also include an external field and the (intrinsic) spin-

orbit interaction (see below for a precise definition). Then the free motion of the

jth particle will be given by

L
(N)
j = I⊗j−1 ⊗ L(N) ⊗ I⊗N−j,

where I denotes the identity operator on H.
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The two-body interaction between the particles will have the form 1/N − 1 times

the sum over pairs of distinct particles of a two-body potential V . Let V be a bounded

Hermitian operator on H ⊗ H that commutes with the transposition operator U(12).

Define the operator V12 on HN by

V12(x1 ⊗ x2 ⊗ . . .⊗ xN ) = V (x1 ⊗ x2) ⊗ x3 ⊗ . . .⊗ xN

and for each 1 6 i < j 6 N define Vij = U∗
πV12Uπ where π is any permutation with

π(i) = 1 and π(j) = 2.

Analogously, the three-body interaction between the particles will have the form

1/(N − 1)(N − 2) times the sum over triples of distinct particles of a three-body

potential W . Let W be a bounded Hermitian operator on H⊗H⊗H that commutes

with the transposition operator Uπ for π ∈ Π3.

Define also the operator W123 on HN by

W123(x1 ⊗ x2 ⊗ x3 ⊗ . . .⊗ xN ) = W (x1 ⊗ x2 ⊗ x3) ⊗ x4 ⊗ . . .⊗ xN

and for each 1 6 i < j < k 6 N define Wijk = U∗
π′W123Uπ′ , where π′ is any

permutation with π′(i) = 1, π′(j) = 2, and π′(k) = 3.

Let

(3.4) HN =
∑

16j6N

L
(N)
j +

1

N − 1

∑

16i<j6N

Vij +
1

(N − 1)(N − 2)

∑

16i<j<k6N

Wijk

be the N-particle Hamiltonian operator on HN .

The von Neumann equation for the N -particle density operator DN (t) is

ih̄
d

dt
DN(t) =

∑

16j6N

[L
(N)
j , DN (t)] +

1

N − 1

∑

16i<j6N

[Vij , DN (t)](3.5)

+
1

(N − 1)(N − 2)

∑

16i<j<k6N

[Wijk, DN (t)].

Next we define the time-dependent Hartree-Fock equation. Let L(N), V , and W be

as above. The time-dependent Hartree-Fock (TDHF) equation for a density opera-

tor F (t) on H is

(3.6) ih̄
d

dt
F (t) = [L(N), F (t)] + [V, F−

2 (t)]:1 + [W,F−
3 (t)]:1,
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where

F−
2 (t) = (F (t) ⊗ F (t))

∑

π∈Π2

sgn(π)Uπ = F (t)⊗2(I − U(12)) = F (t)⊗2Σ2

and

F−
3 (t) = (F (t) ⊗ F (t) ⊗ F (t))

∑

π∈Π3

sgn(π)Uπ

= F (t)⊗3(I − U(12) − U(13) − U(23) + U(12)U(13) + U(12)U(23)) = F (t)⊗3Σ3

(the subscript :1 on the last two commutators denotes partial contraction). Follow-

ing [9], we define a strong solution of equation (3.6) as a continuously differentiable

function F (t) from [0,∞) to the real Banach space of Hermitian trace class operators

such that the domain of A is invariant under F (t) for all t > 0 and

ih̄
dF (t)

dt
x = [L(N), F (t)]x+ [V, F−

2 (t)]:1x+ [W,F−
3 (t)]:1x

for all x in the domain of A. A straightforward extension of the results proved in [9]

including the three-body bounded potentials show that (3.6) has a strong solution if

the domain ofA contains the range of the initial condition F (0). Furthermore, F (t) =

U∗F (0)U for some unitary operator depending on t and F (N)(0). In particular, the

operator norm of F (t) is constant.

The relationship between the N -particle system and the TDHF equation is de-

scribed by the following result.

