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Abstract. In this paper we define, by duality methods, a space of ultradistributions
G
′
ω(RN ). This space contains all tempered distributions and is closed under derivatives,
complex translations and Fourier transform. Moreover, it contains some multipole series
and all entire functions of order less than two. The method used to construct G′

ω(RN )
led us to a detailed study, presented at the beginning of the paper, of the duals of infinite
dimensional locally convex spaces that are inductive limits of finite dimensional subspaces.
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1. Introduction

The theory of distributions was first introduced in 1950/51 by the French mathe-

matician Laurent Schwartz in his monograph, republished in 1966 (see [8]), in order

to generalize the notion of a function which allows the existence of derivatives for

functions that in the usual sense are non differentiable. The key point of this theory

is to look at a function as a linear continuous functional over a suitable topological

vector space of test functions. The test function space considered by Schwartz, called

D, is the vector space of all complex C∞ functions defined in R
N and with compact

support. The topology of this space is defined in the following manner: a net (ϕj)

tends to 0 in D iff there exists a compact set K in RN such that all the ϕj have their

supports contained in K and ϕj , as well as each derivative of ϕj , converge uniformly

to 0 in K. The space of distributions is the dual space of D, designated by D′.

In order to define the Fourier transform in the context of this theory, Schwartz

was led to introduce the space S of all complex C∞ functions defined in R
N and

C.Andrade was partially supported by CIPER, L. Loura was partially supported by
FCT/POCTI/FEDER through the Research Unit number 1/89.
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such that each derivative decreases to zero at infinity faster than any polynomial.

The topology of this space is defined by saying that a net (ϕj) tends to 0 in S iff ϕj
and each derivative of ϕj converge uniformly to 0 in R

N . The space S, called the

Schwartz space, contains D with continuous and dense injection. The dual space S′ of

S, called the space of tempered distributions, is continuously and densely embedded

in D′. Schwartz constructed S in such a way that the classical Fourier transform is a

vectorial and topological isomorphism in S. By duality methods, Schwartz extended

the Fourier transform to the space S′ of tempered distributions. This extension of

the classical Fourier transform is a vectorial and topological isomorphism in S′.

A natural way to generalize the Fourier transform of tempered distributions is to

construct a vector subspace X of S, with a finer topology than the one induced by

S, such that X is dense in S and the Fourier transform is a vector and topological

automorphism in X . The dual space X ′ of X contains S′, with continuous injection,

and the classical Fourier transform defined in X is extended by duality to X ′. This

extended Fourier transform is a vectorial and topological automorphism in X ′. We

remark that the construction of this kind of spaces has been done, namely in Andrade

[1], Gordon [3], Loura [4], Loura and Viegas [5], and Silvestre [9].

In this paper, we apply the previous technique, constructing the subspace Gω of

S and its dual G′
ω; this is done in Sections 3 and 4. Since the topology we are

interested in introducing in Gω is the finest locally convex topology, in Section 2

we study this topology in a general framework. We prove that the classical Fourier

transform is a vectorial and topological automorphism in Gω, which is extended to

G′
ω. This extension is a vectorial and topological automorphism in G

′
ω and maintains

all the classical properties of the Fourier transform. Moreover, complex translations

can be defined in the space G′
ω and the classical properties of the Fourier transform

in relation to real translations are also extended to complex translations.

In Section 5, we observe that G′
ω contains all locally integrable functions of expo-

nential growth at infinity and also some locally integrable functions whose growth at

infinity is faster than exponential which are precisely defined in that section.

In Section 6, we study the behavior of multipole series in G′
ω and we obtain a

necessary and sufficient condition for the convergence of such series. Multipole series

are employed to solve some linear differential equations in G′
ω.

2. Finest locally convex topology

Let E 6= {0} be a vector space over the scalar field K (K = R or K = C) and

let fix a base B = {bα}α∈A in E. With each element bα of B we associate its span

Eα = Span {bα}. We introduce in each one-dimensional Eα the only topology such

that Eα is isomorphic with K. In the context of such conditions, in E we define
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the inductive limit topology related to the inductive system {Eα}α∈A by way of the

inclusions Iα : Eα → E, that is, the finest locally convex topology over E such that

all Iα are continuous. When E is of infinite dimension, this is a non trivial topology,

since it differs from the final topology associated with the Iα, which is not compatible

with the vector structure. We designate the inductive limit topology by τind.

Given the base B, we can define a family of seminorms over E. Let f be a non-

negative real function defined on the index set A. If x ∈ E, then we have

x =
∑

α∈A

xαbα,

and we define µf : E → K by

µf (x) =
∑

α∈A

f(α)|xα|.

This is a well defined mapping on E, and furthermore it is a seminorm. The familyM

of all these seminorms is filtering, and we can consider the topology in E generated

by M , which we denote by τM . This topology possesses the following property:

Theorem 1. Let F be a locally convex space and T : (E, τM ) → F a linear

function. Then T is continuous.

P r o o f. Let N be a system of seminorms generating the topology of F . Then,

for all ν in N , we have, for each x ∈ E,

(1) ν(T (x)) = ν

(

T

(

∑

α∈A

xαbα

))

= ν

(

∑

α∈A

xαT (bα)

)

6
∑

α∈A

|xα|ν(T (bα)).

The second equality and the inequality in (1) are justified by the fact that, for each

x in E, the sum in α has a finite number of terms, being indexed in a finite subset

of A (depending on x).

For each seminorm ν of N , knowing the values that T assumes at each element of

the base B of E, we can define a non-negative function in A by

fν(α) = ν(T (bα)),

thus obtaining

ν(T (x)) 6
∑

α∈A

fν(α)|xα| = µfν (x).

�
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Corollary.

(i) τM is the finest locally convex topology on E.

(ii) τM = τind.

(iii) τM is independent of the base used for its construction.

We are, consequently, studying the finest locally convex topology on E which may,

as we will see, be defined in different ways. We assume that E is endowed with this

topology, which will be denoted by τ .

Theorem 2. E is a Hausdorff space.

P r o o f. Let x ∈ E with x 6= 0. Then

x =
∑

α∈A

xαbα,

and there exists β in A such that xβ 6= 0. Define fβ : A→ [0,+∞[ by fβ(α) = 0 for

α 6= β and fβ(β) = 1. We have

µfβ (x) =
∑

α∈A

fβ(α)|xα| = |xβ | > 0.

�

Theorem 3. E is a barrelled, bornological and Montel space.

