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Abstract. The paper deals with the existence of multiple positive solutions for the bound-
ary value problem



















(ϕ(p(t)u(n−1))(t))′ + a(t)f(t, u(t), u′(t), . . . , u(n−2)(t)) = 0, 0 < t < 1,

u(i)(0) = 0, i = 0, 1, . . . , n − 3,

u(n−2)(0) =
m−2
∑

i=1
αiu

(n−2)(ξi), u(n−1)(1) = 0,

where ϕ : R → R is an increasing homeomorphism and a positive homomorphism with
ϕ(0) = 0. Using a fixed-point theorem for operators on a cone, we provide sufficient
conditions for the existence of multiple positive solutions to the above boundary value
problem.

Keywords: boundary-value problems, positive solutions, fixed-point theorem, cone
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1. Introduction

In this paper we introduce a new operator which improves and generates a p-

Laplace operator for some p > 1, and we study the existence of multiple positive

solutions for the nth-order m-point nonlinear boundary value problem of the form

(1.1) (ϕ(p(t)u(n−1))(t))′ + a(t)f(t, u(t), u′(t), . . . , u(n−2)(t)) = 0, 0 < t < 1,

with the boundary value condition







u(i)(0) = 0, i = 0, 1, . . . , n − 3,

u(n−2)(0) =
m−2
∑

i=1

αiu
(n−2)(ξi), u(n−1)(1) = 0,

15



where ϕ : R → R is an increasing homeomorphism with a positive homomorphism

with ϕ(0) = 0. Here ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < . . . < ξm−2 < 1 and αi satisfy αi ∈

[0, +∞), 0 <
m−2
∑

i=1

αi < 1, p ∈ C([0, 1], (0, +∞)), f ∈ C([0, 1]× [0, +∞)n−1, [0, +∞)).

A projection ϕ : R → R is called an increasing homeomorphism and a positive

homomorphism if the following conditions are satisfied:

(1) if x 6 y, then ϕ(x) 6 ϕ(y) for all x, y ∈ R;

(2) ϕ is a continuous bijection and its inverse is also continuous;

(3) ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ R+.

In the above definition, condition (3) can be replaced by the following stronger

condition:

(4) ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ R, where R = (−∞, +∞).

R em a r k 1.1. If conditions (1), (2) and (4) hold, then ϕ is homogeneous and

generates a p-Laplace operator, i.e., ϕ(x) = |x|p−2x for some p > 1.

R em a r k 1.2. It is well known that a p-Laplacian operator is odd. However, the

operator which we defined above is not necessarily odd, see Example 5.1.

The multi-point boundary value problems for ordinary differential equations arise

in a variety of different areas of applied mathematics and physics. The study of multi-

point boundary value problems for linear second-order ordinary differential equations

was initiated by Il’in and Moiseev [6]. Since then, nonlinear multi-point boundary

value problems have been studied by several authors. We refer the reader to [1],

[3], [4], [5], [16] and references therein. Recently, the existence and multiplicity of

positive solutions for the p-Laplacian operator, i.e., p(t) ≡ 1 and ϕ(x) = |x|p−2x for

some p > 1, have received wide attention, see [2], [13], [14], [15], [17] and references

therein. We know that the oddness of a p-Laplacian operator is key to the proof.

However, in this paper we define a new operator which improves and generalizes

a p-Laplacian operator for some p > 1 and ϕ is not necessarily odd. Moreover

for increasing homeomorphism and positive homomorphism operator research has

proceeded very slowly, see [10], [11]. Especially the existence of multiple positive

solutions for nth-order m-point boundary value problems still remains unknown.

In [11], Liu and Zhang studied the existence of positive solutions of the quasi-linear

differential equation

{

(ϕ(x′))′ + a(t)f(x(t)) = 0, t ∈ (0, 1),

x(0) − βx′(0) = 0, x(1) + δx′(1) = 0,

subject to linear mixed boundary conditions by a simple application of a fixed-point

index theorem in cones, where ϕ : R → R is an increasing homeomorphism and a

positive homomorphism with ϕ(0) = 0.
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Wang and Hou [15] studied the boundary value problem






(ϕp(u
′))′(t) + a(t)f(t, u) = 0, 0 < t < 1,

ϕp(u
′(0)) =

n−2
∑

i=1

aiϕp(u
′(ξi)), u(1) =

n−2
∑

i=1

biu(ξi),

where ϕp(s) = |s|p−2s, p > 1; the authors proved the existence of multiple positive

solutions to the above boundary value problem by using a fixed-point theorem for

operators on a cone.

