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Abstract. The main topic of the first section of this paper is the following theorem: let A

be an Archimedean f -algebra with unit element e, and T : A → A a Riesz homomorphism
such that T 2(f) = T (fT (e)) for all f ∈ A. Then every Riesz homomorphism extension

T̃ of T from the Dedekind completion Aδ of A into itself satisfies T̃ 2(f) = T̃ (fT (e)) for

all f ∈ Aδ . In the second section this result is applied in several directions. As a first
application it is applied to show a result about extensions of positive projections to the
Dedekind completion. A second application of the above result is a new approach to the
Dedekind completion of commutative d-algebras.
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1. Introduction

The well known extension theorem of Lipecki, Luxemburg and Schep concerning

the Riesz homomorphism states that if A is a Riesz space with Aδ its Dedekind

completion and T : A → Aδ is a Riesz homomorphism, then T extends to a Riesz

homomorphism T̃ from Aδ into itself (see [1, Theorem 7.17]).

The principal aim of the present paper is to answer the following question: If in

“Lipecki-Luxemburg-Schep’s theorem” A is an f -algebra with unit element e and

T 2(f) = T (fT (e)) for all f ∈ A, is T̃ 2(f) = T̃ (fT (e)) still true in Aδ.

Note that in general T need not be order continuous as is shown by the following

example. Consider A = C([0, 1]) with the pointwise addition, multiplication, scalar

multiplication and partial ordering. It is easy to show that A is an f -algebra whose

unit element is the constant function one e. Define the positive operator T on A by

T (f)(x) = f(1
2
).
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A straightforward computation shows that T is a Riesz homomorphism and T 2(f) =

T (fT (e)) for all f ∈ A but T is not order continuous.

This paper deals with two main results. First, we give an affirmative answer to

the above question. This result will be applied in several directions. As a first

application, we present a result about Riesz homomorphism extensions of the Riesz

homomorphism and projection. Perhaps the most striking theorem in this direction,

due to Triki [14, Theorem 1.7], is that if T is a positive projection on A, then T

can be extended to a positive projection on Aδ. In the present paper, we intend to

make some contributions to this area. We will prove that if in Triki’s theorem A is

an f -algebra with unit element e, T is a Riesz homomorphism such that T (e) = e,

then every Riesz homomorphism extension of T to Aδ is a positive projection. In the

survey paper [10], it was conjectured by Huijsmans that if A is an almost f -algebra,

then there exists a multiplication in the Dedekind completion Aδ of A extending

the multiplication in A, such that Aδ is an almost f -algebra with respect to this

extended multiplication. This conjecture was proved by Buskes and van Rooij in [7,

Theorem 4.1] for the class of almost f -algebras. In contrast to the original approach

of Buskes and van Rooij, Boulabiar and the author gave in [6] an order theoretical

and algebraic approach of the Buskes and van Rooij theorem. As an application,

Boulabiar and the author gave in [6] an affirmative answer to Huijsmans’s question

for the class of commutative d-algebras. The proofs of the aforementioned results

both rely on a representation theorem for almost f -algebras. As a second application,

we present a new approach in the special case where A, in addition, is an f -algebra

with unit element.

We assume that the reader is familiar with the notion of Riesz spaces (or vector

lattices).

2. Preliminaries

For terminology and properties of Riesz spaces and order bounded operators not

explained or proved in this paper, we refer to [1], [12], [15]. We refer to [2] for the ele-

mentary ℓ-algebra and d-algebra and to [1], [15] for the f -algebra and orthomorphism

theories.

A lattice ordered group (briefly an ℓ-group) A is called Archimedean if for each

non zero f ∈ A the set {nf : n = ±1,±2, . . .} has no upper bound in A. In order

to avoid unnecessary repetition we will assume throughout that all ℓ-groups under

consideration are Archimedean. An ℓ-group A which is simultaneously a ring with

the property that fg ∈ A+ for all f, g ∈ A+ (equivalently, |fg| 6 |f ||g| for all

f, g ∈ A) (where A+ is the positive cone of A) is called a lattice ordered ring (briefly,

an ℓ-ring). If, in addition, A is a real Riesz space, then A is called an ℓ-algebra.
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Abstract f -ring theory and f -algebra theory have been studied by many authors

(see e.g. [1], [3], [5], [15]). Some of these authors (see e.g. §8 in the paper [5] by

G.Birkhoff and R. S. Pierce) define an f -ring as a lattice ordered ring with the prop-

erty that f ∧ g = 0 and h ∈ A+ implies fh ∧ g = hf ∧ g = 0. Others (see e.g.

