Czechoslovak Mathematical Journal

Robert El Bashir; Tomáš Kepka

Commutative zeropotent semigroups with few invariant congruences

Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 4, 865-885

Persistent URL: http://dml.cz/dmlcz/140427

Terms of use:

© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

COMMUTATIVE ZEROPOTENT SEMIGROUPS WITH FEW INVARIANT CONGRUENCES

Robert El Bashir, and Tomáš Kepka, Praha

(Received June 3, 2006)

Abstract

Commutative semigroups satisfying the equation $2 x+y=2 x$ and having only two G-invariant congruences for an automorphism group G are considered. Some classes of these semigroups are characterized and some other examples are constructed.

Keywords: commutative, zeropotent, semigroup
MSC 2010: 20M14

Every congruence-simple (i.e., possesing just two congruence relations) commutative semigroup is finite and either two-element or a group of prime order. The class of (non-trivial) commutative semigroups having only trivial invariant congruences is considerably more opulent. These semigroups are easily divided into four pairwise disjoint subclasses (see 1.3). The fourth contains commutative semigroups that are nil of index two and have no irreducible elements. This subclass is a bit enigmatic and it is the purpose of the present note to construct various examples of the indicated semigroups (called zs-semigroups in the sequel). Among other, we show that if S is a non-trivial commutative zs-semigroup without non-trivial invariant congruences, then the group of automorphisms of S contains a non-commutative free subsemigroup.

1. Introduction

Let G be a multiplicative group. By a (unitary left G-) semimodule we mean a
The first author was supported by the Grant Agency of Czech Republic, grant no. 201/01/D047. This work is a part of the research project MSM 0021620839 financed by MŠMT
commutative semigroup $S(=S(+))$ together with a G-scalar multiplication $G \times S \rightarrow$ S such that $a(x+y)=a x+a y, a(b x)=(a b) x$ and $1 x=x$ for all $a, b \in G$ and $x, y \in S$.

Let S be a semimodule. An element $w \in S$ is called absorbing if $G w=w=S+w$. There exists at most one absorbing element in S and, if it exists, it will usually be denoted by the symbol o_{S} (or only o); we will also write $o \in S$.

A non-empty subset I of S is an ideal if $G I \subseteq I$ and $S+I \subseteq I$. The semimodule S will be called ideal-simple (or only id-simple) if $|S| \geqslant 2$ and $I=S$ whenever I is an ideal of S such that $|I| \geqslant 2$.

Lemma 1.1. Let S be a semimodule and $w \in S$. The one-element set $\{w\}$ is an ideal of S if and only if $w=o_{S}$ is an absorbing element of S.

Proof. Obvious.
A semimodule S will be called congruence-simple (or only cg-simple) if S has just two congruence relations (i.e., equivalences compatible with the addition and the scalar multiplication).

Proposition 1.2. Every cg-simple semimodule is id-simple.
Proof. If S is cg-simple, then S is non-trivial and, if I is an ideal of S, then $r=(I \times I) \cup \mathrm{id}_{S}$ is a congruence of S. Now, either $r=\mathrm{id}_{S}$ and $|I|=1$ (see 1.1) or $r=S \times S$ and $I=S$. Thus S is id-simple.

Let S be a (commutative) semigroup/semimodule. We will say that S is
\triangleright a semigroup/semimodule with zero addition (a za-semigroup/za-semimodule) if $|S+S|=1$ (then $o \in S$ and $S+S=o$);
\triangleright a zeropotent semigroup/semimodule (a zp-semigroup/zp-semimodule) if $2 x+$ $y=2 x$ for all $x, y \in S$ (then $o \in S$ and $2 x=o$);
\triangleright a zp-semigroup/zp-semimodule without irreducible elements (a zs-semigroup/ zs-semimodule) if S is a zp-semigroup/zp-semimodule and $S=S+S$;
\triangleright idempotent if $x+x=x$ for every $x \in S$;
\triangleright cancellative if $x+y \neq x+z$ for all $x, y, z \in S, y \neq z$.
The following basic classification of cg-simple semimodules is given in [1]:

Theorem 1.3. Let S be a cg-simple semimodule. Then just one of the following four cases takes place:
(1) S is a two-element za-semimodule;
(2) S is idempotent;
(3) S is cancellative;
(4) S is a $z s$-semimodule.

There exists only one two-element za-semimodule up to isomorphism. Cg-simple idempotent semimodules over a commutative group are fully characterized in [1] (see also [3], [4] and [5]) and cg-simple chains (and the corresponding groups) are studied in [6] and [7]. Some information on cg-simple cancellative semimodules is also available from [1] and various examples of non-trivial commutative zs-semigroups are collected in [2]. The aim of this note is to initiate a study of cg-simple zs-semimodules. The following starting result restricts our choice of groups in the zeropotent case:

Proposition 1.4. Let no subsemigroup of a group G be a free semigroup of rank (at least) 2. Then there exist no cg-simple zs-semimodules over G.

Proof. Let S be a non-trivial zs-semimodule and let $x, y, z \in S$ be such that $x=y+z \neq o$. Denote by $A(\mathrm{~B})$ the set of $a \in G(b \in G)$ such that $a x=y$ or $a x+v=y, v \in S(b x=z$ or $b x+v=z$, respectively). Then $A \cap B=\emptyset, A A \cup A B \subseteq A$ and $B B \cup B A \subseteq B$. Now, if $a \in A$ and $b \in B$, then the subsemigroup of G generated by $\{a, b\}$ is free, a contradiction. Thus either $A=\emptyset$ or $B=\emptyset$ and we will assume $A=\emptyset$, the other case being similar.

Put $I=G x \cup(G x+S)$. Then I is an ideal of $S, y \notin I$ and $I \neq S$. On the other hand, $\{x, o\} \subseteq I$ and $|I| \geqslant 2$. Consequently, the semimodule S is not id-simple and, according to 1.2 , it is not cg-simple either.

Notice that among the groups from 1.4 we find all periodic groups and all locally nilpotent groups (but not all metabelian groups).

Now, let R be a subsemigroup of a group G and let $\mathbf{M}=\{A ; A \subseteq G, A \neq \emptyset$, $A R \subseteq A\}$. The set \mathbf{M} is closed under unions and non-empty intersections, $R \in \mathbf{M}$ and $G \in \mathbf{M}$. Now, we define an addition + on \mathbf{M} by $A+B=A \cup B$ if $A \cap B=\emptyset$ and $A+B=G$ otherwise.

Lemma 1.5. $\mathbf{M}(+)$ is a commutative zp-semigroup and $o_{\mathbf{M}}=G$.
Proof. Easy to check.
Moreover, we define a scalar multiplication on \mathbf{M} by $(a, A) \rightarrow a A=\{a x ; x \in A\}$, $a \in G, A \in \mathbf{M}$.

Lemma 1.6. M is a zp -semimodule over the group G.
Proof. Easy to check.
Define a relation ξ on \mathbf{M} by $(A, B) \in \xi$ iff $\{M \in \mathbf{M} ; A \cap M=\emptyset\}=\{M \in$ $\mathbf{M} ; B \cap M=\emptyset\}$.

Lemma 1.7. ξ is a congruence of the semimodule \mathbf{M}.
Proof. Easy to check.

Lemma 1.8. Let η be a congruence of \mathbf{M} such that $\xi \subseteq \eta$ and $(R, G) \in \eta$. Then $\eta=\mathbf{M} \times \mathbf{M}$.

Proof. Clearly, $(x R, G)=(x R, x G) \in \eta$ for every $x \in G$. Let $A \in \mathbf{M}$ and $a \in A$. If $a R \cap B \neq \emptyset$ for every $B \in \mathbf{M}$ such that $B \subseteq A$, then $(a R, A) \in \xi \subseteq \eta$, and so $(A, G) \in \eta$. On the other hand, if $B \in \mathbf{M}$ is maximal with respect to $B \subseteq A$ and $a R \cap B=\emptyset$, then $(A, B \cup a R) \in \xi$. Since $(G, B \cup a R) \in \eta$, we get $(A, G) \in \eta$ again.