In [17], Zhou and Su studied the quasi-linear equation with a p-Laplacian operator






















(ϕp(u
(n−1)))′ + g(t)f(u(t), u′(t), . . . , u(n−2)(t)) = 0, 0 < t < 1,

u(i)(0) = 0, 0 6 i 6 n − 3,

u(n−1)(0) − B0(u
(n−1)(ξ)) = 0, n > 3,

u(n−1)(0) − B1(u
(n−1)(η)) = 0, n > 3,

where ϕp(s) is a p-Laplacian operator. They used the fixed-point index theory to

find conditions for the existence of one solution, and of multiple solutions.

In a recent paper [8], using lower and upper solutions methods, Kong and Kong

established results for solutions and positive solutions of the following two non-

homogeneous boundary value conditions problems:






x′′(t)) + f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

x′(0) −
m
∑

i=1

αix
′(ξi) = λ1, x(1) −

m
∑

i=1

βix(ξi) = λ2,

and






x′′(t)) + f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

x(0) −
m
∑

i=1

αix(ξi) = λ1, x(1) −
m
∑

i=1

βix(ξi) = λ2,

respectively.

In [12], using Mawhin’s coincidence degree theory, the author studied the more

generalized BVPs for higher order differential equations with p-Laplacian subjected

to non-homogeneous BCs, in which the nonlinearity f contains t, x, . . . , x(n−1).

In [7], the authors proved the existence of positive and/or negative solutions of

a class of four-point boundary-value problems for fourth order ordinary differential

equations by using the continuum property (connectedness and compactness) of the

solutions funnel (Knesser’s Theorem), combined with the corresponding vector field.

R em a r k 1.3. On the one hand, we emphasize that the results of the papers

[12], [15], [17] are not replaced by ϕ which we defined above; on the other hand, the

assumptions and approach in the paper are different from the paper [7], [8], [12] and

the function ϕ which we defined above is more comprehensive and general than the

p-Laplace operator.
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But whether or not we can obtain multiple positive solutions of the nth-order m-

point boundary value problem (1.1) and (1.2) still remains unknown. So the goal of

the present paper is to improve and generalizes p-Laplacian operator and establish

some criteria for the existence of multiple positive solutions by means of the classical

fixed-point theorem for compact maps.

We shall assume that the following conditions are satisfied.

(C1) f ∈ C([0, 1] × [0, +∞)n−1, [0, +∞)), and αi satisfy 0 <
m−2
∑

i=1

αi < 1;

(C2) p ∈ C([0, 1], (0, +∞)) is a nondecreasing function;

(C3) a(t) is a nonnegative measurable function defined in (0, 1) and a(t) does not

identically vanish on any subinterval of (0, 1) and

0 <

∫ 1

0

a(t) dt < +∞.

2. Some definitions and fixed point theorems

In this section we provide background definitions from the cone theory in Banach

spaces.

Definition 2.1. Let (E, ‖ · ‖) be a real Banach space. A nonempty, closed,

convex set P ⊂ E is said to be a cone provided the following conditions are satisfied:

(a) if y ∈ P and λ > 0, then λy ∈ P ;

(b) if y ∈ P and −y ∈ P , then y = 0.

If P ⊂ E is a cone, we denote the order induced by P on E by 6, that is, x 6 y

if and only if y − x ∈ P .

Definition 2.2. A map α is said to be a nonnegative, continuous, concave func-

tional on a cone P of a real Banach space E, if

α : P → [0,∞)

is continuous, and

α(tx + (1 − t)y) > tα(x) + (1 − t)α(y)

for all x, y ∈ P and t ∈ [0, 1].