Definition 9.1.1 in the book [3] by A.Bigard, K.Keimel and S.Wolfenstein) define

an f -ring as a lattice ordered ring which is isomorphic to a subdirect union of to-

tally ordered rings. It is often desirable to have the equivalence of the two definitions

available. However, any known equivalence proof is based on arguments using Zorn’s

lemma. If one uses the second definition, it is possible to prove a certain number

of standard theorems on f -rings by means of the “metamathematical” observation

that any identity holding in every totally ordered ring holds in every f -ring.

We adopt in this paper the original Birkhoff-Pierce definition of an f -ring (i.e. an

ℓ-ring with the additional property that f ∧ g = 0 and h ∈ A+ implies fh ∧ g =

hf ∧ g = 0) as our starting point. An f -ring A is said to be an f -algebra if A

is also a real Riesz space. It was shown by Birkhoff and Pierce in [5, Section 8]

that any (Archimedean) f -ring is commutative, but for more elementary proof, due

to Zaanen, we refer to [15, Theorem 140.10] or [3, Theorem 12.3.2]. If A is an f -

ring then A has positive squares and |fg| = |f ||g| for all f, g ∈ A. Every f -ring

A with identity element is semiprime (or reduced), that is, 0 is the only nilpotent

in A. If f, g are elements in a semiprime f -ring A, then |f | ∧ |g| = 0 if and only

if fg = 0. All f -ring properties listed above are satisfied by any f -algebra. An

almost f -algebra A is an ℓ-algebra with the additional property that f ∧ g = 0 in

A implies fg = 0. The ℓ-algebra A is called a d-algebra whenever f ∧ g = 0 and

h ∈ A+ imply fh ∧ gh = hf ∧ hg = 0 (equivalently, |fg| = |f ||g| for all f, g ∈ A).

Any f -algebra is an almost f -algebra and a d-algebra, but not conversely (see [2]).

An almost f -algebra need not be a d-algebra and vice versa. Both the f -algebras

and almost f -algebras are automatically commutative and have positive squares but

these properties fail in d-algebras. A d-algebra which is commutative or has positive

squares is an almost f -algebra. More about almost f -algebras and d-algebras can be

found in [2].

The relatively uniform topology on Riesz spaces plays a key role in the context of

this work. Let us therefore recall the definition and some elementary properties of

this topology. By N we mean the set {1, 2, . . .}. Let A be an archimedean Riesz space

and u ∈ A+. A sequence (fn)n∈N of elements of A is said to converge u-uniformly

to f ∈ A whenever for every ε > 0 there exists a natural number Nε such that

|f − fn| 6 εu for all n > Nε. This is denoted by fn → f(u). The element u is called

the regulator of convergence. The sequence (fn)n∈N is said to converge relatively

uniformly to f ∈ A if fn → f(u) for some u ∈ A+. We shall write fn → f (r · u)

if we do not want to specify the regulator. Relatively uniform limits are unique if
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and only if A is Archimedean [12, Theorem 63.2]. We refer to [13] for the relatively

uniform topology. In the end of this paragraph, we recall an important fact about

unital f -algebras. Let A be an Archimedean f -algebra with unit element 0 < e.

For every 0 6 f ∈ A, the increasing sequence 0 6 fn = f ∧ ne converges relatively

uniformly to f in A (for details on this see, e.g., [1, Theorem 8.22]).

Let A and B be Riesz spaces. An operator π : A → B is called order bounded

if the image under π of an order bounded set in A is again an order bounded set

in B. The operator π is called positive if π(A+) ⊂ B+. The operator π is called a

Riesz homomorphism (or lattice homomorphism) whenever f ∧ g = 0 implies π(f)∧

π(g) = 0. Obviously, every Riesz homomorphism is positive. The order bounded

operator π : A → A is called an orthomorphism if |f | ∧ |g| = 0 implies |π(f)| ∧

|g| = 0. The collection Orth(A) of all orthomorphisms on A is, with respect to the

usual Riesz spaces and composition as multiplication, an Archimedean f -algebra

with the identity mapping IA on A as a unit element (for details on this see, e.g., [1,

Theorem 8.24]). Every orthomorphism π ofA is order continuous ([1, Theorem 8.10]).

