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Abstract. The aim of the paper is to introduce and study a new class of spaces called
mildly (1, 2)∗-normal spaces and a new class of functions called (1, 2)∗-rg-continuous, (1, 2)∗-
R-map, almost (1, 2)∗-continuous function and almost (1, 2)∗-rg-closed function in bitopo-
logical spaces. Subsequently, the relationships between mildly (1, 2)∗-normal spaces and
the new bitopological functions are investigated. Moreover, we obtain characterizations of
mildly (1, 2)∗-normal spaces, properties of the new bitopological functions and preservation
theorems for mildly (1, 2)∗-normal spaces in bitopological spaces.
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1. Introduction

The first step in normality was made by Vigilino [33] who defined semi-normal

spaces. Then Singal and Arya [32] introduced the class of almost normal spaces and

proved that a space is normal if and only if it is both a semi-normal space and an

almost normal space. Normality is an important topological property and hence it

is of significance both from intrinsic interest as well as from applications view point

to obtain factorizations of normality in terms of weaker topological properties. In

recent years, many authors have studied several forms of normality [2], [3], [4], [10],

[14], [16], [17], [19], [20], [22], [23], [31], [32]. In particular, the notion of mildly

normal spaces was introduced by M.K. Singal and A.R. Singal [31]. Further it was

widely studied and investigated by Noiri [16], [17] and J.K.Park and J.H. Park [22].

It is well known that the concept of closedness is fundamental as concerns the

investigations of general topological spaces. Levine [13] initiated the study of gener-

alized closed sets. The notion of regular g-closed sets as a generalization of g-closed
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sets due to Levine [13] was defined and investigated by Palaniappan and Rao [21].

Noiri [17] improved the characterization of mildly normal spaces by using regular

g-closed sets and the preservation theorems for mildly normal spaces established in

[1] and [16].

In this paper we introduce and investigate a generalization of mildly normal spaces

by utilizing regular (1, 2)∗-closed sets in bitopological spaces. The notions of (1, 2)∗-

rg-continuous functions, almost (1, 2)∗-continuous functions, (1, 2)∗-R-maps and al-

most (1, 2)∗-rg-closed functions are introduced in bitopological spaces. Also, we

obtain characterizations and properties of mildly (1, 2)∗-normal spaces and their

preservation theorems.

2. Preliminaries

Throughout the paper (X , τ1, τ2), (Y , σ1, σ2) and (Z, ̺1, ̺2) (or simply X , Y

and Z) denote bitopological spaces.

First we recall some definitions used in the sequel.

Definition 2.1 [24]. Let S be a subset of X . Then S is said to be τ1,2-open if

S = A ∪ B where A ∈ τ1 and B ∈ τ2.

The complement of a τ1,2-open set is τ1,2-closed.

Definition 2.2 [24]. Let S be a subset of X . Then

(i) the τ1,2-closure of S, denoted by τ1,2-cl(S), is defined as
⋂
{F : S ⊂ F and F is

τ1,2-closed};

(ii) the τ1,2-interior of S, denoted by τ1,2-int (S), is defined as
⋃
{F : F ⊂ S and F

is τ1,2-open}.

N o t e 2.3 [24]. Notice that τ1,2-open sets need not necessarily form a topology.

Definition 2.4 [26]. Let S be a subset of X . Then S is said to be regular

(1, 2)∗-open if S = τ1,2-int (τ1,2-cl(S)).

The complement of a regular (1, 2)∗-open set is regular (1, 2)∗-closed.

The families of regular (1, 2)∗-open and regular (1, 2)∗-closed sets of X are denoted

by (1, 2)∗-RO(X) and (1, 2)∗-RC(X) respectively.

Definition 2.5 [25]. Let S be a subset of X . Then S is said to be generalized

(1, 2)∗-closed (briefly (1, 2)∗-g-closed) if τ1,2-cl(S) ⊂ U whenever S ⊂ U and U is

τ1,2-open in X .

The complement of a (1, 2)∗-g-closed set is (1, 2)∗-g-open.

We now introduce a new set as follows.
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Definition 2.6. Let S be a subset of X . Then S is said to be regular (1, 2)∗-g-

closed (briefly (1, 2)∗-rg-closed) if τ1,2-cl(S) ⊂ U whenever S ⊂ U and U ∈ (1, 2)∗-

RO(X).