Definition 2.3. An operator is called completely continuous if it is continuous

and maps bounded sets into precompact sets.

To obtain positive solutions of (1.1) and (1.2) the following fixed-point theorem in

cones is fundamental.
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Theorem 2.1 [9]. Let K be a cone in a Banach space X . Let D be an open

bounded set with Dk = D ∩ K 6= ∅ and Dk 6= K. Let T : Dk → K be a compact

map such that x 6= Tx for x ∈ ∂Dk. Then the following results hold:

(1) If ‖Tx‖ 6 ‖x‖ for x ∈ ∂Dk, then ik(T, Dk) = 1.

(2) Suppose there is e ∈ K, e 6= 0 such that x 6= Tx + λe for all x ∈ ∂Dk and all

λ > 0, then ik(T, Dk) = 0.

(3) Let D1 be open in X such that D1 ⊂ Dk. If ik(T, Dk) = 1 and ik(T, D1
k) = 0,

then T has a fixed point in Dk \D1
k. The same result holds if ik(T, Dk) = 0 and

ik(T, D1
k) = 1.

3. The preliminary lemmas

The basic space used in this paper is E = {u ∈ C2n−2[0, 1] : u(i)(0) = 0, i =

0, 1, . . . , n − 3}. Thus E is a Banach space when endowed with the norm ‖u‖ =

sup
t∈[0,1]

|u(n−2)(t)|. By a solution of (1.1), (1.2), we mean a function u ∈ Cn[0, 1]

which satisfies (1.1), (1.2).

We can easily get the following lemmas which are useful in the proof of our main

results.

Lemma 3.1. Assume that (C1)–(C3) hold. Then boundary value problem (1.1)

and (1.2) has a solution u ∈ Cn[0, 1] if and only if u(t) solves the equation

(3.1) u(t) =

∫ t

0

∫ ζ1

0

. . .

∫ ζn−3

0

w(ζn−2) dζn−2 dζn−3 . . . dζ1,

and

(3.2) inf
t∈[0,1]

u(n−2)(t) > γ‖u‖

where

w(t) =

∫ t

0

1

p(s)
ϕ−1

(
∫ 1

s

a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds

+

m−2
∑

i=1

αi

∫ ξi

0
p(s)−1ϕ−1

(∫ 1

s
a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds

1 −
m−2
∑

i=1

αi

,

γ =

m−2
∑

i=1

αiξi

1 −
m−2
∑

i=1

αi +
m−2
∑

i=1

αiξi

.
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P r o o f. Necessity. First suppose that u ∈ Cn[0, 1] is a solution of problem (1.1)

and (1.2). From the equation of the boundary condition we have

−ϕ(p(1)u(n−1)(1)) + ϕ(p(t)u(n−1)(t)) =

∫ 1

t

a(s)f(s, u(s), u′(s), . . . , u(n−2)(s)) ds.

From the boundary value condition u(n−1)(1) = 0 we have

(3.3) u(n−1)(t) =
1

p(t)
ϕ−1

(
∫ 1

t

a(s)f(s, u(s), u′(s), . . . , u(n−2)(s)) ds

)

.

Integrating (3.3) from 0 to t, we have

(3.4)

u(n−2)(t)−u(n−2)(0) =

∫ t

0

1

p(s)
ϕ−1

(
∫ 1

s

a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds.

Substituting u(n−2)(0) =
m−2
∑

i=1

αiu
(n−2)(ξi) into (3.4), we obtain

u(n−2)(t) =

∫ t

0

1

p(s)
ϕ−1

(
∫ 1

s

a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds

+
m−2
∑

i=1

αiu
(n−2)(ξi).

It is easy to see by simple calculation that

(3.5)

u(n−2)(t) =

∫ t

0

1

p(s)
ϕ−1

(
∫ 1

s

a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds

+

m−2
∑

i=1

αi

∫ ξi

0 p(s)
−1

ϕ−1
(∫ 1

s
a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds

1 −
m−2
∑

i=1

αi

.