Lemma 1.9. $(R, G) \in \xi$ if and only if $G=R R^{-1}$ (then R is right uniform).
Proof. If $(R, G) \in \xi$, then $R \cap A \neq \emptyset$ for every $A \in$ M. In particular, $R \cap x R \neq \emptyset$ for every $x \in G$, and hence $x \in R R^{-1}$. To show the other implication, we just proceed conversely.

Lemma 1.10.

(i) If R is not right uniform, then $(R, G) \notin \xi$.
(ii) If G is not generated by R, then $(R, G) \notin \xi$.

Proof. (i) There exist $a, b \in R$ such that $a R \cap b R=\emptyset$. Then $R \cap a^{-1} b R=\emptyset$, $a b^{-1} R \in \mathbf{M}$ and, of course, $G \cap a^{-1} b R=a^{-1} b R \neq \emptyset$. Thus $(R, G) \notin \xi$.
(ii) Use 1.9.

Lemma 1.11. Assume that R is not right uniform. Then $(R, G) \notin \xi$ and, if κ is a congruence of \mathbf{M} maximal with respect to $\xi \subseteq \kappa$ and $(R, G) \notin \kappa$, then $\mathbf{N}=\mathbf{M} / \kappa$ is a cg-simple zs-semimodule.

Proof. $\quad \mathbf{N}$ is non-trivial and it follows readily from 1.8 that \mathbf{N} is a cg-simple zp-semimodule. Since R is not right uniform, there are right ideals A and B of R such that B is maximal with respect to $A \cap B=\emptyset$. Then $A+B=A \cup B$, $(A \cup B, R) \in \xi \subseteq \kappa,(A \cup B, G) \notin \kappa$ and $A / \kappa+B / \kappa \neq o_{\mathbf{N}}$. Thus \mathbf{N} is not a zasemimodule, and hence \mathbf{N} is a zs-semimodule by 1.3.

Proposition 1.12. If R is not right uniform, then a factorsemimodule of \mathbf{M} is a congruence-simple zs-semimodule.

Proof. See 1.11.

Theorem 1.13. There exists at least one cg-simple zs-semimodule over G if and only if the group G contains at least one subsemigroup that is a free semigroup of rank (at least) 2.

Proof. The direct implication is shown in 1.4. As concerns the inverse implication, the existence of a cg-simple zs-semimodule is shown in 1.12.

2. BASIC PROPERTIES OF ZEROPOTENT SEMIMODULES

Throughout this secion, let S be a zp-semimodule over a group G. First, define a relation \preceq_{S} on S by $x \preceq_{S} y$ if and only if $x=y$ or $y=x+v$ for some $v \in S$.

Lemma 2.1.

(i) The relation \preceq_{S} is an ordering compatible with the addition and scalar multiplication.
(ii) o_{S} is a greatest element of the ordered set $\left(S, \preceq_{S}\right)$.
(iii) If $|S| \geqslant 2$, then $S \backslash(S+S)$ is the set of minimal elements of $\left(S, \preceq_{S}\right)$.
(iv) If $x, y, z \in S$ are such that $x \preceq_{S} y$ and $x \preceq_{S} z$, then $y+z=o$.

Proof. Easy.

Proposition 2.2. Assume that S is a non-trivial zs-semimodule. Then:
(i) The ordered set (S, \preceq_{S}) has no minimal elements.
(ii) $S(+)$ is not finitely generated (and hence S is infinite).

Proof. (i) This follows immediately from 2.1(iii).
(ii) If $S(+)$ were generated by a finite number m of elements, then S should contain at most 2^{m} elements, a contradiction with (i).

Lemma 2.3. The following conditions are equivalent:
(i) If $x, y, z, u, v \in S$ are such that $x+y \neq o \neq z$ and $x+u=z=y+v$, then either $z=x+y$ or $z=x+y+w$ for some $w \in S$.
(ii) If $x, y, z \in S$ are such that $x+y \neq 0 \neq z$ and $x \preceq_{S} z, y \preceq_{S} z$, then $x+y \preceq_{S} z$.
(iii) If $x, y \in S$ are such that $x+y \neq 0$, then $x+y=\sup (x, y)$ in $\left(S, \preceq_{S}\right)$.

Proof. Easy.
The semimodule S will be called downwards-regular if the equivalent conditions of 2.3 are satisfied.

For every $x \in S$, let $\operatorname{Ann}_{S}(x)=\{y \in S ; x+y=o\}$. Further, let $\operatorname{Ann}_{S}(S)=$ $\{x+S ; S+x=o\}$.

Lemma 2.4.

(i) For every $x \in S$, the annihilator $\operatorname{Ann}_{S}(x)$ is an ideal of the additive semigroup $S(+)$.
(ii) $\operatorname{Ann}_{S}(S)$ is an ideal of the semimodule S.

Proof. Obvious.
Define a relation \dashv_{S} on S by $x \dashv_{S} y$ if and only if $\operatorname{Ann}_{S}(x) \subseteq \operatorname{Ann}_{S}(y)$.

Lemma 2.5.

(i) The relation \dashv_{S} is a quasiordering compatible with the addition and scalar multiplication.
(ii) If $x \preceq_{S} y$, then $x \dashv_{S} y$.
(iii) $\pi_{S}=\operatorname{ker}\left(\dashv_{S}\right)$ is a congruence of the semimodule S.
(iv) $\pi_{S}=S \times S$ if and only if S is a za-semimodule.

Proof. Easy.
The semimodule S will be called separable if $\pi_{S}=\mathrm{id}_{S}$.
The semimodule S will be called upwards-regular if $\operatorname{Ann}_{S}(x+y) \subseteq \operatorname{Ann}_{S}(z)$ whenever $x, y, z \in S$ are such that $x+y \neq o \neq z$ and $\operatorname{Ann}_{S}(x) \cup \operatorname{Ann}_{S}(y) \subseteq \operatorname{Ann}_{S}(z)$.

In the sequel, let $\tau_{S}=\{(x, y) \in S \times S ; x+y \neq o\}$ and $\sigma_{S}=\{(x, y) ; x+y=$ $o\}=S \times S \backslash \tau_{S}$. Further, define $\mu_{S}\left(\nu_{S}\right)$ by $(x, y) \in \mu_{S}\left((x, y) \in \nu_{S}\right)$ if and only if $z \preceq_{S} x, z \preceq_{S} y\left(z \dashv_{S} x, z \dashv_{S} y\right.$, respectively) for at least one $z \in S$.

Lemma 2.6.

(i) The relations $\tau_{S}, \sigma_{S}, \mu_{S}$ and ν_{S} are symmetric.
(ii) The relations σ_{S}, μ_{S} and ν_{S} are reflexive.
(iii) τ_{S} is irreflexive.
(iv) $\pi_{S} \subseteq \sigma_{S}$.
(v) $\mu_{S} \subseteq \nu_{S} \subseteq \sigma_{S}$.

Proof. Easy.
The semimodule S will be called (strongly) balanced if $\sigma_{S}=\nu_{S}\left(\sigma_{S}=\mu_{S}\right)$.
The semimodule S will be called transitive if the group G operates transitively on the set $S \backslash\left\{o_{S}\right\}$.

Proposition 2.7. If S is non-trivial and transitive, then S is id-simple.
Proof. Easy.

Proposition 2.8. Assume that S is id-simple and either $S+S \neq S$ or $\operatorname{Ann}_{S}(S) \neq$ $\left\{o_{S}\right\}$. Then:
(i) $S+S=\left\{o_{S}\right\}, \operatorname{Ann}_{S}(S)=S$ and S is a za-semimodule.
(ii) $x \preceq_{S} y$ if and only if either $x=y$ or $y=o_{S}$.
(iii) $\pi_{S}=S \times S=\dashv_{S}$.
(iv) G operates transitively on $R=S \backslash\left\{o_{S}\right\}$ (i.e., S is transitive).
(v) $\nu_{S}=(R \times R) \cup \mathrm{id}_{S}$ is a congruence of S.
(vi) G operates primitively on R if and only if $\operatorname{id}_{S}, \nu_{S}$ and $S \times S$ are the only congruences of S.