The complement of a (1, 2)∗-rg-closed set is (1, 2)∗-rg-open.

R em a r k 2.7 [26]. Every regular (1, 2)∗-closed set is τ1,2-closed but not con-

versely.

R em a r k 2.8 [25]. Every τ1,2-closed set is (1, 2)∗-g-closed but not conversely.

Theorem 2.9. If A is (1, 2)∗-g-closed, then A is (1, 2)∗-rg-closed.

P r o o f. Suppose that A ⊂ U , where U is regular (1, 2)∗-open. Now U being

regular (1, 2)∗-open implies U is τ1,2-open. Thus A ⊂ U and U is τ1,2-open. Since A

is (1, 2)∗-g-closed, τ1,2-cl(A) ⊂ U . Therefore A is (1, 2)∗-rg-closed. �

E x am p l e 2.10. The converse of Theorem 2.9 is not true in general.

Let X = {a, b, c, d} with τ1 = {∅, X, {a}, {b}, {a, b}, {a, b, c}} and τ2 = {∅, X,

{a, b, d}}. Clearly A = {a, c} is (1, 2)∗-rg-closed but it is not (1, 2)∗-g-closed.

R em a r k 2.11. We have the following implications for properties of subsets.

Regular (1, 2)∗-closed ⇄ τ1,2-closed ⇄ (1, 2)∗-g-closed ⇄ (1, 2)∗-rg-closed.

3. Characterizations of (1, 2)∗-rg-closed sets

E x am p l e 3.1. The union of two (1, 2)∗-rg-closed sets need not be (1, 2)∗-rg-

closed.

Let X = {a, b, c, d} with τ1 = {∅, X, {a}, {b}, {a, b}, {b, c, d}} and τ2 = {∅, X, {c},

{a, c, d}}. Then the sets in {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d},

{b, c, d}} are called τ1,2-open and the sets in {∅, X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d},

{a, b, d}, {a, c, d}, {b, c, d}} are τ1,2-closed. Clearly {a} and {b} are (1, 2)∗-rg-closed.

However, their union {a, b} is not (1, 2)∗-rg-closed.

E x am p l e 3.2. The intersection of two (1, 2)∗-rg-closed sets need not be (1, 2)∗-

rg-closed.

Refer to Example 2.10, Clearly {a, b} and {a, c} are (1, 2)∗-rg-closed but their

intersection {a} is not (1, 2)∗-rg-closed.
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Theorem 3.3. If A is (1, 2)∗-rg-closed, then [τ1,2-cl(A)\A] contains no non-empty

regular (1, 2)∗-closed set.

P r o o f. Suppose that A is (1, 2)∗-rg-closed. Let F be a regular (1, 2)∗-closed

subset of τ1,2-cl(A)\A. Then F ⊂ [τ1,2-cl(A)∩(X \A)] and so A ⊂ [X \F ]. But A is

(1, 2)∗-rg-closed. Therefore τ1,2-cl(A) ⊂ [X \F ]. Consequently, F ⊂ [X \ τ1,2-cl(A)].

We already have F ⊂ τ1,2-cl(A). Hence F ⊂ [τ1,2-cl(A) ∩ X \ τ1,2-cl(A)] = ∅. Thus

F = ∅. Therefore τ1,2-cl(A) \A contains no non-empty regular (1, 2)∗-closed set. �

E x am p l e 3.4. The converse of Theorem 3.3 is not true.

Refer to Example 2.10. Let A = {a}. We have that τ1,2-cl(A)\A = {a, c, d}\{a} =

{c, d} does not contain any non-empty regular (1, 2)∗-closed sets. However, A is

(1, 2)∗-rg-closed in X .

Theorem 3.5. Let A be (1, 2)∗-rg-closed set. Then A is regular (1, 2)∗-closed if

and only if [τ1,2-cl(τ1,2-int (A)) \ A] is regular (1, 2)∗-closed.