Then by integrating Eq. (3.5) n−2 times on [0, 1] we find that for any t ∈ [0, 1], u(t)

can be expressed by equation (3.1).

Sufficiency. If u(t) is a solution of (3.1) direct differentiation of (3.1) we have

u(n−2)(t) =

∫ t

0

1

p(s)
ϕ−1

(
∫ 1

s

a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds

+

m−2
∑

i=1

αi

∫ ξi

0 p(s)−1ϕ−1
(∫ 1

s
a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds

1 −
m−2
∑

i=1

αi

.
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Obviously, for t ∈ [0, 1] we have

(ϕ(p(t)u(n−2)(t)))′ + a(t)f(t, u(t), u′(t), . . . , u(n−2)(t)) = 0,

u(i)(0) = 0, i = 0, 1, . . . , n − 3,

u(n−2)(0) =
m−2
∑

i=1

αiu
(n−2)(ξi), u(n−1)(1) = 0.

Finally, we show that (3.2) holds. It is clear that u(n−1)(t) > 0, which implies that

‖u‖ = u(n−2)(1), min
t∈[0,1]

u(n−2)(t) = u(n−2)(0).

On the other hand, for given s1, s2 ∈ [0, 1] with s1 6 s2, one can prove that

u(n−1)(s2) 6 u(n−1)(s1). Hence, u
(n−1)(t) is nonincreasing on [0, 1].

So, for every i ∈ {1, 2, . . . , m − 2} we have

u(n−2)(1) − u(n−2)(0)

1
6

u(n−2)(ξi) − u(n−2)(0)

ξi

,

i.e., u(n−2)(ξi) − u(n−2)(0) > ξiu
(n−2)(1) − ξiu

(n−2)(0).

Therefore,

m−2
∑

i=1

αiu
(n−2)(ξi) −

m−2
∑

i=1

αiu
(n−2)(0) >

m−2
∑

i=1

αiξiu
(n−2)(1) −

m−2
∑

i=1

αiξiu
(n−2)(0).

This together with the boundary value u(n−2)(0) =
m−2
∑

i=1

αiu
(n−2)(ξi) implies that

u(n−2)(0) >

m−2
∑

i=1

αiξi

1 −
m−2
∑

i=1

αi +
m−2
∑

i=1

αiξi

u(n−2)(1).

The proof is complete. �

Lemma 3.2. Suppose that conditions (C1)–(C3) hold. Then the solution u(t) of

problem (1.1), (1.2) satisfies

u(t) 6 u′(t) 6 . . . 6 u(n−3)(t) 6 u(n−2)(t), 0 6 t 6 1.

P r o o f. If u(t) is the solution of problem (1.1), (1.2), then u(n−2)(t) is a concave

function and u(i)(t) > 0, i = 0, 1, 2, . . . , n − 2, t ∈ [0, 1]. Thus we have

u(i)(t) =

∫ t

0

u(i+1)(s) ds 6 tu(i+1)(t) 6 u(i+1)(t), i = 0, 1, . . . , n − 3,

i.e., u(t) 6 u′(t) 6 . . . 6 u(n−2)(t), t ∈ [0, 1]. �
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To establish the existence of multiple positive solutions of problem (1.1) and (1.2),

we construct a cone K in E by

K =
{

u ∈ E : u(n−2)(t) > 0, min
06t61

u(n−2)(t) > γ‖u‖
}

,

where γ is defined by Lemma 3.1. Obviously, K is a cone of E.

R em a r k 3.1. We note that ui(t) 6 ‖u‖, t ∈ [0, 1] for all u ∈ K, i = 1, . . . , n− 3

by virtue of the definition of E.

Define T : K → E by

(3.6) (Tu)(t) =

∫ t

0

∫ ζ1

0

. . .

∫ ζn−3

0

w(ζn−2) dζn−2 dζn−3 . . . dζ1,

where

w(t) =

∫ t

0

1

p(s)
ϕ−1

(
∫ 1

s

a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds

+

m−2
∑

i=1

αi

∫ ξi

0
p(s)−1ϕ−1

(∫ 1

s
a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds

1 −
m−2
∑

i=1

αi

.