Proof. Easy.

Proposition 2.9. Assume that S is cg-simple and $|S| \geqslant 3$. Then:
(i) $\mathrm{Ann}_{S}(S)=\left\{o_{S}\right\}$ and S is separable.
(ii) \dashv_{S} is a compatible ordering of S.

Proof. It follows from 2.5 (iii) that either $\pi_{S}=S \times S$ or $\pi_{S}=\operatorname{id}{ }_{S}$. If $\pi_{S}=S \times S$, then S is a za-semimodule by 2.5 (iv) and S is id-simple by 1.2 . Now, it follows from 2.8(v) that $|R|=1$ and $|S|=2$, a contradiction. Consequently, $\pi_{S}=\operatorname{id}_{S}$ and \dashv_{S} is transitive. The rest follows from 2.5.

Proposition 2.10. Assume that $|S| \geqslant 3$. Then S is cg-simple if and only if S is separable and id-simple.

Proof. The direct implication follows from 1.2 and 2.9. Now, assume that S is separable and id-simple.

Let r be a congruence of S and $I=\{x ;(x, o) \in r\}$. Then I is an ideal of S and $r=S \times S$ provided that $I=S$.

Let $(x, y) \in r, x \neq y$. Since S is separable, $(x, y) \notin \pi_{S}$ and we can assume that $x \dashv_{S} y$ is not true. Then $\operatorname{Ann}_{S}(x) \nsubseteq \operatorname{Ann}_{S}(y)$ and there is $z \in S$ such that $x+z=o \neq y+z$. Now, $y+z \in I, I \neq\{o\}, I=S$, since S is id-simple, and $r=S \times S$.

Proposition 2.11. Assume that S is transitive and $|S| \geqslant 3$. The following conditions are equivalent:
(i) S is cg-simple.
(ii) S is separable.

Proof. (i) implies (ii) by 2.9(i) and (ii) implies (i) by 2.7 and 2.10 .

Proposition 2.12. Assume that S is id-simple, take $w \in S, w \neq o$, and consider a congruence r of S maximal with respect to $(w, o) \notin r$. Then S / r is a cg-simple zp-semimodule.

Proof. Clearly, $T=S / r$ is a non-trivial zp-semimodule. Now, let s be a congruence of S such that $r \subseteq s, r \neq s$, and put $I=\{x \in S ;(x, o) \in s\}$. Then I is an ideal of S and $\{o, w\} \subseteq I$. Thus $I=S$, since S is id-simple, and we conclude that $s=S \times S$. It follows easily that T is cg-simple.

Corollary 2.13. Assume that S is id-simple and $S+S \neq\left\{o_{S}\right\}$. Then at least one factorsemimodule of S is a cg-simple zs-semimodule.

Corollary 2.14. Assume that S is transitive and $S+S \neq\left\{o_{S}\right\}$. Then at least one factorsemimodule of S is a cg-simple zs-semimodule.

3. ExAMPLES OF CONGRUENCE-SIMPLE ZS-SEMIMODULES

Example 3.1. Let S be a non-trivial commutative zs-semigroup and $G=\operatorname{Aut}(S)$ (the automorphism group of S). Then S becomes a G-semimodule. If S is separable and G operates transitively on $S \backslash\left\{o_{S}\right\}$, then S is a cg-simple semimodule.

Example 3.2. Let (R, \leqslant) be a non-empty ordered set together with an irreflective and symmetric relation τ defined on R. For $x, y \in R$, let $x \vee y=\sup (x, y)$ provided that this supremum exists. Now, assume that the following three conditions are satisfied:
(α) If $x, y \in R$ are such that $(x, y) \in \tau$, then $x \vee y$ exists.
(β) If $(x, y) \in \tau$ and $(z, x \vee y) \in \tau$, then $(x, z) \in \tau$ and $(y, x \vee z) \in \tau$.
(γ) For every $x \in R$ there exist $y, z \in R$ such that $(y, z) \in \tau$ and $x=y \vee z$.
Further, let $o \notin R, S=R \cup\{o\}, x+y=x \vee y$ if $x, y \in R,(x, y) \in \tau$ and $x+y=o$ otherwise. Then $S(=S(+))$ becomes a commutative zs-semigroup.

Let G be a group operating on R (i.e., a mapping $G \times R \rightarrow R$ is defined such that $a(b x)=(a b) x$ and $1 x=x)$ and assume that $(a x, a y) \in \tau$ for every $(x, y) \in \tau$ and that $u \leqslant v$ implies $a u \leqslant a v$. Then $a x \vee a y=a(x \vee y)$ for $(x, y) \in \tau$ and S becomes a G-semimodule $(a o=o)$. If G operates transitively on R, then S is a transitive semimodule. In such a case, by 2.14, at least one factorsemimodule of S is a cg-simple zs-semimodule. Furthermore, if S is transitive, then S is cg-simple iff it is separable (2.11). Finally, S is separable iff the following two conditions are satisfied:
(δ) For every $x \in R$ there exists $y \in R$ with $(x, y) \in \tau$.
(ε) For all $x, y \in R, x \neq y,(x, y) \notin \tau$, there exists $z \in R$ such that either $(x, z) \in \tau$, $(y, z) \notin \tau$ or $(x, z) \notin \tau,(y, z) \in \tau$.
(Notice that (δ) is true provided that S is transitive.)
Example 3.3 (cf. 3.2). Let $T(=T(\wedge, \vee))$ be a distributive lattice with a smallest element 0_{T} and a greatest element 1_{T} such that $|T| \geqslant 3$. Consider the basic order \leqslant defined on T and also the ordered set $(R, \leqslant), R=T \backslash\left\{0_{T}, 1_{T}\right\}$. Assume that the following two conditions are satisfied:
(μ) If $x, y \in R$ and $x \wedge y=0_{T}$, then $x \vee y \neq 1_{T}$.
(ν) For every $x \in R$ there exist $y, z \in R$ such that $y \wedge z=0_{T}$ and $y \vee z=x$.
Put $S=T \backslash\left\{1_{T}\right\}$ and define an addition on S by $x+y=x \vee y$ if $x \wedge y=0_{T}$ and $x+y=1_{T}$ otherwise. Then $S(=S(+))$ is a commutative zs-semigroup. Further, let a group G operate on $R(a(b x)=(a b) x$ and $1 x=x)$ in such a way that $x \leqslant y$ implies $a x \leqslant a y$. Then S becomes a G-semimodule $\left(a 1_{T}=1_{T}\right)$. If G operates transitively on R, then S is a cg-simple zs-semimodule iff the following is true:
(σ) For all $x, y \in R, x \neq y, x \wedge y \neq 0_{T}$, there exists $z \in R$ such that either $x \wedge z=0_{T} \neq y \wedge z$ or $x \wedge z \neq 0_{T}=y \wedge z$.

Example 3.4. Let I be an infinite set with $|I| \geqslant \aleph_{1}$ and let \aleph be an infinite cardinal number such that $\aleph<|I|$. Denote by \mathbf{J} the set $\{A ; A \subseteq I,|A|=\aleph\} \cup\{I\}$ and define an operation \oplus on \mathbf{J} by $A \oplus B=A \cup B$ if $A \cap B=\emptyset$ and $A \oplus B=I$ otherwise. Then \mathbf{J} is a non-trivial commutative zs-semigroup and \mathbf{J} becomes a G semimodule, $G=\operatorname{Aut}(\mathbf{J}(\oplus))$. It is easy to check that the semimodule \mathbf{J} is transitive, separable and upwards-regular, but neither downwards-regular non balanced. By 2.11 , \mathbf{J} is cg-simple.