P r o o f. Let A be a (1, 2)∗-rg-closed. If A is regular (1, 2)∗-closed, then [τ1,2-

cl(τ1,2-int (A)) \ A] = ∅. We know ∅ is always regular (1, 2)∗-closed. Therefore [τ1,2-

cl(τ1,2-int (A)) \ A] is regular (1, 2)∗-closed. Conversely, suppose that [τ1,2-cl(τ1,2-

int (A)) \ A] is regular (1, 2)∗-closed. Since A is (1, 2)∗-rg-closed, [τ1,2-cl(A) \ A]

contains the regular (1, 2)∗-closed set [τ1,2-cl(τ1,2-int (A)) \ A]. By Theorem 3.3,

[τ1,2-cl(τ1,2-int (A)) \ A] = ∅. Hence τ1,2-cl(τ1,2-int (A)) = A. Therefore A is regular

(1, 2)∗-closed. �

Theorem 3.6. A set A is (1, 2)∗-rg-open if and only if the following condition

holds:

F ⊂ τ1,2-int (A) whenever F is regular (1, 2)∗-closed and F ⊂ A.

P r o o f. Suppose the condition holds. Put [X \ A] = B. Suppose that B ⊂ U

where U ∈ (1, 2)∗-RO(X). Now X \ A ⊂ U implies F = [X \ U ] ⊂ A and F is

regular (1, 2)∗-closed, which implies F ⊂ τ1,2-int (A). Also F ⊂ τ1,2-int (A) implies

[X \ τ1,2-int (A)] ⊂ [X \F ] = U . This implies [X \ (τ1,2-int (X \B))] ⊂ U . Therefore

[X \ (τ1,2-int (X \ B))] ⊂ U or equivalently τ1,2-cl(B) ⊂ U . Thus B is (1, 2)∗-rg-

closed. Hence A is (1, 2)∗-rg-open. Conversely, suppose that A is (1, 2)∗-rg-open,

F ⊂ A and F is regular (1, 2)∗-closed. Then [X \ F ] is regular (1, 2)∗-open. Then

(X \A) ⊂ (X \F ). Hence τ1,2-cl(X \A) ⊂ (X \F ) because (X \A) is (1, 2)∗-rg-closed.

Therefore F ⊂ (X \ τ1,2-cl(X \ A)) = τ1,2-int (A). �
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Theorem 3.7. If A is (1, 2)∗-rg-closed, then [τ1,2-cl(A) \ A] is (1, 2)∗-rg-open.

P r o o f. Suppose that A is (1, 2)∗-rg-closed and that F ⊂ [τ1,2-cl(A) \ A], F

being regular (1, 2)∗-closed. By Theorem 3.3, F = ∅ and hence F ⊂ τ1,2-int[τ1,2-

cl(A) \ A]. By Theorem 3.6, [τ1,2-cl(A) \ A] is (1, 2)∗-rg-open. �

E x am p l e 3.8. The converse of Theorem 3.7 is not true.

Refer to Example 2.10. Let A = {a}. Then [τ1,2-cl(A)\A] = {a, c, d}\{a} = {c, d}

which is (1, 2)∗-rg-open. But A = {a} is not a (1, 2)∗-rg-closed set.

4. Characterizations of mildly (1, 2)∗-normal spaces

Definition 4.1. A space X is said to be mildly (1, 2)∗-normal if for every pair

of disjoint H, K ∈ (1, 2)∗-RC(X), there exist disjoint τ1,2-open sets U , V of X such

that H ⊂ U and K ⊂ V .

Theorem 4.2. The following are equivalent for a space X .

(i) X is mildly (1, 2)∗-normal;

(ii) for any disjoint H, K ∈ (1, 2)∗-RC(X), there exist disjoint (1, 2)∗-g-open sets

U, V such that H ⊂ U and K ⊂ V ;

(iii) for any disjoint H, K ∈ (1, 2)∗-RC(X), there exist disjoint (1, 2)∗-rg-open sets

U, V such that H ⊂ U and K ⊂ V ;

(iv) for any disjoint H ∈ (1, 2)∗-RC(X) and any V ∈ (1, 2)∗-RO(X) containing H ,

there exists a (1, 2)∗-rg-open set U of X such that H ⊂ U ⊂ τ1,2-cl(U) ⊂ V .