From (3.6) and Lemma 3.1, it is easy to obtain the following result.

Lemma 3.3. Let conditions (C1)–(C3) hold. Then T : K → K is completely

continuous.

We define
K̺ = {u ∈ K : ‖u‖ 6 ̺},

Ω̺ =
{

u ∈ K : min
t∈[0,1]

u(n−2)(t) < γ̺
}

=
{

u ∈ E : γ‖u‖ 6 min
t∈[0,1]

u(n−2)(t) < γ̺
}

.

Lemma 3.4 [9]. Ω̺ has the following properties:

(a) Ω̺ is open relative to K,

(b) Kγ̺ ⊂ Ω̺ ⊂ K̺,

(c) u ∈ ∂Ω̺ if and only if min
t∈[0,1]

u(n−2)(t) = γ̺,

(d) u ∈ ∂Ω̺, then γ̺ 6 u(t) 6 ̺ for t ∈ [0, 1].
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Now, we introduce the following notation. Let i = 1, 2, . . . , n − 3, and

f̺
γ̺ = min

{

min
t∈[0,1]

f(t, u(t), u′(t), . . . , u(n−2)(t))

ϕ(̺)
: u(i)(t) ∈ [0, ̺], u(n−2) ∈ [γ̺, ̺]

}

,

f
̺
0 = max

{

max
t∈[0,1]

ft, (u(t), u′(t), . . . , u(n−2)(t))

ϕ(̺)
: u(i)(t) ∈ [0, ̺], u(n−2) ∈ [0, ̺]

}

,

fα = lim
u(n−2)→α

sup max
t∈[0,1]

f(t, u(t), u′(t), . . . , u(n−2)(t))

ϕ(u(n−2))
,

fα = lim
u(n−2)→α

min min
t∈[0,1]

f(t, u(t), u′(t), . . . , u(n−2)(t))

ϕ(u(n−2))
(α := ∞ or 0+),

1

l
=

1

p(0)
ϕ−1

(
∫ 1

0

a(τ) dτ

)(

1 +

m−2
∑

i=1

αiξm−2

/

(

1 −
m−2
∑

i=1

αi

))

,

1

L
=

1

p(1)

∫ 1

0

ϕ−1

(
∫ 1

s

a(τ) dτ

)

ds.

4. Main results

The main results of this paper are the following.

Theorem 4.1. Assume that one of the following conditions holds:

(C4) There exist ̺1, ̺2, ̺3 ∈ (0,∞) with ̺1 < γ̺2 and ̺2 < ̺3 such that

f
̺1

0 < ϕ(l), f̺2
γ̺2

> ϕ(L), f
̺3

0 < ϕ(l).

(C5) There exist ̺1, ̺2, ̺3 ∈ (0,∞) with ̺1 < ̺2 < γ̺3 such that

f̺1
γ̺1

> ϕ(L), f
̺2

0 < ϕ(l), f̺3
γ̺3

> ϕ(L).

Then (1.1) and (1.2) has two positive solutions u1, u2 with u1 ∈ Ω̺2 \ K̺1 ,

u2 ∈ K̺3 \ Ω̺2 .

P r o o f. We only consider the condition (C4). If (C5) holds, then the proof is

similar to the case when (C4) holds. Let T be a completely continuous operator that

was defined by (3.6).
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First, we show that ik(T, K̺1) = 1. In fact, f̺1

0 < ϕ(l) by (3.6) and Remark 3.1

and we have for u ∈ K̺1 ,

‖Tu‖ = |(Tu)(n−2)(1)| =

∫ 1

0

1

p(s)
ϕ−1

(
∫ 1

s

a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds

+

m−2
∑

i=1

αi

∫ ξi

0
p(s)−1ϕ−1(

∫ 1

s
a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ) ds

1 −
m−2
∑

i=1

αi

6

∫ 1

0

p(0)−1ϕ−1

(
∫ 1

0

a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ

)

ds

+

m−2
∑

i=1

αi

∫ ξm−2

0 p(0)−1ϕ−1(
∫ 1

0 a(τ)f(τ, u(τ), u′(τ), . . . , u(n−2)(τ)) dτ) ds

1 −
m−2
∑

i=1

αi

< ϕ−1(ϕ(l)ϕ(̺1))
1

p(0)
ϕ−1

(
∫ 1

0

a(τ) dτ

)(

1 +

m−2
∑

i=1

αiξm−2

/

(

1 −
m−2
∑

i=1

αi

))

