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Abstract. Let A and B be two Archimedean vector lattices and let (A′)′n and (B
′)′n be

their order continuous order biduals. If Ψ: A×A → B is a positive orthosymmetric bimor-
phism, then the triadjoint Ψ∗∗∗ : (A′)′n× (A′)′n → (B′)′n of Ψ is inevitably orthosymmetric.
This leads to a new and short proof of the commutativity of almost f -algebras.
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1. Introduction

Let A, B, C be archimedean vector lattices and let Ψ: A × B → C be an order

bounded bilinear map. Denote by A′ the order dual of A and by A′
n the order

continuous order dual of A. In [2], Arens investigated (in a more general abstract

setting) the process of forming the adjoint operation

Ψ∗ : C′ × A → B′

defined, for all f ∈ C′, a ∈ A, b ∈ B, by

Ψ∗(f, a)(b) = f(Ψ(a, b)).

This construction can be iterated in the following way:

Ψ∗∗ : B′′ × C′ → A′

defined, for all F ∈ B′′, f ∈ C′, a ∈ A, by

Ψ∗∗(F, f)(a) = F (Ψ∗(f, a)),
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and

Ψ∗∗∗ : A′′ × B′′ → C′′

defined, for all F ∈ A′′, G ∈ B′′, f ∈ C′, by

Ψ∗∗∗(F, G)(f) = F (Ψ∗∗(G, f)),

with Ψ∗∗∗((A′)′n×(B′)′n) → (C′)′n. Moreover, certain properties such as associativity,

provided Ψ has them, are transmitted to Ψ∗∗∗ (this makes sense only when A = B =

C). The transmission of commutativity problem was considered by Arens in [2]

and answered in the negative. However, it was shown by Grobler [8, Theorem 4]

that if A is an abelian lattice ordered algebra, then (A′)′n furnished with the Arens

product is abelian. The question arises as to whether the restriction of Ψ∗∗∗ to

(A′)′n × (A′)′n is still a positive and orthosymmetric bimorphism when Ψ is only a

positive orthosymmetric bimorphism. The answer is affirmative (Theorem 1). As an

application, we prove that the restriction of Ψ∗∗∗ to (A′)′n × (A′)′n (called also the

triadjoint of Ψ) and, by the way Ψ, are inevitably symmetric.

In 1981 Scheffold in [13] proved that any normed almost f -algebra is commutative.

Basly and Triki [3] make able to do a way with the norm condition. Both the proof

of Scheffold and the proof of Basly and Triki make use of the Axiom of Choice by

using non constructive representation theorems. Bernau and Huijsmans in [5] gave

a constructive proof. It is long and quite involved. In 2000 Buskes and Van Rooij

gave another proof (see [7]). The disadvantage of their approach is that the proof

is not intrinsic, i.e., does not take place in the almost f -algebra itself. In this paper

we present a new, short and constructive proof. Interestingly, it deals with positive

orthosymmetric maps rather than with algebra multiplications and does not make

use of associativity.

We take it for granted that the reader is familiar with the notions of vector lat-

tices (or Riesz spaces) and operators between them. For terminology, notation and

concepts that are not explained in the paper we refer to the standard monographs

[1], [10], [11], [12] and [15].

2. Definitions and notations

We shall assume throughout this paper that all vector lattices (or Riesz spaces)

under consideration are Archimedean.

Let A be a (real) vector lattice. A vector subspace I of A is called an order

ideal (or o-ideal) whenever |a| 6 |b| and b ∈ I imply a ∈ I. Every o-ideal is a

vector sublattice of A. The principal o-ideal generated by 0 6 e ∈ A is denoted by
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Ae and it is a sublattice of A. A linear mapping T defined on a vector lattice A

with values in a vector lattice B is called positive if T (A
+
) ⊂ B+. A linear mapping

T ∈ L (A, B) is called a lattice (or Riesz ) homomorphism whenever a∧b = 0 implies

T (a) ∧ T (b) = 0.