P r o o f. It is obvious that (i) ⇒ (ii) and (ii) ⇒ (iii)

(iii)⇒ (iv). Let H ∈ (1, 2)∗-RC(X) and H ⊂ V ∈ (1, 2)∗-RO(X). There exist dis-

joint (1, 2)∗-rg-open sets U, W such that H ⊂ U and (X \V ) ⊂ W . By Theorem 3.6,

we have (X \ V ) ⊂ τ1,2-int (W ) and [U ∩ τ1,2-int (W )] = ∅. Therefore, we obtain

[τ1,2-cl(U)∩τ1,2-int (W )] = ∅ and hence H ⊂ U ⊂ τ1,2-cl(U) ⊂ [X\τ1,2-int (W )] ⊂ V .

(iv) ⇒ (i). Let H, K be disjoint regular (1, 2)∗-closed sets of X . Then H ⊂

(X \ K) ∈ (1, 2)∗-RO(X) and there exists a (1, 2)∗-rg-open set G of X such that

H ⊂ G ⊂ τ1,2-cl(G) ⊂ (X \ K). Put U = τ1,2-int (G) and V = X \ τ1,2-cl(G). Then

U and V are disjoint τ1,2-open sets of X such that H ⊂ U and K ⊂ V . Therefore,

X is mildly (1, 2)∗-normal. �
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5. Some bitopological functions

We shall recall the definitions of some functions used in the sequel.

Definition 5.1. A function f : X → Y is said to be

(i) (1, 2)∗-g-continuous [9] if f−1(F ) is (1, 2)∗-g-closed in X for every σ1,2-closed

set F of Y ;

(ii) a (1, 2)∗-R-map [12] if f−1(F ) ∈ (1, 2)∗-RO(X) for every F ∈ (1, 2)∗-RO(Y );

(iii) completely (1, 2)∗-continuous [11] if f−1(F ) ∈ (1, 2)∗-RO(X) for every σ1,2-open

set F of Y .

We now introduce a new class of functions.

Definition 5.2. A function f : X → Y is said to be

(i) (1, 2)∗-rg-continuous if f−1(F ) is (1, 2)∗-rg-closed in X for every σ1,2-closed set

F of Y ;

(ii) almost (1, 2)∗-continuous if f−1(F ) is τ1,2-open in X for every F ∈ (1, 2)∗-

RO(Y );

(iii) almost (1, 2)∗-g-continuous if f−1(F ) is (1, 2)∗-g-closed in X for every F ∈

(1, 2)∗-RC(Y );

(iv) almost (1, 2)∗-rg-continuous if f−1(F ) is (1, 2)∗-rg-closed in X for every F ∈

(1, 2)∗-RC(Y ).

E x am p l e 5.3. Let X = {a, b, c}, τ1 = {∅, X, {a}, {a, c}} and τ2 = {∅, X, {c}}.

Let Y = {a, b, c}, σ1 = {∅, Y, {a}} and σ2 = {∅, Y, {b}}. Then (a) define f : X → Y

as f(a) = c; f(b) = b; f(c) = a. Clearly f is almost (1, 2)∗-rg-continuous but it is

neither almost (1, 2)∗-g-continuous nor (1, 2)∗-rg-continuous. (b) Define f : X → Y

as f(a) = a, f(b) = c, f(c) = b. Clearly f is both (1, 2)∗-continuous and a (1, 2)∗-R-

map but it is not completely (1, 2)∗-continuous.

E x am p l e 5.4. Let X = Y = {a, b, c}, τ1 = {∅, X, {a}} and τ2 = {∅, X, {a, b}}.

Let σ1 = {∅, Y, {a}} and σ2 = {∅, Y, {a, c}}. Then (a) define f : X → Y as f(a) = b;

f(b) = c; f(c) = a. Clearly f is both (1, 2)∗-rg-continuous and almost (1, 2)∗-

g-continuous but it is not (1, 2)∗-g-continuous. (b) Define f : X → Y as f(a) =

c, f(b) = a, f(c) = b. Clearly f is both (1, 2)∗-g-continuous and almost (1, 2)∗-

continuous but it is not (1, 2)∗-continuous.