P r o o f. These properties are invariant under taking inductive limits and are

verified by finite-dimensional topological vector spaces. �

The family {Eα}α∈A is not an inductive spectrum, since we do not have transition

mappings. There is, however, an inductive spectrum for the topology of E. To

construct this inductive spectrum, we consider the class J of all finite subsets of the

index set A, and define, for all J ∈ J ,

EJ = span
⋃

α∈J

{bα},

introducing in each EJ the natural topology associated with this finite-dimensional

space. We also define, supposing J, J ′ ∈ J and J ⊂ J ′, transition applications

uJ′J : EJ → EJ′ as the injections of EJ into EJ′ . The family {EJ}J∈J organizes

itself as an inductive spectrum equivalent to the inductive system {Eα}α∈A. We

can see in this way that τ is the inductive limit topology of all finite-dimensional

subspaces of E.
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Theorem 4. A subset L of E is bounded iff there exists J ∈ J such that L is a

bounded subset in EJ .

P r o o f. If L is a bounded subset of EJ , then by continuity of the inclusion of

EJ in E, L is a bounded subset of E.

To prove the converse statement, we will start by proving the following: if L is

a bounded subset of E, then there is J ∈ J such that L ⊂ EJ . When E is finite

dimensional, this is trivial; we assume that E is infinite dimensional. Suppose L is

not contained in any EJ , that is,

∀ J ∈ J ∃ xJ ∈ L xJ /∈ EJ .

In particular, for all J ∈ J we have xJ 6= 0.

By induction we can build sequences (xn)n∈N in L and (Jn)n∈N in J such that

∀ n ∈ N xn ∈
(

EJn+1 \ E n⋃

k=1

Jk

)

.

Write

xn =
∑

α∈A

xn,αbα.

Since xn belongs to EJn+1 but not to E n⋃

k=1

Jk
, we have:

∀ n ∈ N ∃ αn ∈ A αn ∈ Jn+1 ∧ αn /∈

( n
⋃

k=1

Jk

)

∧ xn,αn 6= 0.

In this way we have constructed a sequnce (αn), with all αn different from each

other, which is essential for choosing a non-negative function g of a variable in A

verifying

∀ n ∈ N g(αn) =
n

|xn,αn |
.

For any f : A→ [0,+∞[ we have

µf (xn) =
∑

α∈A

f(α) |(xn)α| =
∑

α∈A

f(α)|xn,α| > f(αn)|xn,αn |.

Consequently,

µg(xn) > g(αn)|xn,αn | = n,

and thus we conclude that L is not a bounded subset of E.
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We have proved that if L is a bounded subset of E, then there is J ∈ J such that

L ⊂ EJ . We now prove that L is a bounded subset of EJ . If L is a subset of EJ ,

then all its elements can be written in the form

x =
∑

α∈J

xαbα.

The fact that L is bounded in E implies that, for all f : A → [0,+∞[, there is a

positive real number rf such that

∀x ∈ L µf (x) 6 rf .

In particular, for the characteristic function fJ = χJ we have

∀x ∈ L µfJ (x) =
∑

α∈A

fJ(α)|xα| =
∑

α∈J

|xα| 6 rfJ .

Since
∑

α∈J

|xα| is one of the equivalent norms defining the usual topology in EJ , L is

a bounded subset of EJ . �

By definition we have

E = span
⋃

α∈A

Eα.

This shows that E can be seen, algebraically, as the direct sum of the Eα’s, that is,

the set of those elements of the product space

∏

α∈A

Eα

with only a finite number of non-zero coordinates. Moreover, the topology of E,

being the inductive limit topology by the injection mappings Iα, can be identified

with the direct sum topology of the direct sum E (see [7]). The convex space E is

thus the topological direct sum of the Eα’s. This implies the following result.

Theorem 5. The convex space E is complete.

P r o o f. This result follows from the fact that E is the direct sum of the complete

spaces Eα. �
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3. The space Gω

Let v ∈ C
N , v = (v1, . . . , vN ). We will use the notation

v2 =

N
∑

k=1

v2
k.

For each ω ∈ R \ {0} we define Gω(RN ) as the space

span{ϕ ∈ C(RN ) : ϕ(x) = p(x)e−
1
2 (x−z)2|ω|, p ∈ P(RN ), z ∈ C

N},

where P(RN ) is the vector space of all complex polynomials defined in R
N . To sim-

plify notation, we study the case N = 1, bearing in mind that the results are similar

for higher dimensions. We eventually make an exception in the definition of the

tensorial product. When there is no confusion possible, we will use the abbreviation

Gω = Gω(R).

According to this definition, we have G−ω = Gω. We define Bω by

Bω = {ϕ ∈ Gω(R) : ϕ(x) = xne−
1
2 (x−z)2|ω|, n ∈ N0, z ∈ C},

where N0 is the set of non-negative integers. It can be shown that Bω is a base for Gω

(see [2]). We can thus explicitly define a nontrivial family of seminorms on Gω which

will generate the finest locally convex topology on this space. The exhibition of a

base for Gω is, of course, not necessary to define this topology, but the seminorms

are quite useful.

Given ϕ ∈ Gω, we have

ϕ(x) =

n
∑

l=0

k
∑

j=0

al,jx
le−

1
2 (x−zj)

2|ω|,

where n, k ∈ N0 and al,j ∈ C. For each f : N0 × C → [0,+∞[, the function µf :

Gω −→ R given by

µf (ϕ) =
n

∑

l=0

k
∑

j=0

f(l, zj)|al,j |

is clearly a seminorm, and the family M of seminorms associated with Bω is the

collection of such functions.
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Proposition 1. The locally convex space Gω is Hausdorff, barrelled, bornological,

Montel and complete.

P r o o f. This is a consequence of the results in the previous section. �

For J ⊂ N0 × C, let

Gω,J = span{xne−
1
2 (x−z)2|ω| : (n, z) ∈ J}.

Proposition 2. A subset L of Gω is bounded in Gω iff there exists a finite subset

J of N0 × C such that L ⊂ Gω,J and L is bounded in Gω,J .

P r o o f. This results from Theorem 4. �

This characterization gives us an idea of what are convergent sequences in Gω.

The sequence (ϕm)m∈N given by

∀m ∈ N ϕm(x) =
1

m
e−

1
2 (x−m)2|ω|

converges uniformly to zero in R, but does not converge to zero in Gω. The sequence

(ψm)m∈N,

∀m ∈ N ψm(x) = me−
1
2x

2|ω|,

is not bounded and, thus, not convergent in Gω. Finally, the sequence (λm)m∈N

defined by

∀ m ∈ N λm(x) =

n
∑

l=0

k
∑

j=0

l + j

m
xle−

1
2 (x−j)2|ω|

is convergent in Gω for all non-negative integers n and k.