If A is supposed to be, in addition, an f -algebra then, for every f ∈ A, the map πf

defined by πf (g) = fg for all g ∈ A is an orthomorphism of A. Furthermore, if A

is an f -algebra with unit element then the mapping f → πf from A into Orth(A)

is a Riesz and algebra isomorphism. Therefore, for every π ∈ Orth(A) there exists

a unique element f ∈ A such that π = πf and π is a positive orthomorphism if and

only if f > 0 (for details on this see, e.g., [1, Theorem 8.27]).

A bilinear map ψ : A×A→ B is said to be positive if ψ(f, g) ∈ B+ for all f, g ∈

A+. The positive bilinear map ψ : A×A→ B is called an orthosymmetrical map if

f ∧ g = 0 implies ψ(f, g) = 0. The proof of commutativity of Archimedean almost

f -algebras, given by Bernau and Huijsmans in [2, Theorem 2.15], does not make use

of associativity. In fact, Bernau and Huijsmans proved that every orthosymmetrical

map is symmetrical.

A Dedekind complete Riesz space is called universally complete whenever every

set of pairwise disjoint positive elements has a supremum. Every Riesz space A has

a universal completion Au, i.e. there exists a unique (up to a lattice homomorphism)

universally complete (and therefore Dedekind complete) Riesz space Au such that

A can be identified with an order dense vector sublattice of Au. Moreover, Au is

furnished with a multiplication under which Au is an f -algebra with unit element.

Since we wish to avoid representation in this paper, we adhere to the purely algebraic

approach for the existence of a universal completion presented in [1, §8, Exercise 13].

Let A be a Riesz space and f ∈ A. We denote by {f}dd the principal band

generated by f and by {f}d its disjoint complement.
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3. Main results

We have gathered now all ingredients for the main result of this paper.

Theorem 1. Let A be an Archimedean f -algebra with unit element e, and T :

A→ A a Riesz homomorphism such that

T 2(f) = T (fT (e))

for all f ∈ A. Then every Riesz homomorphism extension T̃ of T from Aδ into itself

satisfies

T̃ 2(f) = T̃ (fT (e))

for all f ∈ Aδ.

P r o o f. As is well-known, multiplication in an Archimedean f -algebra A can be

extended (uniquely) to an f -algebra multiplication in Aδ, so we can assume without

loss of generality that Aδ is an f -algebra with unit element e. Now, define the bilinear

map

ϕ : A×A→ A,

(x, y) → T (xT (e))T (y).

Let x, y ∈ A be such that x ∧ y = 0. From the fact that A is an f -algebra it follows

that xT (e) ∧ y = 0 so T (xT (e)) ∧ T (y) = 0 (because T is a Riesz homomorphism).

Consequently, T (xT (e))T (y) = 0 and thus

ϕ(x, y) = 0.

So ϕ is orthosymmetrical, which implies that ϕ is symmetrical and thus

T (xT (e))T (y) = T (yT (e))T (x).

Now, using the above equality with y = e and the fact that T (T (x)) = T (xT (e))

(hypothesis of T ), we observe that

(1.1) T (T (x))T (e) = T (xT (e))T (e) = T (x)T (T (e)).

Let F = T (A), then F is a vector sublattice of A. Now, we define π : F → Aδ by

π(x) = T (x)T (e). So, π(T (x)) = T 2(x)T (e) for all x ∈ A. On the other hand, by

using (1.1) we observe that

π(x) = xT 2(e) for all x ∈ F.
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Hence π is order continuous. According to [1, Theorem 4.12], the formula

π̃(x) = sup{π(y) : y ∈ F and 0 6 y 6 x}

defines a unique order continuous extension of π to F δ. Then

π̃(x) = xT 2(e) for all x ∈ F δ.

Now, in view of [1, Theorem 7.19], it is not hard to prove that T̃ (Aδ) ⊂ F δ.We infer

that

π̃(T̃ (x)) = T̃ (x)T 2(e) for all x ∈ Aδ.

On the other hand,

π̃(T̃ (x)) = sup{π(T (y)) : y ∈ A and 0 6 T (y) 6 T̃ (x)} for all x ∈ (Aδ)+.

So

π̃(T̃ (x)) = sup{T (e)T 2(y) : y ∈ A and 0 6 T (y) 6 T̃ (x)} for all x ∈ (Aδ)+.

This implies that

0 6 π̃(T̃ (x)) 6 T (e)T̃ 2(x) for all x ∈ (Aδ)+

and thus

0 6 T 2(e)T̃ (x) 6 T (e)T̃ 2(x) for all x ∈ (Aδ)+.