E x am p l e 5.5. Let X = Y = {a, b, c}, τ1 = {∅, X, {a}} and τ2 = {∅, X,

{b}, {a, b}}. Let σ1 = {∅, Y, {a}} and σ2 = {∅, Y, {b}}. Define f : X → Y as

f(a) = b; f(b) = a; f(c) = c. Clearly f is almost a (1, 2)∗-continuous but it is not

(1, 2)∗-R-map.
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E x am p l e 5.6. Let X = Y = {a, b, c}, τ1 = {∅, X, {a}} and τ2 = {∅, X, {b, c}}.

Let σ1 = {∅, Y, {b}, {c}, {b, c}} and σ2 = {∅, Y, {a, b}}. Define f : X → Y as f(a) =

a; f(b) = c; f(c) = b. Clearly f is almost (1, 2)∗-g-continuous but it is not almost

(1, 2)∗-continuous.

R em a r k 5.7. From the definitions stated above and the examples given above,

we obtain the following diagram.

Complete (1, 2)∗-continuity →
8 (1, 2)∗-R-map

8→ 8→

(1, 2)∗-continuity →
8 almost (1, 2)∗-continuity

8→ 8→

(1, 2)-g-continuity →
8 almost (1, 2)∗-g-continuity

8→ 8→

(1, 2)∗- rg -continuity →
8 almost (1, 2)∗- rg -continuity

Definition 5.8. A space X is said to be regular (1, 2)∗-T1/2 if every (1, 2)∗-rg-

closed set of X is regular (1, 2)∗-closed in X .

Proposition 5.9. If a function f : X → Y is (1, 2)∗-rg-continuous and X is

regular (1, 2)∗-T1/2, then f is completely (1, 2)∗-continuous.

P r o o f. Let F be any σ1,2-closed set of Y . Since f is (1, 2)∗-rg-continuous,

f−1(F ) is (1, 2)∗-rg-closed in X and hence f−1(F ) ∈ (1, 2)∗-RC(X). Therefore, f is

completely (1, 2)∗-continuous. �

Definition 5.10. A function f : X → Y is said to be (1, 2)∗-rg-irresolute if

f−1(F ) is (1, 2)∗-rg-closed in X for every (1, 2)∗-rg-closed set F of Y .

R em a r k 5.11. Every (1, 2)∗-rg-irresolute function is (1, 2)∗-rg-continuous but

not conversely as shown by the following example.

E x am p l e 5.12. Let X = Y = {a, b, c}. Let τ1 = {∅, X, {a}} and τ2 =

{∅, X, {b}}. Let σ1 = {∅, Y, {a}} and σ2 = {∅, Y, {b, c}}. Define f : X → Y as

f(a) = c; f(b) = b; f(c) = a. Clearly f is (1, 2)∗-rg-continuous but it is not (1, 2)∗-

rg-irresolute.

Proposition 5.13. If f : X → Y is almost (1, 2)∗-rg-continuous and X is regular

(1, 2)∗-T1/2, then f is a (1, 2)∗-R-map.

P r o o f. Let V ∈ (1, 2)∗-RC(Y ). Since f is almost (1, 2)∗-rg-continuous, f−1(V )

is (1, 2)∗-rg-closed in X . But X is regular (1, 2)∗-T1/2. Therefore f−1(V ) ∈ (1, 2)∗-

RC(X). Hence f is a (1, 2)∗-R-map. �

7



R em a r k 5.14. The composition of two (1, 2)∗-rg-continuous functions need not

be (1, 2)∗-rg-continuous as shown by the following example.

E x am p l e 5.15. Let X = Y = Z = {a, b, c}, τ1 = {∅, X, {a}} and τ2 =

{∅, X, {b}}. Let σ1 = {∅, Y, {c}} and σ2 = {∅, Y, {a, b}}. Let ̺1 = {∅, Z, {c}, {b, c}}

and ̺2 = {∅, Z, {a, b}}. Let f : X → Y and g : Y → Z be the two identity functions.

Then f and g are (1, 2)∗-rg-continuous but g ◦ f is not (1, 2)∗-rg-continuous.

Corollary 5.16. The composition g ◦ f : X → Z is (1, 2)∗-rg-continuous if f :

X → Y is (1, 2)∗-rg-continuous and g : Y → Z is (1, 2)∗-continuous.