Proposition 3. If F is a locally convex space, then any linear mapping

T : Gω → F

is continuous. In particular, the algebric dual G∗
ω coincides with the topological

dual G′
ω .

P r o o f. This is a direct consequence of Theorem 1. �

The derivative operator is denoted by D (or Dx if it is necessary to specify the

independent variable x); the nth order derivative is denoted by Dn. Sometimes, if

necessary or convenient, instead of Df and D2f we will write, respectively, f ′ and

f ′′; instead of Dnf we will use f (n).
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The space Gω is closed with respect to D. In fact, for all polynomials p and all

complex numbers z we have

D(p(x)e−
1
2 (x−z)2|ω|) = [Dp(x) − (x− z)|ω|p(x)]e−

1
2 (x−z)2|ω|.

Indeed by induction, for all n ∈ N, Gω is closed with respect to D
n. This is a

linear operator, and thus, according to Proposition 3, it is also continuous.

If p ∈ P(R) is given by

∀ x ∈ R p(x) =

N
∑

k=0

akx
k,

we define p(D) : Gω → Gω by

∀ ϕ ∈ Gω p(D)ϕ =

N
∑

k=0

akD
kϕ.

This, indeed, is also a continuous linear operator in Gω.

Let X be the space

span{ψ ∈ C(R) : ∃q ∈ P(R) ∃K ∈ C ∀x ∈ R ψ(x) = q(x)eKx|ω|}.

Then X is a set of multipliers for Gω , that is, XGω ⊂ Gω .

This result allows us to define, for each ψ ∈ X , the linear and continuous operator

Pψ : Gω −→ Gω

ϕ 7−→ ψϕ.

Since Gω is closed with respect to complex translation, we may thus define

τα : Gω −→ Gω

ϕ(x) 7−→ ϕ(x − α).

We remark that complex translation of a complex-valued real function is well defined

provided this function can be extended to the complex plane as an entire function,

which is of course the case with polynomials and e−
1
2x

2|ω|.

The space Gω is clearly a vector subspace of S and, by Proposition 3, the injection

of Gω in S is continuous. Schwartz proved [8] that the Hermite functions are dense

in S; since the Hermite functions are in Gω, this space is also dense in S:

Gω →֒
d
S.
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For real ω 6= 0 consider in Gω the classical Fourier transform Fω defined by

(2) Fωϕ(ξ) =

∫ +∞

−∞

e−iωxξϕ(x) dx.

Proposition 4. Let ω ∈ R \ {0}, P ∈ P(R), and ϕ ∈ Gω. Then

P (D)(Fωϕ) = Fω[P (−iωx)ϕ];(3)

Fω(P (D)ϕ) = P (iωξ)Fωϕ.(4)

P r o o f. These results are known to be valid in S, hence also in its subset Gω. �

In S complex translation is not possible. The following property, valid in S only

for real translation, is extended in Gω to complex translations:

Proposition 5. Let ω ∈ R \ {0} and ϕ ∈ Gω . Then for all α ∈ C and ξ ∈ R we

have

(5) (Fωταϕ)(ξ) = e−iωαξ(Fωϕ)(ξ).

P r o o f. We prove (5) under four different conditions. We write α = α1 + α2i,

with α1 and α2 real.

(I) The equality (5) is valid for ϕ0 = e−
1
2x

2|ω|.

By definition, we have

(6) (Fωταϕ0)(ξ) =

∫

R

e−iωxξe−
1
2 (x−α)2|ω| dx = lim

n→∞

∫ n

−n

e−iωxξe−
1
2 (x−α)2|ω| dx.

By the Cauchy Theorem and noting that the integrand function can be extended

as an entire function to C, we have

∫ n

−n

e−iωzξe−
1
2 (z−α)2|ω| dz =

∫

Γn

e−iωzξe−
(z−α)2

2 |ω| dz

where, for each n ∈ N, Γn is the rectangle with vertices ±n and ±n + α2i, without

the line segment [−n, n], with clockwise orientation. This curve is composed of two

vertical segments, on which the integral tends to zero as n approaches infinity and

one horizontal segment, Cn, where we have

lim
n→∞

∫

Cn

e−iωzξϕ0(z − α) dz = e−iωαξ lim
n→∞

∫ n−α1

−n−α1

e−iωsξϕ0(s) ds

= e−iωαξ(Fωϕ0)(ξ).
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Thus, we have

lim
n→∞

∫ n

−n

e−iωxξe−
1
2 (x−α)2|ω| dx = e−iωαξ(Fωϕ0)(ξ).

(II) The equality (5) is valid for functions of the form ϕ(x) = e−
1
2 (x−β)2|ω|, where

β ∈ C.

We use (I) to prove this result:

(Fωταe−
1
2 (x−β)2|ω|)(ξ) = (Fωτα+βϕ0)(ξ)

= e−iω(α+β)ξ(Fωϕ0)(ξ)

= e−iωαξe−iωβξ(Fωϕ0)(ξ)

= e−iωαξ(Fωτβϕ0)(ξ)

= e−iωαξ(Fωe−
1
2 (x−β)2|ω|)(ξ).

(III) The equality (5) is valid for functions of the form ϕ(x) = xne−
1
2 (x−β)2|ω|,

with β ∈ C and n ∈ N0.

We start by noting that, if (5) is valid for ϕ ∈ Gω, then it is also valid for xϕ.

Using (3) we have

(Fωταxϕ)(ξ) = (Fω(x− α)ταϕ)(ξ)

= (Fωxταϕ)(ξ) − α(Fωταϕ)(ξ)

=
i

ω
Dξ(Fωταϕ)(ξ) − α(Fωταϕ)(ξ).

Since (5) is valid for ϕ, we have

i

ω
Dξ(Fωταϕ)(ξ) − α(Fωταϕ)(ξ)

=
i

ω
Dξ[e

−iωαξ(Fωϕ)(ξ)] − αe−iωαξ(Fωϕ)(ξ)

=
i

ω

[

(−iωα)e−iωαξ(Fωϕ)(ξ) + e−iωαξDξ(Fωϕ)(ξ)
]

− αe−iωαξ(Fωϕ)(ξ)

= αe−iωαξ(Fωϕ)(ξ) +
i

ω
e−iωαξDξ(Fωϕ)(ξ) − αe−iωαξ(Fωϕ)(ξ)

= e−iωαξ i

ω
Dξ(Fωϕ)(ξ) = e−iωαξ(Fω(xϕ)(ξ).