Example 3.5. Let I be an infinite set, \mathbf{K} a (non-principal) maximal ideal of the Boolean algebra of subsets of I such that $K \in \mathbf{K}$ for every $K \subseteq I,|K|=|I|$, and let $\mathbf{L}=\{A \in \mathbf{K} ;|A|=|I|\} \cup\{I\}$. Define an addition \oplus on \mathbf{L} by $A \oplus B=A \cup B$ if $A \cap B=\emptyset$ and $A \oplus B=I$ otherwise and put $G=\operatorname{Aut}(\mathbf{L}(\oplus))$. Then $\mathbf{L}(=\mathbf{L}(\oplus))$ is a non-trivial separable commutative zs-semigroup and G operates transitively on $\mathbf{L} \backslash\{o\}$. Consequently, \mathbf{L} is a cg-simple zs-semimodule over G.

Example 3.6. Let I be an infinite set and \mathbf{I} the set of infinite subsets of I. Define an operation \boxplus on \mathbf{I} by $A \boxplus B=A \cup B$ if $A \cap B$ is finite and $A \boxplus B=I$ otherwise. Then $\mathbf{I}(=\mathbf{I}(\boxplus))$ is a non-trivial commutative zs-semigroup and r is a congruence of \mathbf{I}, where $(A, B) \in r$ iff the symmetric difference $(A \cup B) \backslash(A \cap B)$ is finite. Then $\mathbf{J}=\mathbf{I} / r$ is a non-trivial (commutative) zs-semigroup. Moreover, if $|I|=\aleph_{0}$ and $G=\operatorname{Aut}(\mathbf{J})$, then \mathbf{J} is a separable, upwards- and downwards-regular transitive G-semimodule (\mathbf{J} is not balanced). Consequently, \mathbf{J} is a cg-simple zs-semimodule.

Assume that $|I| \geqslant \aleph_{1}$ and put $\mathbf{P}=\left\{A \in \mathbf{I} ;|A|=\aleph_{0}\right\} \cup\{I\}$. Then \mathbf{P} is a subsemigroup of \mathbf{I} and $\mathbf{Q}=\mathbf{P} / r$ is a non-trivial (commutative) zs-semigroup. Moreover, if $H=\operatorname{Aut}(\mathbf{Q})$, then \mathbf{Q} is a transitive H-semimodule and it is easy to check that \mathbf{Q} is an upwards- and downwards-regular strongly balanced cg-simple zs-semimodule.

4. Fractional left ideals and zeropotent Semimodules

In this section, let R be a subsemigroup of a group G such that $1 \in R$. We denote by $\mathbf{F}(=\mathbf{F}(G, R))$ the set of fractional left R-ideals of G. That is, $A \in \mathbf{F}$ iff $A \subseteq G$, $A \neq \emptyset, R A \subseteq A$ and $A \subseteq R a$ for some $a \in G$. The set $(\mathbf{G}(G, R)=) \mathbf{G}=\mathbf{F} \cup\{\emptyset\}$ is closed under arbitrary intersections and G operates on \mathbf{G} via $a * A=A a^{-1}, A \in \mathbf{G}$, $a \in G$. The set $(\mathbf{P}(G, R)=) \mathbf{P}=\{R a ; a \in G\}$ of principal fractional left R-ideals is contained in \mathbf{F} and we put $(\mathbf{Q}(G, R)=) \mathbf{Q}=\mathbf{P} \cup\{\emptyset\}$. Notice that G operates transitively on \mathbf{P}.

Construction 4.1. Assume that the following condition is satisfied:
(f1) If $a \in G$ is such that $R \cap a R=\emptyset$, then $R \cap R a=R b$ for some $b \in G$ (then $b \in R$).

Now, define an addition on the set \mathbf{Q} in the following way:
(1) $R a+R b=R a \cap R b$ for all $a, b \in G$ such that $R \cap a b^{-1} R=\emptyset$ (by (f1), we have $R a \cap R b \in \mathbf{P}) ;$
(2) $R a+R b=\emptyset$ for all $a, b \in G$ such that $R \cap a b^{-1} R \neq \emptyset$;
(3) $R a+\emptyset=\emptyset=\emptyset+R a$ for every $a \in G$;
(4) $\emptyset+\emptyset=\emptyset$.

Now, we have obtained a groupoid $\mathbf{Q}=\mathbf{Q}(+)$.

Lemma 4.1.1. $A+B=B+A, A+A=\emptyset$ and $A+\emptyset=\emptyset$ for all $A, B \in \mathbf{Q}$.
Proof. Obvious.

Lemma 4.1.2. For every $a \in G$, the transformation $A \rightarrow a * A\left(=A a^{-1}\right)$ is an automorphism of $\mathbf{Q}(+)$.

Proof. Easy to check.

Lemma 4.1.3. \mathbf{Q} is a semigroup if and only if the following condition is satisfied: (f2) If $a, b, c \in G$ are such that $R \cap a R=\emptyset=R \cap b c^{-1} R$ and $R \cap R a=R c$, then $R \cap d R=\emptyset=R \cap a b^{-1} R$, where $R a \cap R b=R d$.

Proof. (i) Let $\mathbf{Q}(+)$ be associative. Then $(R+R a)+R b=R+(R a+R b)$. But $(R+R a)+R b=(R \cap R a)+R b=R c+R b=R c \cap R b=R \cap R a \cap R b \neq \emptyset$, and hence $R \cap a b^{-1} R=\emptyset, R a \cap R b=R d$ by (f1), $R+R d \neq \emptyset$ and $R \cap d R=\emptyset$.
(ii) Let (f2) be satisfied. First, if $a, b \in G$ are such that $(R+R a)+R b \neq \emptyset$, then (f2) implies $(R+R a)+R b=R+(R a+R b)$. Next, if $a, b, c \in G$ are such that $(R a+R b)+R c \neq \emptyset$, then $\left(R+R b a^{-1}\right)+R c a^{-1}=a *((R a+R b)+R c) \neq \emptyset$, and hence $\left(R+R b a^{-1}\right)+R c a^{-1}=R+\left(R b a^{-1}+R c a^{-1}\right)=a *(R a+(R b+R c))$. Consequently, $(R a+R b)+R c=a^{-1} *(a *((R a+R b)+R c))=a^{-1} *(a *(R a+(R b+R c)))=$ $R a+(R b+R c)$. Finally, if $a, b, c \in G$ are such that $R a+(R b+R c) \neq \emptyset$, then $(R c+R b)+R a=R a+(R b+R c) \neq \emptyset$, and therefore $R a+(R b+R c)=(R c+R b)+R a=$ $R c+(R b+R a)=(R a+R b)+R c$ by the commutativity of the addition and the preceding part of the proof. The rest is clear.

Assume that (f2) is true. It follows from 4.1.1, 4.1.2 and 4.1.3 that \mathbf{Q} becomes a non-trivial transitive zp-semimodule over the group G.

Lemma 4.1.4. \mathbf{Q} is a (non-trivial) zs-semimodule if and only if the following condition is satisfied:
(f3) $R \cap a R=\emptyset$ for at least one $a \in G$.
Proof. Use the transitivity of \mathbf{Q}.

Proposition 4.1.5. Assume that the conditions (f1), (f2) and (f3) are satisfied. Then:
(i) $\mathbf{Q}=\mathbf{Q}(+, *)$ is a non-trivial transitive zs-semimodule over G.
(ii) \mathbf{Q} is ideal-simple.
(iii) If $R a \preceq_{\mathbf{Q}} R b$, then $R b \subseteq R a$.
(iv) $\operatorname{Ann}_{\mathbf{Q}}(R a)=\left\{R b ; R \cap a b^{-1} R \neq \emptyset\right\} \cup\{\emptyset\}$.
(v) If $R b \subseteq R a$, then $R a \dashv_{\mathbf{Q}} R b$.
(vi) $\mathrm{Ann}_{\mathbf{Q}}(\mathbf{Q})=\{\emptyset\}$.
(vii) \mathbf{Q} is balanced.