Theorem 3.1. For each N , let DN(t) be a solution to (3.5) whose initial

value DN (0) is a symmetric density. Let F (N)(t) be the solution of the TDHF equa-

tion (3.6) whose initial value is F (N)(0) = DN :1(0).

If {DN(0)} has the Slater closure then {DN(t)} has the Slater closure and

lim
N→∞

‖DN :1(t) − F (N)(t)‖tr = 0

for all t > 0.

P r o o f. Following [3] and [4] the proof is based on a study of the deviation be-

tween two suitable hierarchies. We consider first the N -particle von Neumann equa-

tion (3.5) with symmetric initial data. From the symmetry of the Hamiltonian (3.4)

DN (t) remains symmetric for all t and by virtue of (3.5) the partial trace DN :n(t)
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satisfies

ih̄
d

dt
DN :n(t) =

∑

16j6n

[L
(N)
j , DN :n(t)] +

1

N − 1

∑

16i<j6n

[Vij , DN :n(t)]

+
1

(N − 1)(N − 2)

∑

16i<j<k6n

[Wijk, DN :n(t)]

+
N − n

N − 1

∑

16j6n

[Vj,n+1, DN :n+1(t)]:n

+
N − n

(N − 1)(N − 2)

∑

16i<j6n

[Wi,j,n+1, DN :n+1(t)]:n

+
(N − n)(N − n− 1)

(N − 1)(N − 2)

∑

16j6n

[Wj,n+1,n+2, DN :n+2(t)]:n.

This system for DN :1, DN :2, . . . , DN :N−1 together with the equation (3.5) for DN

is called the N -particle hierarchy and we rewrite it as

ih̄
d

dt
DN :n(t) = LN,n(DN :n(t))(3.7)

+
∑

16i6n

[Vi,n+1, DN :n+1(t)]:n

+
∑

16i6n

[Wi,n+1,n+2, DN :n+2(t)]:n + En(t,N,DN (0))

with

LN,n(·) =
∑

16j6n

[L
(N)
j , ·],(3.8)

En(t,N,DN(0)) =
1

N − 1

∑

16i<j6n

[Vij , ·]

+
1

(N − 1)(N − 2)

∑

16i<j<k6n

[Wijk , ·]

+
N − n

(N − 1)(N − 2)

∑

16i<j6n

[Wij,n+1, DN :n+1(t)]:n

− n− 1

N − 1

∑

16i6n

[Vi,n+1, DN :n+1(t)]:n

− (n− 1)(2N − n− 2)

(N − 1)(N − 2)

∑

16i6n

[Wi,n+1,n+2, DN :n+2(t)]:n.
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Now following [3] we consider another hierarchy built from the solutions to the

TDHF equation. If F is a trace class operator, define F−
1 = F and F−

n = F⊗nΣn
for n > 1.

Simply iterating the formula Σn+1 =
(

I−
n
∑

k=1

U(k,n+1)

)

Σn⊗IB(H) one checks now

that if F (t) is a strong solution of the TDHF equation (3.6) then

ih̄
d

dt
F−
n (t) =

n
∑

j=1

[L
(N)
j , F−

n (t)] +

n
∑

j=1

[Vj,n+1, F
−
n+1(t)]:n

+
n

∑

j=1

[Wj,n+1,n+2, F
−
n+2(t)]:n + Rn(F (t)),

where Rn is defined on the trace class operators by R1(X) = 0 (the zero operator)

and

Rn(X)(3.9)

=

n
∑

j=1

[

Vj,n+1, X
⊗n+1

∑

k 6=j

U(k,n+1)

]

:n

Σn

+

n
∑

j=1

[

Wj,n+1,n+2, X
⊗n+2

(

∑

k 6=l

U(k,n+1)U(l,n+2)

+
∑

k 6=j

[U(k,n+1)U(n+1,n+2) + U(k,n+2)U(k,n+1) − U(k,n+2) − U(k,n+1)]

)]

:n

Σn

for n > 1. Now let DN(t) be a solution of the N -particle von Neumann equation (3.5)

and let F (t) be a solution of the TDHF equation (3.6). For 1 6 n 6 N define the

nth difference

(3.10) EN,n(t) = DN :n(t) − F−
n (t).