Let A be a vector lattice and let 0 6 v ∈ A. The sequence {an, n = 1, 2, . . .}

in A is called (v) relatively uniformly convergent to a ∈ A if for every real number

ε > 0 there exists a natural number nε such that |an − a| 6 εv for all n > nε.

This will be denoted by an → a (v). If an → a (v) for some 0 6 v ∈ A, then the

sequence {an, n = 1, 2, . . .} is called (relatively) uniformly convergent to a, which is

denoted by an → a(r · u). The notion of a (v) relatively uniformly Cauchy sequence is

defined in the obvious way. A vector lattice A is called relatively uniformly complete

if every relatively uniformly Cauchy sequence in A has a relatively uniform limit.

Relatively uniform limits are uniquely determined in archimedean vector lattices,

see [10, Theorem 63.2]. Furthermore, If Ad is the Dedekind completion of a vector

lattice A, then the closure Aru of A in Ad with respect to the relatively uniform

topology, is the relatively uniform completion of A.

Recall that if A is a real vector lattice, we denote by A∗ the algebraic dual of A,

that is, the vector space of all linear forms on A. A linear form f ∈ A∗ is called order

bounded if for each order interval [x, y] ⊂ A, the set f([x, y]) is order bounded in R.

An order bounded linear form f on A is called order continuous if f converges to

0 along each filter that converges to 0. The vector space of all order bounded linear

forms on A is called the order dual of A and is denoted by A′. Its order dual (A′)′

is denoted by A′′. The vector space of all order continuous linear forms on A′ is

called the order continuous order bidual of A and is denoted by (A′)′n. We define

for every x ∈ A an element x′′ ∈ A′′ by putting x′′(f) = f(x) for all f ∈ A′. The

map σ : A → A′′ defined by σ(x) = x′′ for all x ∈ A is a lattice homomorphism

from A into A′′. Recall that σ(A) ⊂ (A′)′n and the order ideal Iσ(A) generated by

σ(A) in (A′)′n is order dense in (A′)′n, that is, {σ(A)}dd = (A′)′n. Hence for each

0 6 F ∈ (A′)′n there exists an upwards directed net Fα in Iσ(A) with Fα ր F. For

more explanation, see [4], [8], [9].

In the next paragraphs, we recall definitions and some basic facts about almost

f -algebras. For more information about this field, we refer the reader to [1], [5],

[6], [7]. A vector lattice A which is simultaneously an associative algebra such that

ab > 0 for each 0 6 a, b ∈ A is called a lattice ordered algebra (ℓ-algebra). An

ℓ-algebra A is called an almost f -algebra whenever it follows from a ∧ b = 0 that

ab = 0.

We end this section with the following definition. Let A and B be vector lattices.

A bilinear map Ψ from A×A into B is said to be orthosymmetric if a∧b = 0 implies

Ψ(a, b) = 0, see [7].
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3. The main results

The following proposition is important in the context of our problem. We are

indebted to Bernau and Huijsmans [4] for some steps.

Proposition 1. Let A, B be vector lattices, let Ψ: A × A → B be a positive

orthosymmetric bimorphism and let Ψ∗∗∗ : (A′)′n × (A′)′n → (B′)′n be the adjoint of

Ψ∗∗. If 0 6 G, H ∈ (A′)′n with G ∧ H = 0 and G, H 6 x′′ for some x ∈ A+, then

Ψ∗∗∗(H, G) = Ψ∗∗∗(G, H) = 0.

P r o o f. Let 0 6 f ∈ B′ and let k = Ψ∗(f, x) ∨ Ψ∗∗(x′′, f) ∈ A′. It follows from

[4, Corollary 1.2] that there exist g, h ∈ A′ with g ∧ h = 0 and G(g) = 0 = H(h)

such that k = g + h.

Hence

0 = (g ∧ h)(x) = inf{g(y) + h(z), x = y + z, y, z ∈ A+},

which implies that for ε > 0 there exist y, z ∈ A+ such that x = y + z and g(y) < ε,

h(z) < ε. We now define linear functionals G1 and H1 on A′ by G1 = G ∧ (y − y ∧

z)′′ and H1 = H ∧ (z − y ∧ z)′′.