Proof. See 4.1.1, 4.1.2, 4.1.3 and 4.1.4 to show (i), ..., (vi). Finally, if $R \cap$ $a b^{-1} R \neq \emptyset$, then $a b^{-1} r \in R$ for some $r \in R$ and we have $R a \cup R b \subseteq R r^{-1} b$. Now, using (v), we show easily that \mathbf{Q} is balanced.

Finally, assume that the conditions (f1), (f2) and (f3) are satisfied (see 4.1.5) and consider two more conditions:
(f4) For every $a \in R \backslash R^{-1}$ there exists $b \in G$ such that $R \cap b R=\emptyset$ and $R a=R \cap R b$.
(f5) For every $a \in\left(R R^{-1}\right) \backslash R^{-1}$ there exists $b \in G$ such that $R \cap b R=\emptyset \neq R \cap a b R$.

Lemma 4.1.6. The following conditions are equivalent:
(i) If $a, b \in G$, then $R a \preceq_{\mathbf{Q}} R b$ if and only if $R b \subseteq R a$ (see 4.1.5(iii)).
(ii) The condition (f4) is satisfied.

Proof. Easy to check.

Lemma 4.1.7. If (f4) is true, then \mathbf{Q} is downwards-regular and strongly balanced.

Proof. Use 4.1.6.

Lemma 4.1.8. $\operatorname{Ann}_{\mathbf{Q}}(R)=\left\{R b ; b \in R R^{-1}\right\} \cup\{\emptyset\}$.
Proof. Easy to check.

Lemma 4.1.9. The following conditions are equivalent:
(i) If $a, b \in G$, then $R a \dashv_{\mathbf{Q}} R b$ if and only if $R b \subseteq R a$ (see 4.1.5(v)).
(ii) The condition (f5) is satisfied.

Proof. (i) implies (ii). Let $a \in G$ be such that $R \cap a b R=\emptyset$ whenever $b \in G$ is such that $R \cap b R=\emptyset$. It follows from 4.1.7(iv) and 4.1.8 that $R_{a} \dashv_{\mathbf{Q}} R$. Now, by (i), $R \subseteq R a$, and hence $a \in R^{-1}$.
(ii) implies (i). Let $a, b \in G$ be such that $R a \dashv_{\mathbf{Q}} R b$ and $R a \neq R b$. Then $R c \dashv_{\mathbf{Q}} R$, $c=a b^{-1}$ and $R c \neq R$. Now, assume that $R \nsubseteq R c$. Then $c \notin R^{-1}$ and, by (f5), $R \cap d R=\emptyset \neq R \cap c d R$ for some $d \in G$. Consequently, $R d^{-1} \in \operatorname{Ann}_{\mathbf{Q}}(R c) \subseteq \operatorname{Ann}_{\mathbf{Q}}(R)$ and $R d^{-1}=R e$ for some $e \in R R^{-1}$ (4.1.8). Thus $d^{-1}=r s^{-1}, r, s \in R, d R=s r^{-1} R$ and $s \in R \cap d R$, a contradiction. It follows that $R \subseteq R c$ and $R b \subseteq R a$.

Lemma 4.1.10. If (f5) is true, then \mathbf{Q} is separable and upwards-regular.
Proof. Use 4.1.9.
4.2. Consider the conditions (f1), ..., (f5) defined in 4.1.

Lemma 4.2.1.

(i) If (f1) is true, then $G=R R^{-1} \cup R^{-1} R$ (and hence the group G is generated by R).
(ii) If $G=R R^{-1} \cup R^{-1} R$ and every left ideal of R is principal, then (f1) is true. (iii) (f3) is true if and only if $G \neq R R^{-1}$.

Proof. Easy to see.
Corollary 4.2.2. If G is generated by R, R is left uniform, not right uniform and every left ideal of R is principal, then the conditions (f1) and (f3) are satisfied.

5. Zeropotent semimodules and fractional left ideals

In this section, let S be an ideal-simple zeropotent G-semimodule such that $\operatorname{Ann}_{S}(S)=\left\{o_{S}\right\}$ (or, equivalently, $S+S \neq\left\{o_{S}\right\}$). For $u, v \in S$, put (u:v)=\{aє $\left.G ; a u \preceq_{S} v\right\}$ and $[u: v]=\left\{a \in G ; a u \dashv_{S} v\right\}$.

Lemma 5.1.

(i) $(u: v) \subseteq[u: v]$ for all $u, v \in S$.
(ii) $(u: o)=[u: o]=G$ for every $u \in S$.
(iii) $(o: w)=[o: w]=\emptyset$ for every $w \in S, w \neq o$.
(iv) $(u: a v)=a(u: v)$ and $(a u: v)=(u: v) a^{-1}$ for all $a \in G$ and $u, v \in S$.
(v) $[u: a v]=a[u: v]$ and $[a u: v]=[u: v] a^{-1}$ for all $a \in G$ and $u, v \in S$.
(vi) $(a u: a u)=a(u: u) a^{-1}$ for all $a \in G$ and $u \in S$.
(vii) $[a u: a u]=a[u: u] a^{-1}$ for all $a \in G$ and $u \in S$.

Proof. The inclusion $(u: v) \subseteq[u: v]$ follows from 2.5(ii) and the remaining assertions can be checked readily.

Lemma 5.2.

(i) $\left(u: v_{1}\right)\left(v_{2}: u\right) \subseteq\left(v_{2}: v_{1}\right)$ and $\left[u: v_{1}\right]\left[v_{2}: u\right] \subseteq\left[v_{2}: v_{1}\right]$ for all $u, v_{1}, v_{2} \in S$.
(ii) $(u: u)(v: u) \subseteq(v: u)$ and $[u: u][v: u] \subseteq[v: u]$ for all $u, v \in S$.
(iii) $(u: u)(u: u) \subseteq(u: u)$ and $[u: u][u: u] \subseteq[u: u]$ for every $u \in S$.

Proof. Easy to check directly.
Lemma 5.3. Let $u_{1}, u_{2}, u, v_{1}, v_{2}, v \in S$.
(i) If $u_{1} \preceq_{S} u_{2}$, then $\left(u_{2}: v\right) \subseteq\left(u_{1}: v\right)$.
(ii) If $v_{1} \preceq_{S} v_{2}$, then $\left(u: v_{1}\right) \subseteq\left(u: v_{2}\right)$.
(iii) If $v_{2} \preceq_{S} u_{1}$, then $\left(u_{1}: v_{1}\right)\left(u_{2}: v_{2}\right) \subseteq\left(u_{2}: v_{1}\right)$.

Proof. Easy to check directly.

Lemma 5.4. Let $u_{1}, u_{2}, u, v_{1}, v_{2}, v \in S$.
(i) If $u_{1} \dashv_{S} u_{2}$, then $\left[u_{2}: v\right] \subseteq\left[u_{1}: v\right]$.
(ii) If $v_{1} \dashv_{S} v_{2}$, then $\left[u: v_{1}\right] \subseteq\left[u: v_{2}\right]$.
(iii) If $v_{2} \dashv_{S} u_{1}$, then $\left[u_{1}: v_{1}\right]\left[u_{2}: v_{2}\right] \subseteq\left[u_{2}: v_{1}\right]$.

Proof. Easy to check directly.

Lemma 5.5. $(u: v) \neq \emptyset \neq[u: v]$ for all $u, v \in S, u \neq o$.
Proof. Denote by I the set of $z \in S$ such that $a u \preceq_{S} z$ for some $a \in G$. Then $\{o, u\} \subseteq I$ and I is an ideal of S. Since S is id-simple, we get $I=S, v \in I$, and therefore $(u: v) \neq \emptyset$. Since $(u: v) \subseteq[u: v]$, we have $[u: v] \neq \emptyset$, too.