The N -particle hierarchy equations (3.7), (3.8), and (3.9) imply that

ih̄
d

dt
EN,n(t)(3.11)

= LN,n(EN,n(t)) +

n
∑

j=1

[Vj,n+1, EN,n+1(t)]:n

+

n
∑

j=1

[Wj,n+1,n+2, EN,n+2(t)]:n + En(t,N,DN(0)) −Rn(F (t))

for n = 1, 2, . . . , N − 1. Let us define the error

(3.12) Err(t,N, n) = En(t,N,DN (0)) −Rn(F (t)),

211



let U
(N)
n,t denote the unitary operator exp

(

(it/h̄)
n
∑

j=1

L
(N)
j

)

on Hn and define isome-

tries UN,n,t on the trace class operators by UN,n,t(·) = e(it/h̄)LN,n(·) = U
(N)
n,t (·)U (N)

n,−t.

Then ZN,n(t) = UN,n,t(EN,n(t)) has the same trace norm as EN,n(t) and satisfies

d

dt
ZN,n(t) = − i

h̄

n
∑

j=1

[Vj,n+1, ZN,n+1(t)]:n

− i

h̄

n
∑

j=1

[Wj,n+1,n+2, ZN,n+2(t)]:n − i

h̄
Err(t,N, n)

for n = 1, 2, . . . , N − 1. This yields that

‖EN,n(t)‖tr = ‖ZN,n(t)‖tr

6 ‖ZN,n(0)‖tr +
2‖V ‖n
h̄

∫ t

0

‖ZN,n+1(s)‖tr ds

+
2‖W‖n
h̄

∫ t

0

‖ZN,n+2(s)‖tr ds+
1

h̄

∫ t

0

‖Err(s,N, n)‖tr ds

for n = 1, 2, . . . , N − 1, which implies that

‖EN,n(t)‖tr 6 ε(N,n, t) +
2‖V ‖n
h̄

∫ t

0

‖EN,n+1(s)‖tr ds(3.13)

+
2‖W‖n
h̄

∫ t

0

‖EN,n+2(s)‖tr ds,

where

(3.14) ε(N,n, t) = ‖EN,n(0)‖tr +
1

h̄

∫ t

0

‖Err(s,N, n)‖tr ds.

Iterating the inequality (3.13) m times (for some m 6 N − n − 1), we obtain the

following bound on the trace norm of EN,n(t):

‖EN,n(t)‖tr(3.15)

6

m
∑

k=0

n(n+ 1) . . . (n+ k − 1)

k!

×
k

∑

j=0

(2‖V ‖t
h̄

)j(2‖W‖t
h̄

)k−j
(

k

j

)

ε(N,n+ j, t)

+
n(n+ 1) . . . (n+m− 1)

m!

(2(‖V ‖ + ‖W‖)t
h̄

)m

× sup
s∈[0,t]

{

sup
j6m

‖EN,n+j+1(s)‖tr

}

.
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Now, if DN (0) is a density operator, it is clear from (3.8) that

(3.16) ‖En(t,N,DN (0))‖tr 6
4n(n− 1)

N − 1
‖V ‖ +

2n(n− 1)(3N − n− 2)

(N − 1)(N − 2)
‖W‖

for all t. From [3] we know that if {DN} has the Slater closure then

(3.17) lim
N→∞

‖DN :1‖ = 0,

and that for any density operator F

(3.18) ‖F−
n ‖tr 6 1 for all n.

Let Rn be as in (3.9) and let F be a density operator. Then in the same way as

in [3] we get the bound

(3.19) ‖Rn(F )‖tr 6 [2n(n− 1)‖V ‖ + 8n(n− 1)(n+ 4)‖W‖]‖F‖.