At this point, we define T# : Aδ → Aδ by T#(x) = T (e)T̃ 2(x), and S : Aδ → Aδ

by S(x) = T̃ (x)T 2(e). Obviously, T# is a Riesz homomorphism. Moreover, 0 6 S

6 T#. Hence, by [1, Theorem 8.16], there exists a positive orthomorphism R ∈

Orth(Aδ) satisfying S = RT. This yields that there exists ω ∈ Aδ such that

S(x) = ωT#(x) for all x ∈ Aδ.

Therefore

(2.1) T̃ (x)T 2(e) = ωT (e)T̃ 2(x)

holds for all x ∈ Aδ. This implies that

T (e)T 2(e) = ωT (e)T 2(e).
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Consequently, multiplying (2.1) by T 2(e), we obtain

T 2(e)T̃ (x)T 2(e) = T 2(e)T (e)T̃ 2(x).

On the other hand, T̃ (x)T 2(e) − T (e)T̃ 2(x) ∈ {T (e)}dd, so

T̃ (x)T 2(e) = T (e)T̃ 2(x) for all x ∈ Aδ.

Further,

T 2(e)T̃ (x) = T (T (e)e)T̃(x) = T̃ (T (e)x)T (e)

(because the bilinear map (x, y) → T̃ (x)T̃ (T (e)y) is orthosymmetrical so symmetri-

cal). So

T (e)T̃ 2(x) = T (e)T̃ (T (e)x),

and thus

T̃ 2(x) − T̃ (T (e)x) ∈ {T (e)}d

(because A is semiprime). On the other hand, T̃ 2(x)− T̃ (T (e)x) ∈ {T (e)}dd. Hence

T̃ 2(x) = T̃ (T (e)x)

for all x ∈ Aδ, which is the desired result. �

In [14] Triki proved that if T is a positive projection on A, then T can be extended

to a positive projection on Aδ (see [14, Theorem 1.7]). In this regard, we give the

following result.

Corollary 2. Let A be an Archimedean f -algebra with unit element e, and

T : A → A a Riesz homomorphism such that T (e) = e and T is a projection.

Then every Riesz homomorphism extension T̃ of T from Aδ into itself is a positive

projection.

Corollary 3. Let A be an Archimedean f -algebra with unit element e, and

T : A→ A a Riesz homomorphism such that

T (T (fg)h) = T (fT (gh))

for all f, g, h ∈ A. Then every Riesz homomorphism extension T̃ of T from Aδ into

itself satisfies

T̃ (T̃ (fg)h) = T̃ (fT̃ (gh))

for all f, g, h ∈ Aδ.
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P r o o f. It is not hard to see that it suffices to establish the equality for f, g, h ∈

(Aδ)+. Let f, h ∈ (Aδ)+ and let T̃ be an extension of T from Aδ into itself. Since

T̃ is a Riesz homomorphism and Aδ is an f -algebra, it is not hard to prove that

the bilinear map (x, y) → T̃ (T̃ (fx)h)T̃ 2(y) is orthosymmetrical, hence symmetrical.

Therefore

T̃ (T̃ (fx)h)T̃ 2(y) = T̃ (T̃ (fy)h)T̃ 2(x)

for all x, y ∈ Aδ. Now, for x = g and y = e, we obtain

T̃ (T̃ (fg)h)T̃ 2(e) = T̃ (T̃ (f)h)T̃ 2(g).

So

T̃ (T̃ (fg)h)T̃ 2(e)T (e) = T̃ (T̃ (f)h)T̃ 2(g)T (e).

On the other hand,

T̃ (T̃ (f)h)T (e) = T̃ (T̃ (f))T̃ (h)

(because the bilinear map (x, y) → T̃ (T̃ (f)x)T̃ (y) is orthosymmetrical, hence sym-

metrical). Consequently,

T̃ (T̃ (fg)h)T 2(e)T (e) = T̃ (T̃ (f))T̃ 2(g)T̃ (h).

On the other hand

T̃ (h)T 2(e) = T̃ (he)T (T (e)) = T̃ (hT (e))T (e)

(because the bilinear map (x, y) → T̃ (hx)T̃ (y) is orthosymmetrical, hence symmet-

rical). Now, by using Theorem 1 we have

T̃ (hT (e)) = T̃ 2(h)

and

T̃ 2(f) = T̃ (fT (e)),

which implies

T̃ (T̃ (fg)h)T 2(e)T (e)T 2(e) = T̃ (fT (e))T̃ 2(g)T̃ 2(h)T (e).