In the remaining part of this section, fix an element $w \in S, w \neq o_{S}$. It follows from 5.1(i), 5.2(iii) and 5.5 that both $R_{1}=(w: w)$ and $R_{2}=[w: w]$ are subsemigroups of G and $1 \in R_{1} \subseteq R_{2}$. We put $\mathbf{F}_{i}=\mathbf{F}\left(G, R_{i}\right), \mathbf{G}_{i}=\mathbf{G}\left(G, R_{i}\right), \mathbf{P}_{i}=\mathbf{P}\left(G, R_{i}\right)$ and $\mathbf{Q}_{\mathbf{i}}=\mathbf{Q}\left(G, R_{i}\right), i=1,2$ (see the preceding section).

Lemma 5.6.

(i) $R_{1}^{*}=R_{1} \cap R_{1}^{-1}=\{a \in G$; $a w=w\}$.
(ii) $R_{2}^{*}=R_{2} \cap R_{2}^{-1}=\left\{a \in G ;(w, a w) \in \pi_{S}\right\}$.
(iii) If S is separable, then $R_{1}^{*}=R_{2}^{*}$.

Proof. (i) If $a w=w$, then $a^{-1} w=w, a, a^{-1} \in R_{1}$ and $a \in R_{1}^{*}$. Conversely, if $a \in R_{1}^{*}$, then $a, a^{-1} \in R_{1}$. Now, if $w \neq a w$, then $w=a w+u=a^{-1} w+v, u, v \in S$, and we get $a w=w+a v, w=w+z, z=a v+u, w=w+2 z=w+o=o$, a contradiction.
(ii) Easy to check.
(iii) Since S is separable, we have $\pi_{S}=\operatorname{id}_{S}$ and the assertion follows by combinating (i) and (ii).

Lemma 5.7. Let $v \in S$. Then:
(i) $R_{1}(v: w) \subseteq(v: w)$.
(ii) $R_{2}[v: w] \subseteq[v: w]$.
(iii) $(w: v) \neq \emptyset=[w: v]$.
(iv) $(v: w) \subseteq R_{1} a^{-1}$ for every $a \in(w: v)$.
(v) $[v: w] \subseteq R_{2} a^{-1}$ for every $a \in[w: v]$.
(vi) If $v \neq o_{S}$, then $(v: w) \neq \emptyset \neq[v: w]$.
(vii) $(v: w)(v: v) \subseteq(v: w)$.
(viii) $[v: w][v: v] \subseteq[v: w]$.

Proof. (i) If $a \in R_{1}$ and $b \in(v: w)$, then $a w=w, b v \preceq_{S} w$, and so $a b v \preceq_{S} a w=w$ and $a b \in(v: w)$.
(ii) Similar to (i).
(iii) See 5.5.
(iv) By $5.2(\mathrm{i}),(v: w)(w: v) \subseteq(w: w)=R_{1}$, and so $(v: w) \subseteq R_{1}(w: v)^{-1}$.
(v) Similar to (iv).
(vi) See 5.5.
(vii) Use 5.2(i).
(viii) Similar to (vii).

Using the foregoing lemma, we get mappings $\left(\varphi_{w}=\right) \varphi: S \rightarrow \mathbf{G}_{1}$ and ($\psi_{w}=$) $\psi: S \rightarrow \mathbf{G}_{2}$ defined by $\varphi(v)=(v: w)$ and $\psi(v)=[v: w]$ for every $v \in S$ (5.7(i), (ii)).

Lemma 5.8.

(i) $\varphi(S \backslash\{o\}) \subseteq \mathbf{F}_{1}$.
(ii) $\varphi(a v)=\varphi(v) a^{-1}=a * \varphi(v)$ for all $a \in G$ and $v \in S$.
(iii) If $u \preceq_{S} v$, then $\varphi(v) \subseteq \varphi(u)$.

Proof. (i) This follows from 5.5.
(ii) We have $\varphi(a v)=(a v: w)=(v: w) a^{-1}=\varphi(v) a^{-1}=a * \varphi(v)$ by 5.1(iv).
(iii) If $a \in \varphi(v)$, then $a v \preceq_{S} w$, and, of course, $a u \preceq_{S} a v$. Thus $a u \preceq_{S} w$ and $a \in \varphi(u)$.

Lemma 5.9.

(i) $\psi(S \backslash\{o\}) \subseteq \mathbf{F}_{2}$.
(ii) $\psi(a v)=\psi(v) a^{-1}=a * \psi(v)$ for all $a \in G$ and $v \in S$.
(iii) If $u \dashv_{S} v$, then $\psi(v) \subseteq \psi(u)$.

Proof. Similar to that of 5.8.

Lemma 5.10.

(i) $\varphi(v) \subseteq \psi(v)$ for every $v \in S$.
(ii) $\varphi(w)=R_{1}$ and $\psi(w)=R_{2}$.
(iii) $\varphi\left(o_{S}\right)=\emptyset=\psi\left(o_{S}\right)$.

Proof. Obvious.

Lemma 5.11. Assume that S is transitive. Then:
(i) φ is a bijection of S onto \mathbf{Q}_{1}.
(ii) $u \preceq_{S} v$ if and only if $\varphi(v) \subseteq \varphi(u)$.

Proof. (i) Let $u, v \in S$ be such that $\varphi(u)=\varphi(v)$. If $u=o$ or $v=o$, then $\varphi(u)=\emptyset=\varphi(v)$ and $u=o=v$ by 5.8(i). Hence, assume that $u \neq o \neq v$. Then $u=a w$ and $v=b w$ for some $a, b \in G$. Now, $R_{1} a^{-1}=\varphi(a w)=\varphi(u)=\varphi(v)=$ $\varphi(b w)=R_{1} b^{-1}, R_{1} a^{-1} b=R_{1}, a^{-1} b \in R_{1}^{*}, w=a^{-1} b w$ and, finally, $u=a w=b w=v$ (use 5.8(ii) and 5.6(i)). We have proved that φ is an injective mapping.

If $a \in G$, then $\varphi\left(a^{-1} w\right)=(w: w) a=R_{1} a$ by 5.1 (iv). It follows that φ is a projective mapping. Consequently, $\varphi: S \rightarrow \mathbf{Q}_{1}$ is a bijection.
(ii) If $u \preceq_{S} v$, then $\varphi(v) \subseteq \varphi(u)$ by 5.8(iii). Conversely, if $\varphi(v) \subseteq \varphi(u), v \neq o$, $u=a w, v=b w$, then $R_{1} b^{-1}=\varphi(v) \subseteq \varphi(u)=R_{1} a^{-1}, R_{1} \subseteq R_{1} a^{-1} b=\varphi\left(b^{-1} a w\right)=$ $\left(b^{-1} a w: w\right), 1 \in\left(b^{-1} a w: w\right), b^{-1} a w \preceq_{S} w$ and, finally, $u=a w \preceq_{S} b w=v$.

Lemma 5.12. Assume that S is transitive. Then:
(i) ψ is a projection of S onto \mathbf{Q}_{2}.
(ii) $\operatorname{ker}(\psi)=\pi_{S}$.
(iii) $u \dashv_{S} v$ if and only if $\psi(v) \subseteq \psi(u)$.

Proof. Similar to that of 5.11.

Corollary 5.13. Assume that S is transitive. Then $\psi: S \rightarrow \mathbf{Q}_{2}$ is a bijection if and only if S is separable.

Lemma 5.14. If S is downwards-regular, then $\varphi(u+v)=\varphi(u) \cap \varphi(v)$ for all $u, v \in S$ such that $u+v \neq o_{S}$.

Proof. The inclusion $\varphi(u+v) \subseteq \varphi(u) \cap \varphi(v)$ is clear from the definitions. Conversely, if $a \in \varphi(u) \cap \varphi(v)$, then $a u \preceq_{S} w$, $a v \preceq_{S} w$, and hence $a(u+v) \preceq_{S} w$, since S is downwards-regular. Thus $a \in \varphi(u+v)$.

Lemma 5.15. If S is upwards-regular, then $\psi(u+v)=\psi(u) \cap \psi(v)$ for all $u, v \in S$ such that $u+v \neq o_{S}$.