It is obvious that 0 6 G1 ,H1 ∈ (A′)′n. However, the following relations hold:

0 6 G − G1 = G − G ∧ (y − y ∧ z)′′

= 0 ∨ [G − (y − y ∧ z)′′]

= [G − (y − y ∧ z)′′]+

6 [x′′ − (y − y ∧ z)′′]+

= [(y + z)′′ − (y − y ∧ z)′′]+

= [(y + z − (y − y ∧ z))′′]+

= [(z + y ∧ z)′′]+

6 ((2z)+)′′ = 2z′′,

that is

0 6 G − G1 6 2z′′.

Using the same argument, we have

0 6 H − H1 6 2y′′.

Since (y − y ∧ z) ∧ (z − y ∧ z) = 0, then

Ψ∗∗∗((y − y ∧ z)′′, (z − y ∧ z)′′) = [Ψ((y − y ∧ z), (z − y ∧ z))]′′ = 0.
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Moreover,

Ψ∗∗∗(G1, H1) 6 Ψ∗∗∗((y − y ∧ z)′′, (z − y ∧ z)′′) = 0.

Since 0 6 H, G 6 x′′ , it follows that

Ψ∗∗∗(G − G1, H)(f) 6 Ψ∗∗∗(G − G1, x
′′)(f)

= (G − G1)(Ψ
∗∗(x′′, f))

6 (G − G1)(k)

= (G − G1)(g) + (G − G1)(h)

= 0 + (G − G1)(h)

6 0 + 2h(z)

< 2ε.

Moreover,

Ψ∗∗∗(G, H − H1)(f) 6 Ψ∗∗∗(x′′, H − H1)(f)

= x′′(Ψ∗∗(H − H1, f))

= (Ψ∗∗(H − H1, f))(x)

= (H − H1)(Ψ
∗(f, x))

6 (H − H1)(k)

= (H − H1)(g + h)

= 0 + (H − H1)(g)

6 2g(y)

< 2ε.

Therefore

Ψ∗∗∗(G, H)(f) = Ψ∗∗∗(G − G1 + G1, H)(f)

= Ψ∗∗∗(G − G1, H)(f) + Ψ∗∗∗(G1, H)(f)

6 2ε + Ψ∗∗∗(G1, H)(f)

= 2ε + Ψ∗∗∗(G1, H − H1 + H1)(f)

6 2ε + Ψ∗∗∗(G1, H − H1)(f) + Ψ∗∗∗(G1, H1)(f)

6 2ε + Ψ∗∗∗(G, H − H1)(f) + Ψ∗∗∗(G1, H1)(f)

6 4ε + Ψ∗∗∗(G1, H1)(f).

Since Ψ∗∗∗(G1, H1)(f) = 0, we have

Ψ∗∗∗(G, H)(f) 6 4ε.
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Since this holds for an arbitrary ε > 0, we have Ψ∗∗∗(G, H)(f) = 0. Using the same

argument, we deduce that Ψ∗∗∗(H, G)(f) = 0. The result holds for all f ∈ B′ since

f = f+ − f− for any f ∈ B′ as required. �

We have collected all prerequisites for the first main result of this paper.

Theorem 1. Let A, B be vector lattices and let Ψ: A × A → B be a positive

orthosymmetric bimorphism. Then Ψ∗∗∗ : (A′)′n × (A′)′n → (B′)′n the adjoint of Ψ
∗∗,

is inevitably a positive orthosymmetric bimorphism.

P r o o f. Let 0 6 G, H ∈ (A′)′n with G ∧ H = 0. We have to show that

Ψ∗∗∗(G, H) = 0.