On the other hand, T̃ 2(g)T̃ 2(h) = T̃ 2(gh)T̃ 2(e) (because the bilinear map (x, y) →

T̃ 2(gx)T̃ 2(y) is orthosymmetrical, hence symmetrical). Then

T̃ (T̃ (fg)h)T 2(e)T (e)T 2(e) = T̃ (fT (e))T̃ 2(gh)T 2(e)T (e)

= T̃ (fT̃ (gh))T 2(e)T 2(e)T (e).
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So

(T̃ (T̃ (fg)h)T 2(e)T (e) − T̃ (fT̃ (gh))T 2(e)T (e))T 2(e) = 0,

and thus

(T̃ (T̃ (fg)h)T 2(e)T (e) − T̃ (fT̃ (gh))T 2(e)T (e)) ∈ {T 2(e)}dd.

So (T̃ (T̃ (fg)h)T 2(e)T (e) − T̃ (fT̃ (gh))T 2(e)T (e)) = 0. Analogously

(T̃ (T̃ (fg)h)T 2(e) − T̃ (fT̃ (gh))T 2(e)) ∈ {T (e)}dd,

hence

(T̃ (T̃ (fg)h)T 2(e) − T̃ (fT̃ (gh))T 2(e) = 0.

And, since T̃ (T̃ (fg)h) − T̃ (fT̃ (gh)) = 0 (because (T̃ (T̃ (fg)h) − T̃ (fT̃ (gh)) ∈

{T 2(e)}dd), we obtain the desired result. �

In [6] Boulabiar and the author proved that if (A, ∗) is a commutative d-algebra,

then there exist (i) a universally complete f -algebra B with unit element, multipli-

cation of which is denoted by juxtaposition; (ii) a lattice homomorphism σ from A

into B such that B is the universal completion of σ(A); (iii) a lattice homomorphism

T from σ(A)p into A; and (iv) a positive element ξ of B, such that

f ∗ g = T (σ(f)σ(g))

and

(f ∗ g) ∗ h = T (ξσ(f)σ(g)σ(h))

hold for all f, g, h ∈ A. As an application, they proved in [6] that there exists a d-

algebra multiplication on the Dedekind completion of an Archimedean commutative

d-algebra. Therefore, it seems natural to ask what would happen if, in addition,

A were an f -algebra with unit element. Now, let A be an Archimedean f -algebra

with unit element e and a commutative d-algebra with respect to a multiplication ∗.

The operator T of A, defined by T (x) = x ∗ e, is a Riesz homomorphism. Now, it

is not hard to see that fg ∗ e = f ∗ g (because the bilinear map (x, y) → zx ∗ y is

orthosymmetrical for all z ∈ A+, hence symmetrical). Consequently,

f ∗ g = T (fg) for all f, g ∈ A.

Now, we are going to address a natural question: can we use the latter simple

representation of ∗ to extend it to a d-algebra multiplication in Aδ.

We now give an affirmative answer to this question.
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Theorem 4. Let A be an Archimedean f -algebra with unit element e and a

commutative d-algebra with respect to a multiplication ∗. Then ∗ extends to a

d-algebra multiplication in Aδ.

P r o o f. Let A be a commutative d-algebra with respect to the multiplication ∗.

As mentioned before, there exists a lattice homomorphism T from A into itself such

that

f ∗ g = T (fg).

In view of [1, Theorem 7.17], T extends to a lattice homomorphism T̃ from Aδ into

itself. Define now a multiplication ∗ in Aδ by putting

f ∗ g = T̃ (fg)

for all f, g ∈ Aδ. We assert that Aδ is a d-algebra with respect to the multiplication

∗. The difficult part of the proof is to establish that ∗ is associative. But it is not

hard to prove this by using associativity in A and the preceding corollary. Indeed,

we have (f ∗ g) ∗ h = f ∗ (g ∗ h) for all f, g, h ∈ A. Therefore

T (T (fg)h) = T (fT (gh)).

Now, by using the preceding corollary we have

T̃ (T̃ (fg)h) = T̃ (fT̃ (gh)).

Therefore

(f ∗ g) ∗ h = f ∗ (g ∗ h)

for all f, g, h ∈ Aδ and the proof of the theorem is now complete. �
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