From (II) it follows that (5) is verified for all β ∈ C by functions

ϕ(x) = xe−
1
2 (x−β)2|ω|.
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By induction on n, we get (5) for the functions

ϕ(x) = xne−
1
2 (x−β)2|ω|

for all natural n and complex β.

(IV) The equality (5) is valid for all ϕ ∈ Gω.

We just have to see that if ϕ ∈ Gω, then there exist N ∈ N0, c0, . . . , cN ∈ C and

β0, . . . , βN ∈ C such that for all x ∈ R we have

ϕ(x) =

N
∑

k=0

ckx
ke−

1
2 (x−βk)

2|ω|.

Then, by (III) and by linearity of Fω and τα, Proposition 5 is proved. �

Proposition 6. Fω(Gω) ⊂ Gω .

P r o o f. It is well known that the Fourier transform of ψ(x) = e−
1
2x

2|ω| is

√

2π

|ω|
e−

1
2 ξ

2|ω|.

By Proposition 2, we can compute the Fourier transform of the function ϕ defined

by ϕ(x) = e−
1
2 (x−α)2|ω|:

(Fωϕ)(ξ) = (Fωταψ)(ξ) = e−iωαξ

√

2π

|ω|
e−

1
2 ξ

2|ω| =

√

2π

|ω|
e−

1
2 ξ

2|ω|−iωαξ.

If sgn denotes the signum function, defined by sgn(x) = 1 for x > 0 and sgn(x) =

−1 for x < 0, we have

(Fωϕ)(ξ) =

√

2π

|ω|
e−

1
2 ξ

2|ω|−iωαξ =

√

2π

|ω|
e−

1
2 |ω|α

2

e−
1
2 [ξ+iαsgn(ω)]2|ω|.

Finally, given any ϕ in Gω, we know that

ϕ(x) =
N

∑

k=0

ckx
ke−

1
2 (x−αk)

2|ω|
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and thus

Fω

( N
∑

k=0

ckx
ke−

1
2 (x−αk)

2|ω|

)

(ξ)

=

N
∑

k=0

ck
i

ω
Dk
ξ

(

√

2π

|ω|
e−

1
2 |ω|α

2
ke−

1
2 [ξ+iαksgn(ω)]2|ω|

)

=

N
∑

k=0

pk(ξ)e
− 1

2 [ξ+iαksgn(ω)]2|ω|,

where p0, . . . , pN are complex polynomials. �

Proposition 7. For all ϕ ∈ Gω,

ϕ =
|ω|

2π

F−ωFωϕ =
|ω|

2π

FωF−ωϕ.

P r o o f. This result is valid in S, hence also in Gω. �

Theorem 6. The Fourier operator Fω : Gω → Gω is a topological and vectorial

isomorphism.

P r o o f. By Propositions 6 and 7 we clearly see that Fω : Gω → Gω is a bijec-

tion. Besides, both Fω and F−1
ω = |ω|(2π)−1F−ω, being linear mappings in Gω , are

continuous (Proposition 3). �

Proposition 8. Let ω ∈ R \ {0} and ϕ ∈ Gω . Then we have, for all complex α,

Fω(e−iωαxϕ) = τ−αFωϕ.

P r o o f. Let ϕ ∈ Gω . By Theorem 6, we know that ϕ = F−ωψ for a certain

ψ ∈ Gω. Then

Fω(e−iωαxϕ) = Fω(e−iωαxF−ωψ).

From Proposition 2 we have, substituting −α for α and −ω for ω,

F−ωτ−αψ = e−iωαx(F−ωψ).

Using Proposition 3, we obtain

Fω(e−iωαxϕ) = Fω(F−ωτ−αψ) =
2π

|ω|
τ−αψ.
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But, by Proposition 3 again, we have

ϕ = F−ωψ ⇔ ψ =
|ω|

2π

Fωϕ.

Consequently

Fω(e−iωαxϕ) = τ−αFωϕ.

This completes the proof. �

4. The space G′
ω

We define the space G′
ω of Generalized Hermitean Ultradistributions as the strong

dual of the space Gω ; we denote by 〈T, ϕ〉G′
ω,Gω (or by 〈T, ϕ〉) the duality product

between T ∈ G′
ω and ϕ ∈ Gω .

Theorem 7. The space G′
ω is a locally convex complete Hausdorff topological

space and a Montel space too. Moreover, Gω is dense in G′
ω .

P r o o f. The only nontrivial statement is the density result. Let T ∈ G′′
ω be such

that T = 0 in Gω. Since Gω is reflexive, because it is a Montel space, we have T = ψ

for some ψ in Gω. If T = 0 in Gω, then

∀ ϕ ∈ Gω 〈T, ϕ〉 =

∫

R

ψ(x)ϕ(x) dx = 0.

In particular, by taking ϕ = ψ, we get

∫

R

|ψ(x)|2 dx = 0,

whence ψ = 0. Thus, we have T = 0, which implies the density of Gω in G′
ω . �

We can, therefore, write the following inclusions:

Gω →֒
d
S →֒

d
S′ →֒

d
G′
ω.

For each n ∈ N, we define the derivative Dn : G′
ω → G′

ω by

(7) ∀ ϕ ∈ Gω 〈DnT, ϕ〉 = (−1)n〈T,Dnϕ〉.

This is a linear continuous operator generalizing the derivative operator in S′.
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The multiplier set X , defined in Section 3, yields a corresponding set of product

operators in G′
ω in the following way: for each ψ ∈ X we define the operator Pψ :

G′
ω → G′

ω by

∀ ϕ ∈ Gω 〈PψT, ϕ〉 = 〈T, Pψϕ〉 = 〈T, ψϕ〉,

which is a linear continuous operator in G′
ω generalizing the corresponding operator

in Gω.

For each α ∈ C we define the translation operator τα : G′
ω → G′

ω by transposition

of the corresponding operator in Gω:

∀ ϕ ∈ Gω 〈ταT, ϕ〉 = 〈T, τ−αϕ〉,

which is also a linear continuous operator in G′
ω generalizing the corresponding op-

erator in Gω. For real α it generalizes the translation operator in S′.

In what follows, it will be useful to note that the aforementioned multiplier set

admits a generalization to RN denoted by X (RN ) and equal to the span of the set

{ψ ∈ C(RN ) : ∃q ∈ P(RN ) ∃K ∈ C
N ∀x ∈ R

N ψ(x) = q(x)eK·x|ω|}.