Consider the order ideal Iσ(A) generated by σ(A) = {x′′, ∀x ∈ A} in (A′)′n, that

is Iσ(A) = {F ∈ (A′)′n, |F | 6 x′′ for some x ∈ A}. We recall that Iσ(A) is order

dense in (A′)′n and hence there exist Gα, Hβ ∈ Iσ(A) such that 0 6 Gα ր G and

0 6 Hβ ր H with 0 6 Gα 6 x′′
α, 0 6 Hβ 6 y′′

β for some 0 6 xα, yβ ∈ A. It follows

from G∧H = 0 that Gα∧Hβ = 0 for all α, β. Furthermore, 0 6 Gα, Hβ 6 (xα+yβ)′′.

Then Proposition 1 yields that Ψ∗∗∗(Gα, Hβ) = 0 for all α, β.

Now let 0 6 f ∈ B′ and let a ∈ A+. It follows from 0 6 Hβ ր H that

Ψ∗∗(Hβ , f)(a) = Hβ(Ψ∗(f, a)) ր H(Ψ∗(f, a)) = Ψ∗∗(H, f)(a).

It follows that Ψ∗∗(Hβ , f) ր Ψ∗∗(H, f). Hence by the order continuity of Gα for

each α we obtain that

Ψ∗∗∗(Gα, Hβ)(f) = Gα(Ψ∗∗(Hβ , f)) ր Gα(Ψ∗∗(H, f)) = Ψ∗∗∗(Gα, H)(f).

Moreover,

Ψ∗∗∗(Gα, H)(f) = Gα(Ψ∗∗(H, f)) ր G(Ψ∗∗(H, f)) = Ψ∗∗∗(G, H)(f)

for all 0 6 f ∈ B′. It follows that

Ψ∗∗∗(Gα, Hβ)(f) ր Ψ∗∗∗(G, H)(f)

for all 0 6 f ∈ B′. Consequently,

Ψ∗∗∗(Gα, Hβ) ր Ψ∗∗∗(G, H).

Hence

Ψ∗∗∗(G, H) = 0

and we are done. �
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Remark 1. We note that in all the above proofs, we have not used the fact that

Ψ is symmetric.

Next, we will present an alternative proof of the commutativity of almost f -

algebras.

Recall that a topological space X is called Stonian (or extremally disconnected) if

X possesses the property that each open subset of X has an open closure.

To reach our aim, we need first the following result, which is a simple combi-

nation of a theorem of Kakutani [12, Chap. II, Theorem 7.4] with [12, Chap. II,

Proposition 7.7]. For this reason its proof has been omitted.

Proposition 2. Let X be a compact Hausdorff space. Then the Dedekind com-

pletion of C(X) is a vector lattice of the form C(Y ) for some Stonian compact

Hausdorff space Y .

We are in position to present a new and short proof of the commutativity of almost

f -algebras.

Theorem 2. Let A, B be vector lattices and let Ψ0 : A × A → B be a positive

orthosymmetric bimorphism. Then Ψ0 is symmetric, that is

Ψ0(f, g) = Ψ0(g, f) for all f, g ∈ A

P r o o f. First, we note that Triki advocated in [14, Theorem 4] that any positive

orthosymmetricΨ: A×A → B can be extended in a unique way to Aru×Aru → Bru

(where Aru (resp. Bru) is the closure of A (resp. of B) with respect to the relatively

uniform topology) in such a manner that the new extension (denoted also by Ψ0) is

also a positive orthosymmetric bimorphism. Then without loss of generality we can

assume that A is a uniformly complete vector lattice. Let f, g ∈ A, h = |f |+ |g| and

put e = Ψ0(h, h). Hence the order ideals Ih and Ie generated by h and e in A and

B can be identified respectively with C(X) and C(Y ) for some compact Hausdorff

space X and Y , respectively (use the Kakutani Representation Theorem). We claim

that the restriction of Ψ0 to C(X) × C(X) → C(Y ), denoted by Ψ, is symmetric.

Recall that C(X) and C(Y ) are Banach vector lattices and hence C(X) and C(Y )

are naturally embedded in (C(X)′)′n and (C(Y )′)′n respectively. Then the triadjoint

Ψ∗∗∗ : (C(X)′)′n × (C(X)′)′n → (C(Y )′)′n of Ψ is an extension of Ψ. Then without

loss of generality we can assume that C(X) is a Dedekind complete vector lattice.