P r o o f. Let V be a ̺1,2-closed set in Z. Since g is (1, 2)∗-continuous, g−1(V )

is a σ1,2-closed set in Y . Since f is (1, 2)∗-rg-continuous, f−1(g−1(V )) is (1, 2)∗-rg-

closed. Therefore g ◦ f is (1, 2)∗-rg-continuous. �

Definition 5.17. A function f : X → Y is said to be

(i) regular (1, 2)∗-closed if f(F ) is regular (1, 2)∗-closed in Y for every τ1,2-closed

set F of X ;

(ii) (1, 2)∗-g-closed if f(F ) is (1, 2)∗-g-closed in Y for every τ1,2-closed set F of X ;

(iii) (1, 2)∗-rg-closed if f(F ) is (1, 2)∗-rg-closed in Y for every τ1,2-closed set F of X .

Definition 5.18. A function f : X → Y is said to be

(i) (1, 2)∗-rc-preserving if f(F ) is regular (1, 2)∗-closed in Y for every F ∈ (1, 2)∗-

RC(X);

(ii) almost (1, 2)∗-closed if f(F ) is σ1,2-closed in Y for every F ∈ (1, 2)∗-RC(X);

(iii) almost (1, 2)∗-g-closed if f(F ) is (1, 2)∗-g-closed in Y for every F ∈ (1, 2)∗-

RC(X);

(iv) almost (1, 2)∗-rg-closed if f(F ) is (1, 2)∗-rg-closed in Y for every F ∈ (1, 2)∗-

RC(X).

R em a r k 5.19. From the definitions stated above, we obtain the following dia-

gram.
regular (1, 2)∗-closed → (1, 2)∗-rc-preserving

↓ ↓

(1, 2)∗-closed → almost (1, 2)∗-closed

↓ ↓

(1, 2)∗-g-closed → almost (1, 2)∗-g-closed

↓ ↓

(1, 2)∗-rg-closed → almost (1, 2)∗-rg-closed

R em a r k 5.20. The following examples enable us to realize that none of the

implications in the above diagram is reversible.
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E x am p l e 5.21. Let X = Y = {a, b, c}, τ1 = {∅, X, {a}}, τ2 = {∅, X, {b}},

σ1 = {∅, Y, {a, b}} and σ2 = {∅, Y, {a}}. Then (a) define f : X → Y as f(a) = b;

f(b) = a; f(c) = c. Clearly f is both (1, 2)∗-g-closed and almost (1, 2)∗-g-closed,

but it is neither (1, 2)∗-closed nor almost (1, 2)∗-closed. (b) Define f : X → Y as

f(a) = b, f(b) = c, f(c) = a. Clearly f is both (1, 2)∗-rg-closed and almost (1, 2)∗-

rg-closed, but it is neither (1, 2)∗-g-closed nor almost (1, 2)∗-g-closed.

E x am p l e 5.22. Let X = Y = {a, b, c}, τ1 = {∅, X, {a}}, τ2 = {∅, X, {a, c}},

σ1 = {∅, Y, {a, b}} and σ2 = {∅, Y, {a}}. Then define f : X → Y as f(a) = b;

f(b) = a; f(c) = c. Clearly f is both almost (1, 2)∗-closed and almost (1, 2)∗-g-

closed, but it is neither (1, 2)∗-g-closed nor (1, 2)∗-closed.

E x am p l e 5.23. Let X = Y = {a, b, c}, τ1 = {∅, X, {a}}, τ2 = {∅, X, {b}},

σ1 = {∅, Y, {b}, {c}, {b, c}} and σ2 = {∅, Y, {a, b}}. Define f : X → Y as f(a) = c,

f(b) = b, f(c) = a. Clearly f is both (1, 2)∗-closed and almost (1, 2)∗-closed, but it

is neither regular (1, 2)∗-closed nor (1, 2)∗-rc-preserving.

E x am p l e 5.24. Let X = Y = {a, b, c}, τ1 = {∅, X, {a}}, τ2 = {∅, X, {b}},

σ1 = {∅, Y, {a}, {a, c}} and σ2 = {∅, Y, {c}}. Then (i) define f : X → Y as f(a) = a;

f(b) = c; f(c) = b. Clearly f is (1, 2)∗-rc-preserving but it is not regular (1, 2)∗-

closed. (ii) Define f : X → Y as f(a) = b, f(b) = c, f(c) = a. Clearly f is almost

(1, 2)∗-rg-closed but it is not (1, 2)∗-rg-closed.