Note also that, if ψ1 ∈ X (RN ) and ψ2 ∈ X (RM ), then the classical tensor product

ψ1 ⊗ ψ2 belongs to X (RN+M ).

We now define the tensor product of an element of G′
ω(RN ) by an element of

G′
ω(RM ). If ϕ ∈ Gω(RN+M ), then there is L ∈ N such that for each j ∈ {1, . . . , L}

there are cj ∈ C \ {0}, αj ∈ C
N , βj ∈ C

M , pj ∈ N
N
0 and qj ∈ N

M
0 , satisfying

∀ x ∈ R
N ∀ y ∈ R

M ϕ(x, y) =

L
∑

j=1

cjuj(x)vj(y),

with

uj(x) = xpj e−
1
2 (x−αj)

2|ω|

and

vj(y) = yqj e−
1
2 (y−βj)

2|ω|.

As the constants cj and the functions uj and vj are uniquely determined by ϕ, we

can define the tensor product of T ∈ G′
ω(RN ) and S ∈ G′

ω(RM ) as the element T ⊗S

of G′
ω(RN+M ) given by

〈T ⊗ S, ϕ〉N+M =

L
∑

j=1

cj〈T, uj〉N 〈S, vj〉M .

The mapping (T, S) → T ⊗ S is bilinear, separately continuous from G′
ω(RN ) ×

G′
ω(RM ) to G′

ω(RN+M ), and has the following properties:
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Proposition 9. Let T ∈ G′
ω(RN ) and S ∈ G′

ω(RM ). Then for all n ∈ N
N
0 ,

m ∈ N
M
0 , ψ1 ∈ X (RN ), ψ2 ∈ X (RM ) and ϕ ∈ Gω(RN ) we have

∂nx∂
m
y (T ⊗ S) = (∂nxT ) ⊗ (∂my S); (ψ1 ⊗ ψ2)(T ⊗ S) = (ψ1T ) ⊗ (ψ2S);

〈T ⊗ S, ϕ(x, y)〉N+M = 〈Tx, 〈Sy, ϕ(x, y)〉M 〉N = 〈Sy, 〈Tx, ϕ(x, y)〉N 〉M .

We define the Fourier transform Fω : G′
ω → G′

ω by

∀ T ∈ G′
ω ∀ϕ ∈ Gω 〈FωT, ϕ〉 = 〈T,Fωϕ〉,

where the operator is a vectorial and topological isomorphism in G′
ω and generalizes

the usual Fourier transform in S′. For all T ∈ G′
ω, P,Q ∈ P(R) and all α ∈ C we

have

Fω[P (D)Q(x)T ] = P (iωx)Q
( i

ω
D

)

FωT ;

Fω(ταT ) = e−iωαξFωT ;

Fω(eiωαxT ) = ταFωT.

5. Characterization of some elements of G′
ω

Let V 2− be the vector space

{f ∈ L1
loc(R) : ∃̺ ∈ ]0, 2[ ∃C > 0 ∃σ ∈ R |f(x)| 6 Ceσ|x|

̺

}.

Lemma 1. Let f ∈ V 2−. Then for all n ∈ N0 and z ∈ C, the integral

∫

R

f(x)xne−
1
2 (x−z)2|ω| dx

is absolutely convergent.

P r o o f. If z = a+ ib with a, b ∈ R, we have

∣

∣e−
1
2 (x−z)2|ω|

∣

∣ = e−
1
2 ((x−a)2−b2)|ω|.

Since f is an element of V 2−, there are ̺ ∈ ]0, 2[, C > 0 and σ ∈ R such that

|f(x)xne−
1
2 (x−z)2|ω|| 6 C|x|neσ|x|

̺

e−
1
2 ((x−a)2−b2)|ω|.

Since the integral
∫

R

|x|neσ|x|
̺− 1

2 ((x−a)2−b2)|ω| dx

is absolutely convergent, the lemma is completely proved. �
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This result implies that for each f ∈ V 2− and ϕ ∈ Gω , the integral
∫

R

f(x)ϕ(x) dx

is absolutely convergent. We can, thus, define the following functional in Gω:

Tf : Gω −→ C

ϕ 7−→ 〈Tf , ϕ〉

such that

∀ϕ ∈ Gω 〈Tf , ϕ〉 =

∫

R

f(x)ϕ(x) dx,

which, being linear in Gω, is continuous in this space, defining therefore an element

of G′
ω.

Lemma 2. Let f ∈ L1
loc(R) and suppose that for each ξ ∈ C, the integral

∫

R

f(x)e−
1
2 (x−ξ)2 dx

vanishes. Then f is zero almost everywhere, that is, f is the zero vector of L1
loc(R).

P r o o f. If the above integral is zero for all ξ ∈ C, then in particular, for each

b ∈ R,
∫

R

f(x)e−
1
2 (x+ib)2 dx = 0.

We thus have
∫

R

f(x)e−
1
2 (x+ib)2 dx = e

1
2 b

2

∫

R

f(x)e−
1
2x

2

e−ibx dx = 0.

Defining F (x) = f(x)e−
1
2x

2

, we obtain a function of L1(R) such that
∫

R

F (x)e−ibx dx = 0,

which means that the image of F by the Fourier transform is zero:

∀ b ∈ R F1F (b) = 0.

The injectivity of F1 shows that F = 0, whence f = 0. �

Consider now the mapping

T : V 2− −→ G′
ω

f 7−→ Tf .

By Lemma 2, we conclude that this mapping is injective. Consequently, we have the

following result:
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Theorem 8. Each element of V 2− can be identified in a unique way with an

element of G′
ω , that is, V

2− ⊂ G′
ω.

In this way we see that each locally integrable function verifying the condition

|f(x)| 6 Ceσ|x|
̺

with C > 0, σ ∈ R and 0 < ̺ < 2, defines an element of G′
ω . There

is a similar result for the limit case ̺ = 2:

Theorem 9. Let V 2,σ be the vector space

V 2,σ = {f ∈ L1
loc(R) : ∃C > 0 |f(x)| 6 Ceσ|x|

2

}.

Then σ < 1
2 |ω| implies V

2,σ ⊂ G′
ω .

We now recall the definition of the order and type of an entire function, and some

related properties. An entire function f has finite order if

(8) ∃µ > 0 ∃Rµ > 0 ∀r > Rµ M(r) < er
µ

,

where M(r) = max
|z|=r

|f(z)|. If f has finite order, we define the order of f by

̺ = inf{µ > 0: ∀r > Rµ M(r) < er
µ

}.