Let F (t) be a solution of the TDHF equation (3.6). Since the (operator) norm

of F (t) is constant, it follows from (3.19) that ‖Rn(F (t))‖tr 6 [2n(n − 1)‖V ‖ +

8n(n − 1)(n + 4)‖W‖]‖F (0)‖ for all t > 0. Thus by (3.16) the error Err(t,N, n) of

equation (3.12) satisfies

‖Err(t,N, n)‖tr 6 2n(n− 1)‖V ‖
( 2

N − 1
+ ‖F (0)‖

)

+ 8n(n− 1)(n+ 4)‖W‖
( 3N − n− 2

4(n+ 4)(N − 1)(N − 2)
+ ‖F (0)‖

)

,

so ε(N,n, t) of equation (3.14) satisfies

ε(N,n, t)(3.20)

6 2n(n− 1)‖V ‖ t
h̄

( 2

N − 1
+ ‖F (0)‖

)

+ 8n(n− 1)(n+ 4)‖W‖ t
h̄

( 3N − n− 2

4(n+ 4)(N − 1)(N − 2)
+ ‖F (0)‖

)

+ ‖EN,n(0)‖tr.

Using the above estimates, we can complete the proof of Theorem 3.1. Let us assume

that DN(0) is a symmetric density for eachN and that the sequence {DN(0)} has the
Slater closure. LetDN(t) be the solution of (3.5) with the initial valueDN(0), and let

F (N)(t) be the solution of the TDHF equation (3.6) whose initial value is F (N)(0) =
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DN :1(0). Let {F (N)}−n (t) denote {F (N)(t)}⊗nΣn and let EN,n(t) denote the differ-
ence between DN :n(t) and {F (N)}−n (t). We have the upper bound (3.15) for the trace

norm of EN,n(t), into which we now substitute estimates (3.20). In the same way, ma-

jorizing
(

n+k−1
n−1

)

by (n+ k)n/n!, using the fact that sup
s∈[0,t]

{

sup
j6m

‖EN,n+j(s)‖tr

}

6 2,

by (3.18) together with (3.20) we obtain

‖EN,n(t)‖tr

6

m
∑

k=0

n(n+ 1) . . . (n+ k − 1)

n!

(2(‖V ‖ + ‖W‖)t
h̄

)k k
∑

j=0

(

k

j

)

ε(N,n+ j, t)

+
n(n+ 1) . . . (n+m− 1)

n!

(2(‖V ‖ + ‖W‖)t
h̄

)m m
∑

j=0

(

m

j

)

sup
s∈[0,t]

‖EN,n+j+1(s)‖tr

6

m
∑

k=0

(n+ k)k

n!

(2(‖V ‖ + ‖W‖)t
h̄

)k

· 2k

×
{

5n(n− 1)(n+ 4)
(2(‖V ‖ + ‖W‖)t

h̄

)[ 2

N − 1
+ ‖F (N)(0)‖

]

+ ‖EN,n(0)‖tr

}

+
(n+m)m

n!

(2(‖V ‖ + ‖W‖)
h̄

t
)m

· 2m · 2.

For T = 4(‖V ‖ + ‖W‖)t/h̄ we get the bound

‖EN,n(t)‖tr 6
5

2

m
∑

k=0

(n+ k)k+3

n!
T k+1

[ 2

N − 1
+ ‖F (N)(0)‖

]

(3.21)