=
l̺1

p(0)
ϕ−1

(
∫ 1

0

a(τ) dτ

)(

1 +

m−2
∑

i=1

αiξm−2

/

(

1 −
m−2
∑

i=1

αi

))

= ̺1 = ‖u‖.

This implies that ‖Tu‖ < ‖u‖ for u(t) ∈ ∂K̺1 . By (1) of Theorem 2.1, we have

ik(T, K̺1) = 1.

Secondly, we show that ik(T, Ω̺2) = 0.

Let e(n−2)(t) ≡ 1 for t ∈ [0, 1]. Then e ∈ ∂K1, and we claim that

u 6= Tu + λe, u ∈ ∂Ω̺2 , λ > 0.

In fact, if not, there exist u0 ∈ ∂Ω̺2 and λ0 > 0 such that u0 = Tu0 + λ0e. By

Lemma 3.3, Remark 3.1 and (3.6) we have

γ̺2 = min
t∈[0,1]

u
(n−2)
0 (t) = (Tu0)

(n−2)(t) + λ0e
(n−2)(t) > γ‖Tu0‖ + λ0

= γ

∫ 1

0

1

p(s)
ϕ−1

(
∫ 1

s

a(τ)f(τ, u0(τ), u′

0(τ), . . . , u
(n−2)
0 (τ)) dτ

)

ds + λ0

>
γ

p(1)
ϕ−1(ϕ(L)ϕ(̺2))

∫ 1

0

ϕ−1

(
∫ 1

s

a(τ) dτ

)

ds + λ0

=
γ

p(1)
L̺2

∫ 1

0

ϕ−1

(
∫ 1

s

a(τ) dτ

)

ds + λ0

= γ̺2 + λ0.
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This implies that γ̺2 > γ̺2 + λ0, which is a contradiction. Hence by (2) of Theo-

rem 2.1, we have ik(T, Ω̺2) = 0.

Finally, similarly to the proof of ik(T, K̺1) = 1, we can prove that ik(T, K̺3) = 1.

Since ̺1 < γ̺2, we have K̺1 ⊂ Kγ̺2 ⊂ Ω̺2 . Therefore, Theorem 2.1 implies that

problem (1.1), (1.2) has at least two positive solutions u1, u2 with u1 ∈ Ω̺2 \ K̺1 ,

u2 ∈ K̺3 \ Ω̺2 .

If (C5) holds, the proof is similar to the above. �

R em a r k 4.1. From the proof of Theorem 4.1 we know that ik(T, K̺1) = 1 6= 0,

and we can obtain that problem (1.1) and (1.2) has a third nonnegative solution u3

with u3 ∈ K̺1 .

As a special case of Theorem 4.1 we obtain the following result.

Corollary 4.1. If there exist ̺, ̺′ ∈ (0,∞) with ̺′ < γ̺ such that one of the

following conditions holds:

(C6) 0 < f
̺′

0 < ϕ(l), f̺
γ̺ > ϕ(L), 0 6 f∞ < ϕ(l).

(C7) ϕ(L) < f
̺′

γ̺′ 6 ∞, f
̺
0 < ϕ(l), ϕ(L) < f∞ 6 ∞.

Then (1.1) and (1.2) has two positive solutions in K.

P r o o f. We show that (C6) implies (C4). Let a ∈ (f∞, ϕ(l)). Then there exists

r > a such that max
t∈[0,1]

f(t, u, u′, . . . , u(n−2)) 6 aϕ(u(n−2)) for u(n−2) ∈ [r,∞) since

0 6 f∞ < ϕ(l). Let

β = max
{

max
t∈[0,1]

f(t, u, u′, . . . , u(n−2)) : 0 6 u, u′, . . . , u(n−2) 6 r
}

and

̺3 > max
{

ϕ−1
( β

ϕ(l) − a

)

, ̺
}

.