If f has finite order ̺ and there are positive numbers k and Rk such that

(9) ∀r > Rk M(r) < ekr
̺

,

then f is said to be of finite type. In this case we define the type of f as

σ = inf{k > 0: ∀r > Rk M(r) < ekr
̺

}.

It can be shown (see [6]) that

̺ = lim
r→+∞

log logM(r)

log r
,(10)

σ = lim
r→+∞

logM(r)

r̺
.(11)

The following lemma is also proved in [6]:

242



Lemma 3. Let f(z) =
+∞
∑

n=0
anz

n be an entire function with order ̺ and type σ.

Then

(i) ̺ = lim log n/log |an|
−1/n;

(ii) σ = (e̺)−1 limn|an|
̺/n;

(iii) if ̺ < +∞, then

∀ε > 0 ∃Cε > 0 ∀z ∈ C |f(z)| 6 Cεe
|z|̺+ε ;

(iv) if ̺ < +∞ and σ < +∞, then

∀ε > 0 ∃Cε > 0 ∀z ∈ C |f(z)| 6 Cεe
(σ+ε)|z|̺ .

The next theorem is crucial for the study of the convergence of multipole series

in G′
ω.

Theorem 10. Let f : R → C and suppose that f can be extended to C as an

entire function. Let (pn)n∈N0 be the McLaurin polynomials of f .

(i) If the entire function extending f has finite order ̺ < 2, then

∀ ω ∈ R \ {0} f ∈ G′
ω and pn → f in G′

ω.

(ii) If the entire function extending f has order ̺ = 2 and finite type σ, then

∀ ω ∈ R \ {0} σ < 1
2 |ω| ⇒ f ∈ G′

ω and pn → f in G′
ω.

P r o o f. If f has finite order ̺ < 2 then, by Lemma 3 (iii), for each ε > 0 there

exists Cε > 0 such that

∀z ∈ C |f(z)| 6 Cεe
|z|̺+ε .

By choosing ε such that ̺+ ε < 2, we have f ∈ V 2−. Hence by Theorem 8, f ∈ G′
ω.

Similarly, if f verifies ̺ = 2 and has finite type σ then, by Lemma 3 (iv), for each

ε > 0 there exists Cε > 0 such that

∀ x ∈ R |f(x)| 6 Cεe
(σ+ε)|x|2 ,

and f is an element of V 2,σ+ε. If σ < 1
2 |ω|, we can choose ε in such a way that

σ + ε < 1
2 |ω|, and thus by Theorem 9, f ∈ G′

ω .
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We will now study the convergence of the McLaurin polynomials of f in G′
ω which,

being a Montel space, implies that the convergence mentioned is identical to the

weak convergence, which offers a way of proving

(12) ∀ϕ ∈ Gω

∫

R

[f(x) − pn(x)]ϕ(x) dx→ 0.

Since f is entire, we clearly have

∀x ∈ R ∀ϕ ∈ Gω [f(x) − pn(x)]ϕ(x) → 0.

Besides, if f has finite order, then by Lemma 3 (i) we see that, for each n ∈ N, the

order of f − pn equals the order of f , since

∀z ∈ C (f − pn)(z) =

+∞
∑

j=0

ajz
j −

n
∑

j=0

ajz
j =

+∞
∑

j=n+1

ajz
j,

and the upper limit of a subsequence of the given sequence, obtained by the supression

of a finite number of terms, remains unchanged. In the same way, we see that if f is

of finite type, then the type of f − pn equals the type of f .

Let R > 0 and n ∈ N. If CR denotes the circumference of radius R and center at

the origin, then we can apply the Cauchy integral formula for the derivatives of f :

(13) |an| =

∣

∣

∣

∣

1

2πi

∫

CR

f(λ)

λn+1
dλ

∣

∣

∣

∣

6
1

2π

∫ 2π

0

|f(Reiθ)|

Rn
dθ.

Considering Lemma 3 (i) we have, for ν such that ̺ < ν < 2,

∃Cν = C ∀z ∈ C |f(z)| 6 Ce|z|
ν

,

whence

∀n ∈ N0 ∀R > 0 |an| 6 C
eR

ν

Rn
,

and with R = 2|z|,

|f(z) − pn(z)| 6

+∞
∑

k=0

|ak||z|
k 6

+∞
∑

k=0

C
e(2|z|)ν

2k
= 2Ce(2|z|)ν

and so, for all x in R, all n in N0 and all q in P(R), we have

|(f − pn)(x)||q(x)|e
− 1

2x
2|ω| 6 2C|q(x)|e−x

2( 1
2 |ω|−2ν |x|ν−2)
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and by the dominated convergence we conclude, for all functions ϕ ∈ Gω ,

∣

∣

∣

∣

∫

R

[f(x) − pn(x)]ϕ(x) dx

∣

∣

∣

∣

6

∫

R

|f(x) − pn(x)||ϕ(x)| dx→ 0.

Now consider Lemma 3 (ii): f is of order 2 and finite type σ. If σ < 1
2 |ω|, then

we can choose ε such that 0 < ε < 1
2 |ω| − σ. We know that

∃C > 0 ∀z ∈ C |f(z)| 6 Ce(σ+ε)|z|2 ,

and applying (13) we get

∀n ∈ N0 ∀R > 0 |an| 6 C
e(σ+ε)R2

Rn
.

With R = |z| + 1
2 we infer

∀n ∈ N0 ∀z ∈ C |f(z) − pn(z)| 6

+∞
∑

k=0

|ak||z|
k

6

+∞
∑

k=0

C
e(σ+ε)(|z|+ 1

2 )2

(|z| + 1
2 )k

|z|k 6 C1e
(σ+ε)|z|2e(σ+ε)|z|

+∞
∑

k=0

(

2|z|

2|z|+ 1

)k

= C1(2|z|+ 1)e(σ+ε)|z|2e(σ+ε)|z|

and finally, if x ∈ R, n ∈ N0 and q ∈ P(R),

|(f − pn)(x)||q(x)|e
− 1

2x
2|ω| 6 C1(2|x| + 1)|q(x)|e−x

2( |ω|
2 −(σ+ε)−σ+ε

|x| ).

By repeating the use of the Lebesgue dominated convergence theorem, we prove

(12). �

In order to derive the essential convergence conditions, in what follows we present

some relevant results.