+

m
∑

k=0

(n+ k)k

n!
T k × ‖EN,n(0)‖tr + 2

(n+m)m

n!
Tm

for m 6 N − n − 1. Fix T to be less than 1, then t < h̄/(4(‖V ‖ + ‖W‖)). For
fixed n, consider the limit of the right-hand side of (3.21) as N and m tend to

infinity. The individual terms (fixed k) tend to 0, for ‖F (N)(0)‖ tends to 0 by (3.17)

and ‖EN,n+k(0)‖tr tends to 0 thanks to the hypothesis that {DN (0)} has the Slater
closure. On the other hand, the series on the right-hand side of (3.21) are dominated,

uniformly with respect to m, by a series that converges absolutely for T < 1, so it

follows that

(3.22) lim
N→∞

‖EN,n(t)‖tr = 0

if t < h̄/(4(‖V ‖ + ‖W‖)).
When n = 1, this shows that lim

N→∞
‖DN :1(t) − F (N)(t)‖tr = 0, and consequently

lim
N→∞

‖D⊗n
N :1(t)Σn − {F (N)}−n (t)‖tr = 0
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for n > 1 and t < h̄/(2‖V ‖). Finally, from (3.22) it follows again that, for any n and
any t < h̄/(4(‖V ‖ + ‖W‖)),

lim
N→∞

‖DN :n(t) −D⊗n
N :1(t)Σn‖tr = 0,

i.e., {DN(t)} has the Slater closure. This proves the theorem up to t = h̄/(4(‖V ‖ +

‖W‖)), and the argument may be repeated to establish the conclusion of the theorem
for all t > 0, as in [3]. �

4. Final comments

Let us suppose that quantum statistics may be neglected in the above analysis

(see below for physical motivations). Then, assuming that {DN(0)} is a sequence of
initial states for (1.1) that has a simple factorized structure, we can prove, relying on

the analysis in [2], that {DN(t)} has the same structure for all t > 0. In this case, the

two-body density operator DN :2(t) and the three-body density operator DN :3(t) are

approximately equal to DN :1(t)⊗DN :1(t) and DN :1(t)⊗DN :1(t)⊗DN :1(t) when N is

large, and the single-body density operator nearly obeys the so-called time-dependent

Hartree (TDH) equation

ih̄
d

dt
F (t) = [L,F (t)] + [V, F (t) ⊗ F (t)]:1 + [W,F (t) ⊗ F (t) ⊗ F (t)]:1,(4.1)

F (0) = DN :1(0).

Then, the analogue of Theorem 3.1 asserts that the distance in the trace norm

between DN :1(t) and the corresponding solution to the TDH equation tends to 0 as

N tends to infinity.

Theorem 4.1. For each N , let DN(t) be a solution to (3.5) whose initial

value DN (0) is a factorized density. Let F (N)(t) be the solution of the TDH equa-

tion (4.1) whose initial value is F (N)(0) = DN :1(0).

If {DN(0)} is factorized then {DN(t)} is factorized too and

lim
N→∞

‖DN :1(t) − F (N)(t)‖tr = 0

for all t > 0.

P r o o f. The proof of this result is a straightforward extension of the one given

in [2] for the two-body case. �
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Let us comment now on the physical meaning of this result. It is well known that

the above Hartree ansatz is strictly speaking not appropriate for the treatment of

identical particles which obey either Fermi or Bose statistics, except in the special

case of Bose condensation. However, if one decomposes TDHF equation as follows

ih̄
d

dt
F (t) = [L,F (t)] + [V, (F (t) ⊗ F (t))]:1(4.2)

+ [W, (F (t) ⊗ F (t) ⊗ F (t))]:1 + [V, (F (t) ⊗ F (t))(Σ2 − I)]:1

+ [W, (F (t) ⊗ F (t) ⊗ F (t))(Σ3 − I)]:1,

one calls the second and third terms on the right-hand side of (4.2) the direct contri-

bution, and the and the last two terms the exchange contribution. So one sees that it

is possible to consider the Hartree equation as an approximation of the Hartree-Fock

one, as soon as the exchange contribution is small with respect to the direct term.