Proposition 5.25. Let f : X → Y be a function. Then

(i) if f is (1, 2)∗-rg-continuous, (1, 2)∗-rc-preserving, then it is (1, 2)∗-rg-irresolute;

(ii) if f is a (1, 2)∗-R-map and (1, 2)∗-rg-closed, then f(A) is (1, 2)∗-rg-closed in Y

for every (1, 2)∗-rg-closed set A of X .

P r o o f. (i) Let B be any (1, 2)∗-rg-closed set of Y and let U ∈ (1, 2)∗-RO(X)

contain f−1(B). Put V = Y \ f(X \ U), then we have B ⊂ V , f−1(V ) ⊂ U and

V ∈ (1, 2)∗-RO(Y ) since f is (1, 2)∗-rc-preserving. Hence we obtain σ1,2-cl(B) ⊂ V

and hence f−1(σ1,2-cl(B)) ⊂ U . By the (1, 2)∗-rg-continuity of f we have τ1,2-

cl(f−1(B)) ⊂ τ1,2-cl(f
−1 (σ1,2-cl(B))) ⊂ U . This shows that f−1(B) is (1, 2)∗-rg-

closed in X . Therefore f is (1, 2)∗-rg-irresolute.

(ii) Let A be any (1, 2)∗-rg-closed set ofX and let V ∈ (1, 2)∗-RO(X) contain f(A).

Since f is a (1, 2)∗-R-map, f−1(V ) ∈ (1, 2)∗-RO(X) and A ⊂ f−1(V ). Therefore, we

have τ1,2-cl(A) ⊂ f−1(V ) and hence f(τ1,2-cl(A)) ⊂ V . Since f is (1, 2)∗-rg-closed,

f(τ1,2-cl(A)) is (1, 2)∗-rg-closed in Y and hence we obtain σ1,2-cl(f(A)) ⊂ σ1,2-

cl(f(τ1,2-cl(A))) ⊂ V . This shows that f(A) is (1, 2)∗-rg-closed in Y . �
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Corollary 5.26. Let f : X → Y be a function.

(i) If f is (1, 2)∗-continuous, regular (1, 2)∗-closed, then f−1(B) is (1, 2)∗-rg-closed

in X for every (1, 2)∗-rg-closed set B of Y .

(ii) If f is a (1, 2)∗-R-map and (1, 2)∗-closed, then f(A) is (1, 2)∗-rg-closed in Y for

every (1, 2)∗-rg-closed set A of X .

P r o o f. This is an immediate consequence of Proposition 5.25. �

Proposition 5.27. A surjection f : X → Y is almost (1, 2)∗-rg-closed or almost

(1, 2)∗-g-closed if and only if for each subset S of Y and each U ∈ (1, 2)∗-RO(X)

containing f−1(S) there exists respectively an (1, 2)∗-rg-open or (1, 2)∗-g-open set V

of Y such that S ⊂ V and f−1(V ) ⊂ U .

P r o o f. We prove only the first case, the proof of the other being entirely

analogous.

N e c e s s i t y. Suppose that f is almost (1, 2)∗-rg-closed. Let S be a subset of Y

and let U ∈ (1, 2)∗-RO(X) contain f−1(S). Put V = Y \ f (X \ U), then V is a

(1, 2)∗-rg-open set of Y such that S ⊂ V and f−1(V ) ⊂ U .

S u f f i c i e n c y. Let F be any regular (1, 2)∗-closed set of X . Then f−1 (Y \

f(F )) ⊂ (X \ F ) and (X \ F ) ∈ (1, 2)∗-RO(X). There exists a (1, 2)∗-rg-open set

V of Y such that (Y \ f(F )) ⊂ V and f−1(V ) ⊂ (X \ F ). Therefore, we have

f(F ) ⊃ Y \ V and F ⊂ f−1 (Y \ V ). Hence we obtain f(F ) = Y \ V , and f(F ) is

(1, 2)∗-rg-closed in Y . This shows that f is almost (1, 2)∗-rg-closed. �

6. Preservation theorems

In this section we investigate preservation theorems concerning mildly normal

spaces in topological spaces.