For each k ∈ N, let Hk
e be the space of entire functions which satisfy

(14) ∃C > 0 ∃α > 0 ∀z ∈ C |f(z)| 6 Ceα|z|
k

.
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Lemma 4. A function f is an element of Hk
e if and only if it has order smaller

than k, or has an order equal to k and finite type.

P r o o f. If f ∈ Hk
e , then

M(r) = max
|z|=r

|f(z)| 6 Ceαr
k

,

which implies that f has finite order ̺, and further, ̺ 6 k. Besides,

logM(r)

r̺
6

logC + αrk

r̺
=

logC

r̺
+

α

r̺−k
,

and, in the particular case ̺ = k, we have, by (11),

σ = lim
r→+∞

logM(r)

rk
6 lim
r→+∞

( logC

rk
+ α

)

= α.

The converse is a direct consequence of Lemma 3. �

We now study the cases when k = 1 and k = 2. The space H1
e is the space of

entire functions of exponential growth. The following lemma is proved in [6].

Lemma 5. Let f ∈ H1
e with

(15) ∀z ∈ C f(z) =

+∞
∑

j=0

ajz
j .

Then the sequence
(

j
√

j!|aj |
)

j∈N
is bounded.

Conversely, if (aj)j∈N is a sequence of complex numbers such that
(

j
√

j!|aj |
)

j∈N
is

a bounded sequence, then the series in (15) is absolutely convergent for all z ∈ C

and the function defined by (15) is in H1
e .

This result can be extended to Hk
e :

Lemma 6. Suppose that f ∈ Hk
e verifies (15). Then for each p ∈ {0, . . . , k − 1},

the sequence
(

n
√

n!|akn+p|
)

n∈N
is bounded. Conversely, if (aj)j∈N is a sequence of

complex numbers such that for all p ∈ {0, . . . , k− 1}, the sequence
(

n
√

n!|akn+p|
)

n∈N

is bounded, then the series in (15) is absolutely convergent for all z ∈ C and the

function defined by (15) is in Hk
e .
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Theorem 11. Let f(z) =
+∞
∑

k=0

akz
k be an entire function and let (pn)n∈N be the

sequence of McLaurin polynomials of f .

(i) If the sequence
(

n
√

n!|an|
)

n∈N
is bounded, then

∀ω ∈ R \ {0} f ∈ G′
ω and pn → f in G′

ω.

(ii) If the sequences
(

n
√

n!|a2n|
)

n∈N
and

(

n
√

n!|a2n+1|
)

n∈N
are bounded, then

∀ω ∈ R \ {0} |ω| > K ⇒ f ∈ G′
ω and pn → f in G′

ω ,

where K = 2 max
{

sup
n∈N

n
√

n!|a2n|, sup
n∈N

n
√

n!|a2n+1|
}

.

P r o o f. (i) If the sequence
(

n
√

n!|an|
)

n∈N
is bounded, then by Lemma 5, f ∈ H1

e

whence, by Lemma 4, f has order less than or equal to 1, and by Theorem 10, (i) is

proved.

(ii) If the sequences

(

n
√

n!|a2n|
)

n∈N
and

(

n
√

n!|a2n+1|
)

n∈N

are bounded, then by Lemma 6, f ∈ H2
e and, by Lemma 4, we obtain ̺ < 2, or ̺ = 2

and σ < +∞. If ̺ < 2, we obtain the result for all ω 6= 0.

Now suppose ̺ = 2 and σ < +∞. Denoting

L = sup
n∈N

n
√

n!|a2n|, M = sup
n∈N

n
√

n!|a2n+1| and α = max{L,M},

we have

∀ε > 0 ∃Rε > 0 ∀z ∈ C |f(z)| 6 Rεe
(α+ε)|z|2 ,

which implies σ 6 α. Then

|ω| > 2α⇒ |ω| > 2σ,

from which we conclude, by Theorem 10, that pn → f in G′
ω. The theorem is thus

completely proved. �

6. Multipole series

A multipole series is a series of the form
+∞
∑

k=0

akδ
(k), where ak are complex num-

bers. This series is not convergent in S′ or D′ unless all but a finite number of the

coefficients ak are null. In our space G
′
ω , we have much more convergent multipole

series.
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Theorem 12. The series
+∞
∑

k=0

akδ
(k) converges in G′

ω if and only if for each p ∈ N

and for each α ∈ C, the series

(16)

+∞
∑

k=0

(−1)kak+p(k + p)!
∑

2l+j=k

(−1)lαj |ω|l+j

2ll!j!

is convergent in C.

P r o o f. Given ϕ ∈ Gω , we have, formally,

〈 +∞
∑

k=0

akδ
(k), ϕ

〉

=
+∞
∑

k=0

(−1)kakϕ
(k)(0).

We just have to compute ϕ(k)(0) for a function ϕ defined by

∀x ∈ R ϕ(x) = xpe−
1
2 (x−α)2|ω|.

For each x ∈ R we have

xpe−
1
2 (x−α)2|ω| = xpe−

1
2x

2|ω|eαx|ω|e−
1
2α

2|ω|(17)

= e−
1
2α

2|ω|xp
+∞
∑

n=0

(−1)n|ω|n

2nn!
x2n

+∞
∑

m=0

αm|ω|m

m!
xm.

Since both series in (17) are absolutely convergent in C, we can compute their prod-

uct, knowing that it will define also an absolutely convergent series. Then

xpe−
1
2 (x−α)2|ω| = e−

1
2α

2|ω|xp
+∞
∑

k=0

∑

2l+j=k

(−1)lαj |ω|l+j

2ll!j!
xk

=

+∞
∑

k=0

e−
1
2α

2|ω|
∑

2l+j=k

(−1)lαj |ω|l+j

2ll!j!
xk+p,

and so we obtain an expression for ϕ(k)(0):

ϕ(s)(0) =

{

0 if s < p,

s!cs−p if s > p

where

cs−p = e−
1
2α

2|ω|
∑

2l+j=s−p

(−1)lαj |ω|l+j

2ll!j!
.
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The convergence of the given multipole series in G′
ω is thus equivalent to the conver-

gence, for all p ∈ N and for all α ∈ C, of the series

+∞
∑

s=0

(−1)sasϕ
(s)(0) =

+∞
∑

s=p

(−1)sass!cs−p =

+∞
∑

k=0

(−1)k+pak+p(k + p)!ck

= (−1)pe−
1
2α

2|ω|
+∞
∑

k=0

(−1)kak+p(k + p)!
∑

2l+j=k

(−1)lαj |ω|l+j

2ll!j!
.