Then we have

sup
t∈[0,1]

f(t, u, u′, . . . , u(n−2)) 6 aϕ(u(n−2)) + β

6 aϕ(̺3) + β < ϕ(l)ϕ(̺3) for u(n−2) ∈ [0, ̺3].

This implies that f
̺3

0 < ϕ(l) and (C4) holds. Similarly, (C7) implies (C5). �

By an argument similar to that of Theorem 4.1 we obtain the following results.

25



Theorem 4.2. Assume that one of the following conditions holds:

(C8) There exist ̺1, ̺2 ∈ (0,∞) with ̺1 < ̺2 such that f
̺1

0 6 ϕ(l) and f̺2
γ̺2

> ϕ(L).

(C9) There exist ̺1, ̺2 ∈ (0,∞) with ̺1 < ̺2 such that f
̺1
γ̺1

> ϕ(L) and f
̺2

0 6 ϕ(l).

Then (1.1), (1.2) has a positive solution in K.

As a special case of Theorem 4.2 we obtain the following result.

Corollary 4.2. Assume that one of the following conditions holds:

(H9) 0 6 f0 < ϕ(l) and ϕ(L) < f∞ 6 ∞.

(H10) 0 6 f∞ < ϕ(l) and ϕ(L) < f0 6 ∞.

Then (1.1) and (1.2) has a positive solution in K.

R em a r k 4.2. This result strictly includes the sublinear and superlinear cases.

Theorem 4.1 can be generalized to obtain many solutions.

Theorem 4.3. Suppose that (C1)–(C3) hold. Then we have the following asser-

tions.

(1) There exist {̺i}
2k0

i=1 ⊂ (0,∞) with ̺1 < γ̺2 < ̺2 < ̺3 < γ̺4 < . . . < ̺2k0 such

that

f
̺2k−1

0 < ϕ(l), f̺2k

γ̺2k
> ϕ(L) (k = 1, 2, . . . , k0).

Then problem (1.1), (1.2) has at least 2k0 solutions in K.

(2) There exist {̺i}
2k0

i=1 ⊂ (0,∞) with ̺1 < ̺2 and ̺2 < γ̺3 < ̺4 < γ̺5 < . . . <

̺2k0+2 such that

f̺2k−1
γ̺2k−1

> ϕ(L), f
̺2k

0 < ϕ(l) (k = 1, 2, . . . , k0).

Then problem (1.1), (1.2) has at least 2k0 − 1 solutions in K.

R em a r k 4.3. If ϕ(u) = u, the problem is a second boundary value problem. If

ϕ(u) = |u|p−2u, p > 1, the problem is a boundary value problem with a p-Laplacian.

Then our results of Theorem 4.1 and 4.2 are also new.
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5. Example

E x am p l e 5.1. As an example we mention the boundary value problem

(5.1)















(ϕ(p(t)u(n−1))(t))′ + a(t)f(t, u(t), u′(t), . . . , u(n−2)(t)) = 0, 0 < t < 1,

u(i)(0) = 0, i = 0, 1, . . . , n − 3,

u(n−2)(0) =
m−2
∑

i=1

αiu
(n−2)(ξi), u(n−1)(1) = 0,

where

ϕ(u) =







u6

1 + u4
, u 6 0,

u6, u > 0.

Here αi, a(t) ∈ ((0, 1), [0,∞)) and f satisfies the conditions of Theorem 4.1. It is

clear that ϕ : R → R is an increasing homeomorphism and a positive homomorphism

with ϕ(0) = 0.

R em a r k 5.1. Because the p-Laplacian operator is odd but the operator which

we define by (5.2) is not odd, so the p-Laplacian operators does not apply to our Ex-

ample 5.1. Hence we generalize boundary value problems with p-Laplacian operators

and the results [2], [13], [15], [17] do not apply to Example 5.1.

A c k n ow l e d gm e n t. The authors wish to thank the referee for valuable sug-

gestions regarding the original manuscript.
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