By the previous proposition, X is a Stonian compact Hausdorff space.

Let L = {k ∈ C(X); k(X) is a finite subset of R}. The fact that X is a Stonian

compact Hausdorff space coupled with the M.H. Stone Theorem [12, Chap. II, The-

orem 7.3] imply that L is a dense vector sublattice of C(X).
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We claim that the restriction of Ψ to L×L, denoted also by Ψ, is symmetric. To

this end, let k ∈ L, let {x1, . . . , xm} = k(X) and let Xi = k−1{xi} for all 1 6 i 6 m.

Then Xi is a closed subset of X. Since xi 6= xj for all i 6= j, there exists a real

number ε > 0 such that ]xi − ε, xi + ε[ ∩ ]xj − ε, xj + ε[ = ∅ for all i 6= j. Then

Xi = k−1{]xi−ε, xi +ε[}. It follows that Xi is an open and closed subset of X. Then

k =

m
∑

i=1

xi1Xi

where 1Xi
(t) =

{

1 if t ∈ Xi

0 if t ∈ Xc
i

(here Xc
i is the complement of Xi in X). Let k′ ∈ L,

then there exist {y1, . . . , yn} ⊂ R and Y1, . . . , Yn disjoint open and closed subsets of

X such that k′ =
n
∑

j=1

yj1Yj
. It follows that,

Ψ0(k, k′) = Ψ0

( m
∑

i=1

xi1Xi
,

n
∑

j=1

yj1Yj

)

=
∑

16i6m
16j6n

xiyjΨ(1Xi
,1Yj

).

Let Zij = Xi ∩ Yj , for all 1 6 i 6 m and 1 6 j 6 n. Then 1Xi
= 1Zij

+ 1Xi\Zij
and

1Yj
= 1Zij

+ 1Yj\Zij
for all 1 6 i 6 m and 1 6 j 6 n. Then

Ψ0(1Xi
,1Yj

) = Ψ0(1Zij
,1Zij

) + Ψ0(1Zij
,1Yj\Zij

)

+ Ψ0(1Xi\Zij
,1Zij

) + Ψ0(1Xi\Zij
,1Yj\Zij

).

Since

Xi \ Zij ∩ Yj \ Zij = Zij ∩ Yj \ Zij = Xi \ Zij ∩ Zij = ∅,

we deduce

1Xi\Zij
∧ 1Yj\Zij

= 1Zij
∧ 1Yj\Zij

= 1Xi\Zij
∧ 1Zij

= 0.

Then

Ψ0(1Xi\Zij
,1Yj\Zij

) = Ψ0(1Zij
,1Yj\Zij

) = Ψ0(1Xi\Zij
,1Zij

) = 0,

which leads to

Ψ0(k, k′) =
∑

16i6m
16j6n

xiyjΨ0(1Zij
,1Zij

) = Ψ0(k
′, k).
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Hence the restriction of Ψ0 to L×L is symmetric. Now since f, g ∈ C(X) and since

L is dense in C(X), there exists fn, gn ∈ L, for all n ∈ N, such that fn → f and

gn → g. By the positivity of Ψ0 we have

Ψ0(fn, gn) → Ψ0(f, g)(r · u)

and

Ψ0(gn, fn) → Ψ0(g, f)(r · u)

and since Ψ0(fn, gn) = Ψ0(gn, fn), it follows that Ψ0(f, g) = Ψ0(g, f), which gives

the desired result. �

The above theorem yields the following corollary.

Corollary 1. Every almost f -algebra is commutative.

P r o o f. Let A be an almost f -algebra and let Ψ: A × A → A be the bilinear

map defined by Ψ(x, y)) = xy. It is an easy task to show that Ψ is a positive

orthosymmetric bimorphism. In view of Theorem 2, we deduce that Ψ is symmetric,

that is xy = yx for all x, y ∈ A, which gives the desired result. �
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