Theorem 6.1. If f : X → Y is an almost (1, 2)∗-rg-continous (1, 2)∗-rc-preserving

or almost (1, 2)∗-closed injection and Y is mildly (1, 2)∗-normal or (1, 2)∗-normal

respectively, then X is mildly (1, 2)∗-normal.

P r o o f. Let A and B be any disjoint regular (1, 2)∗-closed sets of X . Since

f is an (1, 2)∗-rc-preserving (almost (1, 2)∗-closed) injection, f(A) and f(B) are

disjoint regular (1, 2)∗-closed (σ1,2-closed) sets of Y . By the mild (1, 2)∗-normality

((1, 2)∗-normality) of Y , there exist disjoint σ1,2-open sets U and V of Y such that

f(A) ⊂ U and f(B) ⊂ V . Now, put G = σ1,2-int (σ1,2-cl(U)) and H = σ1,2-int (σ1,2-

cl(V )), then G and H are disjoint regular (1, 2)∗-open sets such that f(A) ⊂ G and

f(B) ⊂ H . Since f is almost (1, 2)∗-rg-continuous, f−1(G) and f−1(H) are disjoint
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(1, 2)∗-rg-open sets containing A and B, respectively. It follows from Theorem 4.2

that X is mildly (1, 2)∗-normal. �

Theorem 6.2. If f : X → Y is a completely (1, 2)∗-continuous almost (1, 2)∗-g-

closed surjection and X is mildly (1, 2)∗-normal, then Y is (1, 2)∗-normal.

P r o o f. Let A and B be any disjoint σ1,2-closed sets of Y . Then f−1(A)

and f−1(B) are disjoint regular (1, 2)∗-closed sets of X . Since X is mildly (1, 2)∗-

normal, there exist disjoint τ1,2-open sets U and V such that f−1(A) ⊂ U and

f−1(B) ⊂ V . Let G = τ1,2-int (τ1,2-cl(U)) and H = τ1,2-int (τ1,2-cl(V )), then G and

H are disjoint regular (1, 2)∗-open sets such that f−1(A) ⊂ G and f−1(B) ⊂ H . By

Proposition 5.27, there exist (1, 2)∗-g-open sets K and L of Y such that A ⊂ K, B ⊂

L, f−1(K) ⊂ G and f−1(L) ⊂ H . Since G and H are disjoint, so are K and L.

Since K and L are (1, 2)∗-g-open, we obtain A ⊂ σ1,2-int (K), B ⊂ σ1,2-int(L) and

[σ1,2-int(K) ∩ σ1,2-int(L)] = ∅. This shows that Y is (1, 2)∗-normal. �

Corollary 6.3. If f : X → Y is a completely (1, 2)∗-continuous (1, 2)∗-closed

surjection and X is mildly (1, 2)∗-normal, then Y is (1, 2)∗-normal.

Theorem 6.4. Let f : X → Y be an (1, 2)∗-R-map (almost (1, 2)∗-continuous)

and almost (1, 2)∗-rg-closed surjection. If X is mildly (1, 2)∗-normal ((1, 2)∗-normal),

then Y is mildly (1, 2)∗-normal.

P r o o f. Let A and B be any disjoint regular (1, 2)∗-closed sets of Y . Then

f−1(A) and f−1(B) are disjoint regular (1, 2)∗-closed or τ1,2-closed sets of X . Since

X is respectively mildly (1, 2)∗-normal or (1, 2)∗-normal, there exist disjoint τ1,2-open

sets U and V of X such that f−1(A) ⊂ U and f−1(B) ⊂ V . Put G = τ1,2-int(τ1,2-

cl(U)) and H = τ1,2-int (τ1,2-cl(V )), then G and H are disjoint regular (1, 2)∗-open

sets of X such that f−1(A) ⊂ G and f−1(B) ⊂ H . By Proposition 5.27, there

exist (1, 2)∗-rg-open sets K and L of Y such that A ⊂ K, B ⊂ L, f−1(K) ⊂ G

and f−1(L) ⊂ H . Since G and H are disjoint, so are K and L. It follows from

Theorem 4.2 that Y is mildly (1, 2)∗-normal. �
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