It is known [15] that for long-range interparticle potentials (as in atomic physics)

the exchange contribution is usually much smaller than the direct one: as the exclu-

sion principle prevents two particle of the same spin from occupying the same particle

state, the two-particle density correlation function for parallel spins vanishes through-

out a region comparable to the interparticle spacing. As the potential extends far

beyond the interparticle spacing, the exclusion principle plays a minor role.

However, in our case of short range potentials (nuclear physics), the range of the

potential is less than the interparticle spacing, the exclusion principle is crucial (for

example in determining the ground state energy), the direct and exchange terms

are comparable in magnitude, and some extra argument must be given to justify

Hartree’s ansatz.

In fact one has to keep in mind that contrary to atomic potential (Coulomb), nu-

clear interaction is not completely known, and one can use various parametrizations

corresponding to different physical situations. For example, in the particular case

of transactinides and super-heavy elements (nuclei with proton number Z > 102)

where Hartree-Fock computations are very hard, a suitable effective interaction can

be devised [8] precisely in such a way that exchange contribution is very small and

can be neglected in realistic computations, which justifies the use of Hartree-type

wave functions.

Let us conclude by mentioning that even in the nuclear relativistic situation (which

is beyond our scope in the present paper), Hartree formalism is also considered as a

good approximation in relativistic nuclear many-body problems [22].

Let us briefly comment on two open ways in order to generalize our results to more

realistic interactions.

Let us first emphasize that, in the same spirit as Coulomb interaction, we have

neglected in the previous model (see [20] for such an approximation) the relative
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(two-body) spin-orbit contribution

wlse
−(|ri−rj |)

2/µ3~Lij · ~Sij ,

where ~Sij := ~Si+~Sj is the total spin operator of the two-body system (i, j), and the

relative angular momentum ~L12 with components L12j for j = 1, 2, 3 is

L12j := −i
(

r12k
∂

∂r12l
− r12l

∂

∂r12k

)

,

where r12 = r1 − r2.

In fact, we have replaced this two-body contribution by its one-body intrinsic

counterpart Wls
~L · ~S, which is reminiscent of the nuclear shell model [21]: each

nucleon is only submitted to a self-coupling between its own spin and its own angular

momentum.

The second remark is related to effective interactions. In various models (as the set

of Skyrme interactions [11] or Gogny D1S force [12]) the three body term is replaced

by a density-dependent two body non-local contribution

V̺ =
1

6
t3(1 + Pσ)δ(ri − rj)̺

λ
(1

2
(ri + rj)

)

,

where 0 6 λ 6 1. For example in the Skyrme case the parameter λ = 1 and one can

check directly at the formal level [24] that the three-body “contact” term

Wijk = t3δ(ri − rj)δ(rj − rk)I

is equivalent to the density-dependent two body contribution

Vij(̺) =
1

6
t3(1 + Pσ)δ(ri − rj)̺

(1

2
(ri + rj)

)

.

Such density-dependent terms reflect phenomenologically the effect of the density of

the surrounding medium on the pair i, j. Clearly a new difficulty occurs in this case as

we start from a non-linear (and non-local) Hamiltonian and the TDHF procedure.

Although some progresses have been achieved on the existence of solutions of the

corresponding Hartree-Fock (or time-dependent Hartree-Fock) problems (see [19],

[10]), the derivation of the TDHF equation from the hierarchy along the previous

strategy is presently not clear from the mathematical point of view.
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mathématique de modèles de la Mécanique Quantique. PhD. Thesis. Université
Paris-Dauphine, Paris, 1992.

[11] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer: A Skyrme parametrization
from subnuclear to neutron star densities. Nucl. Phys. A627 (1997), 710–746.

[12] J. Dechargé, D. Gogny: Hartree-Fock-Bogolyubov calculations with the D1 effective
interaction on spherical nuclei. Phys. Rev. C 21 (1980), 1568–1593.

[13] B. Ducomet: Weak interaction limit for a model of nuclear matter. Oberwolfach Reports
No 47. 2006, pp. 2819–2822.
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