This completely proves the theorem. �

Although the Theorem 12 does give us a necessary and sufficient condition for a

multipole series to belong to G′
ω , yet (16) is far too complex to be useful. Therefore,

we will obtain simpler sufficient conditions.

Theorem 13. Let

+∞
∑

k=0

akδ
(k) be a multipole series such that the function

∀z ∈ C f(z) =

∞
∑

n=0

anz
n

is entire of order ̺ and type σ.

(i) If ̺ < 2, then for all ω ∈ R \ {0} the multipole series is convergent in G′
ω.

(ii) If ̺ = 2 and σ is a real number, then for all ω ∈ ]−(2σ)−1, 0[ ∪ ]0, (2σ)−1[ the

multipole series is convergent in G′
ω.

P r o o f. We define a function g : C → C as follows:

∀z ∈ C g(z) =
|ω|

2π

+∞
∑

k=0

(ω

i

)k

akz
k =

|ω|

2π

f
(ω

i
z
)

.

This is an entire function with order ̺g = ̺ and type σg = |ω|̺σ. We now apply

Theorem 10 to this function.

(i) If ̺ < 2, then for all ω ∈ R \ {0} we have g ∈ G′
ω and the McLaurin series of

g converges to g in G′
ω . This implies that we can compute the Fourier transform of

the restriction of g to R:

Fωg = Fω

[

|ω|

2π

+∞
∑

k=0

(ω

i

)k

akx
k

]

.
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Since the McLaurin series of g converges in G′
ω and Fω is linear continuous, we have

Fωg =
|ω|

2π

+∞
∑

k=0

(ω

i

)k

akFω(xk),

and from the properties of the Fourier transform we get

Fωg =
|ω|

2π

+∞
∑

k=0

(ω

i

)k

ak
2π

|ω|

( i

ω

)k

δ(k) =

+∞
∑

k=0

akδ
(k),

which implies the convergence of the multipole series in G′
ω .

(ii) If ̺ = 2, then for |ω| > 2σg we have the same result as in (i). However,

|ω| > 2σg ⇔ |ω| > 2|ω|2σ ⇔ 1 > 2|ω|σ ⇔ |ω| <
1

2σ
.

�

Corollary 1. If the sequence
(

k
√

k!|ak|
)

k∈N
is bounded, then for all ω in R \ {0}

the multipole series

+∞
∑

k=0

akδ
(k) is convergent in G′

ω.

Corollary 2. Suppose the series

+∞
∑

k=0

akδ
(k) is such that the sequences

(

n
√

n!|a2n|
)

n∈N
and

(

n
√

n!|a2n+1|
)

n∈N
are bounded. Let α > 0 be given by

α = max
{

sup
n∈N

n
√

n!|a2n|, sup
n∈N

n
√

n!|a2n+1|
}

.

Then for 0 6= |ω| < (2α)−1 this series is convergent in G′
ω.

7. Some examples

The function defined by f(z) = ekz
2

has order 2 and type k. Therefore, by

Theorem 13, we conclude that for ω in ]−(2k)−1, 0[∪ ]0, (2k)−1[ the multipole series

+∞
∑

n=0

kn

n!
δ(2n)

is convergent in G′
ω.
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Let ̺ > 0 and σ > 0. The function

f(z) =

+∞
∑

n=1

(e̺σ

n

)n/̺

zn

constitutes an example of an entire function with order ̺ and type σ. By Theorem 13,

we have, for all ω ∈ R \ {0} and for each ̺ ∈ ]0, 2[ the convergence of the multipole

series
+∞
∑

n=1

(e̺σ

n

)n/̺

δ(n)

in G′
ω. We also conclude that for ω ∈ ]−(2σ)−1, 0[ ∪ ]0, (2σ)−1[ the multipole series

+∞
∑

n=1

(2eσ

n

)n/2

δ(n)

converges in G′
ω.

Let α ∈ C. The function

eiωαz =

+∞
∑

n=0

(iωα)n

n!
zn

is an entire function of order 1. Thus, by Theorem 10, it defines an element of G′
ω.

Since its McLaurin series is convergent in this space, we can compute

Fω(eiωαx) =

+∞
∑

n=0

(iωα)n

n!
Fω(xn)

=

+∞
∑

n=0

(iωα)n

n!

( i

ω

)n 2π

|ω|
δ(n)

=
2π

|ω|

+∞
∑

n=0

(−α)n

n!
δ(n).

On the other hand,

Fω(eiωαx) = ταFω1 = τα
2π

|ω|
δ =

2π

|ω|
δα,

whereby we obtain, in this new context, the well known equality

(18) δα =

+∞
∑

n=0

(−α)n

n!
δ(n).
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Let α ∈ C and consider the space Gα,ω defined by

Gα,ω = span{ϕ ∈ C(R) : ϕ(x) = p(x)e−
1
2 (x−α)2|ω|, p ∈ P(R)}.

In [5] the case α = 0 was studied in detail, and it was shown that a necessary and

sufficient condition for a multipole series

(19)

+∞
∑

k=0

akδ
(k)

to be convergent in G′
0,ω corresponds to (16) with α = 0. Suppose then that the mul-

tipole series above verifies (16) only for α = 0. We note that the series is convergent

in G′
0,ω if and only if the series

+∞
∑

k=0

akδ
(k)
α

is convergent in G′
α,ω. The series in (19) is not convergent in G′

ω, but there is an

element T of this space such that

T|Gα,ω =
+∞
∑

k=0

akδ
(k)
α .

This happens because the space Gω can be written as the topological direct sum of

the Gα,ω’s

Gω =
⊕

α∈C

Gα,ω .

Thus, given ψ ∈ Gω, we have

ψ =
∑

α∈Aψ

ψα,

where Aψ ⊂ C and {ψα}α∈A are uniquely determined by ψ, while Aψ is a finite set

depending on ψ. We define the mapping T in the following manner:

T : Gω −→ R

ψ 7−→ Tψ

with

∀ψ ∈ Gω Tψ =
∑

α∈Aψ

+∞
∑

n=0

(−1)nanψ
(n)
α (α).
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This is a linear map, therefore it is continuous, that is, T ∈ G′
ω , and

∀ψ ∈ Gα,ω T|Gα,ωψ =

+∞
∑

n=0

(−1)nanψ
(n)(α),

which means

T|Gα,ω =

+∞
∑

k=0

akδ
(k)
α ,

which suggests a different, and possibly new, notion of convergence.

A c k n ow l e d g em e n t. Authors are thankful to the referees for linguistic cor-

rections and valuable comments.
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