Proof. Similar to that of 5.14.

Theorem 5.16. Let S be a transitive zeropotent G-semimodule such that $S+S \neq$ $\left\{o_{S}\right\}$ (see 2.8). Let $w \in S, w \neq o_{S}, R_{1}=\left\{a \in G ; a w \preceq_{S} w\right\}$ and $R_{2}=\{a \in$ $\left.G ; a w \dashv_{S} w\right\}$. Then:
(i) S is ideal-simple, $S+S=S$ and $\operatorname{Ann}_{S}(S)=\left\{o_{S}\right\}$.
(ii) Both R_{1} and R_{2} are subsemigroups of G and $1 \in R_{1} \subseteq R_{2}$.
(iii) The mapping $\varphi: v \rightarrow\left\{a \in G\right.$; av $\left.\preceq_{S} w\right\}$ is a bijection of S onto $\mathbf{Q}\left(G, R_{1}\right)$ such that $u \preceq_{S} v$ if and only if $\varphi(v) \subseteq \varphi(u)$.
(iv) If S is downwards-regular, then $\varphi(u+v)=\varphi(u) \cap \varphi(v)$ for all $u, v \in S$ such that $u+v \neq o_{S}$.
(v) The mapping $\psi: v \rightarrow\left\{a \in G ; a v \dashv_{S} w\right\}$ is a projection of S onto $\mathbf{Q}\left(G, R_{2}\right)$ such that $\operatorname{ker}(\psi)=\pi_{S}$ and $u \dashv_{S} v$ if and only if $\psi(v) \subseteq \psi(u)$.
(vi) If S is separable, then ψ is a bijection of S onto $\mathbf{Q}\left(G, R_{2}\right)$.
(vii) If S is upwards-regular, then $\psi(u+v)=\psi(u) \cap \psi(v)$ for all $u, v \in S$ such that $u+v \neq o_{S}$.

Proof. See 2.7, 2.8, 5.1(i), 5.2(iii), 5.5, 5.11, 5.14, 5.12 and 5.15.

Lemma 5.17. Let $a, b \in G, u=a w$ and $v=b w$. Then:
(i) $\varphi(u) \cap \varphi(v) \neq \emptyset$ if and only if $R_{1} \cap R_{1} a^{-1} b \neq \emptyset$.
(ii) $R_{1} \cap a^{-1} b R_{1} \neq \emptyset$ if and only if there exists $c \in G$ with $c w \preceq_{S} u$ and $c w \preceq_{S} v$.

Proof. (i) We have $\varphi(u)=R_{1} a^{-1}$ and $\varphi(v)=R_{1} b^{-1}$. The rest is clear.
(ii) If $d=a^{-1} b e$, where $d, e \in R_{1}$, then $a d=c=b e, c w=a d w \preceq_{S} a w=u$ and $c w=b e w \preceq_{S} b w=v$. Similarly the converse implication.

Lemma 5.18. Assume that S is strongly balanced. If $a, b \in G$ are such that $a w+b w=o$, then $R_{1} \cap a^{-1} b R_{1} \neq \emptyset$.

Proof. Use 5.17(ii).

Lemma 5.19. Let $a, b \in G, u=a w$ and $v=b w$. Then:
(i) $\psi(u) \cap \psi(v) \neq \emptyset$ if and only if $R_{2} \cap R_{2} a^{-1} b \neq \emptyset$.
(ii) $R_{2} \cap a^{-1} b R_{2} \neq \emptyset$ if and only if there exists $c \in G$ with $c w \dashv_{S} u$ and $c w \dashv_{S} v$.

Proof. Similar to that of 5.17.

Lemma 5.20. Assume that S is balanced. If $a, b \in G$ are such that $a w+b w=o$, then $R_{2} \cap a^{-1} b R_{2} \neq \emptyset$.

Proof. Use 5.19(ii).

Lemma 5.21. Assume that S is transitive. If $a \in G$ is such that $w+a w \neq o$, then $a \in R_{1}^{-1} R_{1}$.

Proof. We have $w+a w=b w$ for some $b \in G$, $a w \preceq_{S} b w, b^{-1} a \in R_{1}, w \preceq_{S} b w$, $b^{-1} \in R_{1}$. Consequently, $a \in R_{1}^{-1} R_{1}$.

Lemma 5.22. Assume that S is strongly balanced. If $a \in G$ is such that $w+a w=$ o, then $a \in R_{1} R_{1}^{-1}$.

Proof. This follows immediately from 5.18.

Lemma 5.23. If S is transitive and strongly balanced, then $G=R_{1}^{-1} R_{1} \cup R_{1} R_{1}^{-1}$.
Proof. Combine 5.21 and 5.22.

6. A few consequences

6.1. Let S be a non-trivial transitive zp-semimodule over a group G such that S is downwards-regular and strongly balanced. By 2.7 and $2.8, S$ is ideal-simple, $\operatorname{Ann}_{S}(S)=\left\{o_{S}\right\}$ and $S+S=S$, i.e., S is a zs-semimodule.

Now, choose $w \in S, w \neq o_{S}$, and put $R=R_{1, w}=\left\{a \in G ; a w \preceq_{S} w\right\}$ and $\varphi=\varphi_{w}$, where $\varphi_{w}(v)=\left\{a \in G ; a v \preceq_{S} w\right\}$ for every $v \in S$. According to 5.2 (iii), 5.5 and $5.11, R$ is a subsemigroup of the group $G, 1 \in R$ and φ is a bijection of S onto $\mathbf{Q}=\mathbf{Q}(G, R)$ such that $u \preceq_{S} v$ iff $\varphi(v) \subseteq \varphi(u)$. Moreover, by 5.8 and 5.14, $\varphi(a v)=\varphi(v) a^{-1}, \varphi(a w)=R a^{-1}, a \in G$, and if $u, v \in S$ are such that $u+v \neq o_{S}$, then $\varphi(u+v)=\varphi(u) \cap \varphi(v)$.

Lemma 6.1.1. The condition (f1) (see 4.1) is satisfied.
Proof. Let $a \in G$ be such that $R \cap R a=\emptyset$. It follows from 5.18 that $a^{-1} w+w \neq o$, and hence $a^{-1} w+w=b^{-1} w$ for some $b \in G$. Now, $R b=\varphi\left(b^{-1} w\right)=$ $\varphi\left(a^{-1} w+w\right)=\varphi\left(a^{-1} w\right) \cap \varphi(w)=R a \cap R$.

The condition (f1) is true, and so we get the groupoid $\mathbf{Q}=\mathbf{Q}(+)$ due to 4.1.
Lemma 6.1.2. φ is an isomorphism of $S(+)$ onto $\mathbf{Q}(+)$.
Proof. Since φ is a bijection, we have to show that φ is a homomorphism of the additive structures. For, let $u, v \in S$. We have $\varphi\left(o_{S}\right)=\emptyset$, and hence $\varphi(u+v)=$ $\emptyset=\varphi(u)+\varphi(v)$ provided that either $u=o$ or $v=o$. Now, assume $u \neq o \neq v$. Then $u=a w$ and $v=b w, a, b \in G$.

First, let $u+v \neq o$. If $R \cap a^{-1} b R \neq \emptyset$, then $c w \preceq_{S} u$ and $c w \preceq_{S} v$ for some $c \in G$ by 5.17 (ii) and it follows that $u+v=o$, a contradiction. Thus $R \cap a^{-1} b R=\emptyset$, $R a^{-1}+R b^{-1}=R a^{-1} \cap R b^{-1} \neq \emptyset$ in $\mathbf{Q}(+)$ and we get $\varphi(u+v)=\varphi(u) \cap \varphi(v)=$ $R a^{-1} \cap R b^{-1}=R a^{-1}+R b^{-1}=\varphi(u)+\varphi(v)$.

Next, let $u+v=o$. Then $R \cap a^{-1} b R \neq \emptyset$ by 5.18, and therefore $\varphi(u+v)=\varphi(o)=$ $\emptyset=R a^{-1}+R b^{-1}=\varphi(u)+\varphi(v)$, too.

Lemma 6.1.3. The condition (f2) is satisfied.
Proof. By 6.1.2, $S(+)$ is isomorphic to $\mathbf{Q}(+)$. Consequently, $\mathbf{Q}(+)$ is a semigroup and (f2) follows by 4.1.3.

Lemma 6.1.4. \mathbf{Q} is a non-trivial transitive zs-semimodule and $\varphi: S \rightarrow \mathbf{Q}$ is an isomorphism of the semimodules.

Proof. See 4.1, 6.1.2 and 6.1.3.

Lemma 6.1.5. The conditions (f3) and (f4) are satisfied.
Proof. By 6.1.4, $\mathbf{Q}(\cong S)$ is a non-trivial zs-semimodule. Now, (f3) follows from 4.1.4 and (f4) is clear from 4.1.6 and 5.11(ii).

Theorem 6.1.6. The conditions (f1), (f2), (f3) and (f4) are satisfied (see 4.1) and the semimodules S and $\mathbf{Q}(G, R)$ are isomorphic.

Proof. See 6.1.2, ..., 6.1.5.
6.2. Let S be a non-trivial transitive zp-semimodule over a group G such that S is upwards-regular and balanced. By 2.7 and $2.8, S$ is ideal-simple, $\operatorname{Ann}_{S}(S)=\left\{o_{S}\right\}$ and $S+S=S$, i.e., S is a zs-semimodule.

Now, choose $w \in S, w \neq o_{S}$, and put $R=R_{2, w}=\left\{a \in G ; a w \dashv_{S} w\right\}$ and $\psi=\psi_{w}$, where $\psi_{w}(v)=\left\{a \in G ; a v \dashv_{S} w\right\}$ for every $v \in S$. According to 5.2 (iii), 5.5 and 5.12, R is a subsemigroup of the group $G, 1 \in R$ and ψ is a projection of S onto $\mathbf{Q}=\mathbf{Q}(G, R)$ such that $\operatorname{ker}(\psi)=\pi_{S}$ and $u \dashv_{S} v$ iff $\psi(v) \subseteq \psi(u)$. Moreover, by 5.9 and 5.15, $\psi(a v)=\psi(v) a^{-1}, \psi(a w)=R a^{-1}, a \in G$, and if $u, v \in S$ are such that $u+v \neq o_{S}$, then $\psi(u+v)=\psi(u) \cap \psi(v)$.

Lemma 6.2.1. The condition (f1) (see 4.1) is satisfied.
Proof. Similar to that of 6.1.1 (use 5.20).
The condition (f1) is true, and so we get the groupoid $\mathbf{Q}=\mathbf{Q}(+)$ due to 4.1.

Lemma 6.2.2. ψ is a homomorphism of $S(+)$ onto $\mathbf{Q}(+)$.
Proof. We have to show that ψ is a homomorphism of the additive structures. For, let $u, v \in S$. We have $\psi\left(o_{S}\right)=\emptyset$, and hence $\psi(u+v)=\emptyset=\psi(u)+\psi(v)$ provided that either $u=o$ or $v=o$. Now, assume that $u \neq o \neq v$. Then $u=a w$ and $v=b w$, $a, b \in G$.

First, let $u+v \neq o$. If $R \cap a^{-1} b R \neq \emptyset$, then $c w \dashv_{S} u$ and $c w \dashv_{S} v$ for some $c \in G$ by 5.19 (ii). Consequently, $\operatorname{Ann}_{S}(c w) \subseteq \operatorname{Ann}_{S}(u) \cap \operatorname{Ann}_{S}(v), c w \in \operatorname{Ann}_{S}(c w)$ implies $c w+u=o, u \in \operatorname{Ann}_{S}(c w)$ and, finally, $u \in \operatorname{Ann}_{S}(v), u+v=o$, a contradiction. Thus $R \cap a^{-1} b R=\emptyset, R a^{-1}+R b^{-1}=R a^{-1} \cap R b^{-1} \neq \emptyset$ in $\mathbf{Q}(+)$ and we get $\psi(u+v)=\psi(u) \cap \psi(v)=R a^{-1} \cap R b^{-1}=R a^{-1}+R b^{-1}=\psi(u)+\psi(v)$.

Next, let $u+v=o$. Then $R \cap a^{-1} b R \neq \emptyset$ by 5.20 , and therefore $\psi(u+v)=\psi(o)=$ $\emptyset=R a^{-1}+R b^{-1}=\psi(u)+\psi(v)$, too.

Lemma 6.2.3. The condition (f2) is satisfied.
Proof. By 6.2.2, $\mathbf{Q}(+)$ is a homomorphic image of $S(+)$. Consequently, $\mathbf{Q}(+)$ is a semigroup and (f2) follows by 4.1.3.

Lemma 6.2.4. \mathbf{Q} is a non-trivial transitive zs-semimodule and $\psi: S \rightarrow \mathbf{Q}$ is a projective homomorphism of the semimodules.

Proof. We have $\pi_{S} \neq S \times S$, and hence \mathbf{Q} is non-trivial. The rest is clear from 4.1, 6.2.2 and 6.2.3.

Lemma 6.2.5. The conditions (f3) and (f5) are satisfied.
Proof. By 6.2.4, \mathbf{Q} is a non-trivial zs-semimodule and (f3) follows from 4.1.4. Now, consider the condition (f5). According to 4.1 .9 and 4.1.5(v), it suffices to show that $R b \subseteq R a$ whenever $a, b \in G$ are such that $R a \dashv_{\mathbf{Q}} R b$. We have $R a=\psi(u)$ and $R b=\psi(v), u=a^{-1} w, v=b^{-1} w$. If $z \in \operatorname{Ann}_{S}(u)$, then $\psi(z) \in \operatorname{Ann}_{\mathbf{Q}}(R a)$, and so $\psi(z) \in \operatorname{Ann}_{\mathbf{Q}}(R b)$ and $\psi(z+v)=\psi(z)+\psi(v)=\emptyset\left(=o_{\mathbf{Q}}\right)$. Thus $\left(z+v, o_{S}\right) \in \pi_{S}$, $z+v \in \operatorname{Ann}_{S}(S)=\left\{o_{S}\right\}, z+v=o_{S}$ and $z \in \operatorname{Ann}_{S}(v)$. It follows that $u \dashv_{S} v$ and $R b=\psi(v) \subseteq \psi(u)=R a$ by 5.12.

Theorem 6.2.6. The conditions (f1), (f2), (f3) and (f5) are satisfied and there exists a projection of the semimodule S onto the semimodule $\mathbf{Q}(G, R)$. This projection is an isomorphism if and only if S is separable.

Proof. See 6.2.1, ..., 6.2.5.

References

[1] R. El Bashir and T. Kepka: Commutative semigroups with few invariant congruences. Semigroup Forum 64 (2002), 453-471.
[2] V. Flaška and T. Kepka: Commutative zeropotent semigroups. Acta Univ. Carolinae 47/1 (2006), 3-14.
[3] J. Ježek: Simple semilattices with two commuting automorphisms. Algebra Univ. 15 (1982), 162-175.
[4] J. Ježek and T. Kepka: Medial groupoids. Rozpravy ČSAV, vol. 93, 1983, pp. 93.
[5] M. Maróti: Semilattices with a group of automorphisms. Algebra Univ. 38 (1997), 238-265.
[6] S. H. McCleary: o-Primitive ordered permutation groups. Pacific J. Math. 40 (1972), 349-372.
[7] S. H. McCleary: o-Primitive ordered permutation groups (II). Pacific J. Math. 49 (1973), 431-445.

Authors' address: Robert El Bashir, Tomáš Kepka, MFF UK, Sokolovská 83, Praha 8, 186 75, Czech Republic, e-mail: bashir@karlin.mff.cuni.cz, kepka@karlin.mff. cuni.cz.

